Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Cardiovasc Diagn Ther ; 14(4): 655-667, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39263478

RESUMEN

Background: Coronary chronic total occlusion (CTO) increases the risk of developing major adverse cardiovascular events (MACE) and cardiogenic shock. Coronary computed tomography angiography (CCTA) is a safe, noninvasive method to diagnose CTO lesions. With the development of artificial intelligence (AI), AI has been broadly applied in cardiovascular images, but AI-based detection of CTO lesions from CCTA images is difficult. We aim to evaluate the performance of AI in detecting the CTO lesions of coronary arteries based on CCTA images. Methods: We retrospectively and consecutively enrolled patients with 50% stenosis, 50-99% stenosis, and CTO lesions who received CCTA scans between June 2021 and June 2022 in Beijing Anzhen Hospital. Four-fifths of them were randomly assigned to the training dataset, while the rest (1/5) were randomly assigned to the testing dataset. Performance of the AI-assisted CCTA (CCTA-AI) in detecting the CTO lesions was evaluated through sensitivity, specificity, positive predictive value, negative predictive value, accuracy, and receiver operating characteristic analysis. With invasive coronary angiography as the reference, the diagnostic performance of AI method and manual method was compared. Results: A total of 537 patients with 1,569 stenotic lesions (including 672 lesions with <50% stenosis, 493 lesions with 50-99% stenosis, and 404 CTO lesions) were enrolled in our study. CCTA-AI saved 75% of the time in post-processing and interpreting the CCTA images when compared to the manual method (116±15 vs. 472±45 seconds). In the testing dataset, the accuracy of CCTA-AI in detecting CTO lesions was 86.2% (79.0%, 90.3%), with the area under the curve of 0.874. No significant difference was found in detecting CTO lesions between AI and manual methods (P=0.53). Conclusions: AI can automatically detect CTO lesions based on CCTA images, with high diagnostic accuracy and efficiency.

2.
Med Image Anal ; 98: 103321, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39197302

RESUMEN

Accurate segmentation of the left atrium (LA) from late gadolinium-enhanced cardiac magnetic resonance (LGE CMR) images is crucial for aiding the treatment of patients with atrial fibrillation. Few-shot learning holds significant potential for achieving accurate LA segmentation with low demand on high-cost labeled LGE CMR data and fast generalization across different centers. However, accurate LA segmentation with few-shot learning is a challenging task due to the low-intensity contrast between the LA and other neighboring organs in LGE CMR images. To address this issue, we propose an Adaptive Dynamic Inference Network (ADINet) that explicitly models the differences between the foreground and background. Specifically, ADINet leverages dynamic collaborative inference (DCI) and dynamic reverse inference (DRI) to adaptively allocate semantic-aware and spatial-specific convolution weights and indication information. These allocations are conditioned on the support foreground and background knowledge, utilizing pixel-wise correlations, for different spatial positions of query images. The convolution weights adapt to different visual patterns based on spatial positions, enabling effective encoding of differences between foreground and background regions. Meanwhile, the indication information adapts to the background visual pattern to reversely decode foreground LA regions, leveraging their spatial complementarity. To promote the learning of ADINet, we propose hierarchical supervision, which enforces spatial consistency and differences between the background and foreground regions through pixel-wise semantic supervision and pixel-pixel correlation supervision. We demonstrated the performance of ADINet on three LGE CMR datasets from different centers. Compared to state-of-the-art methods with ten available samples, ADINet yielded better segmentation performance in terms of four metrics.


Asunto(s)
Atrios Cardíacos , Humanos , Atrios Cardíacos/diagnóstico por imagen , Fibrilación Atrial/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Algoritmos , Medios de Contraste , Interpretación de Imagen Asistida por Computador/métodos
3.
Comput Med Imaging Graph ; 116: 102414, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38981250

RESUMEN

The use of multi-modality non-contrast images (i.e., T1FS, T2FS and DWI) for segmenting liver tumors provides a solution by eliminating the use of contrast agents and is crucial for clinical diagnosis. However, this remains a challenging task to discover the most useful information to fuse multi-modality images for accurate segmentation due to inter-modal interference. In this paper, we propose a dual-stream multi-level fusion framework (DM-FF) to, for the first time, accurately segment liver tumors from non-contrast multi-modality images directly. Our DM-FF first designs an attention-based encoder-decoder to effectively extract multi-level feature maps corresponding to a specified representation of each modality. Then, DM-FF creates two types of fusion modules, in which a module fuses learned features to obtain a shared representation across multi-modality images to exploit commonalities and improve the performance, and a module fuses the decision evidence of segment to discover differences between modalities to prevent interference caused by modality's conflict. By integrating these three components, DM-FF enables multi-modality non-contrast images to cooperate with each other and enables an accurate segmentation. Evaluation on 250 patients including different types of tumors from two MRI scanners, DM-FF achieves a Dice of 81.20%, and improves performance (Dice by at least 11%) when comparing the eight state-of-the-art segmentation architectures. The results indicate that our DM-FF significantly promotes the development and deployment of non-contrast liver tumor technology.


Asunto(s)
Neoplasias Hepáticas , Imagen Multimodal , Neoplasias Hepáticas/diagnóstico por imagen , Humanos , Imagen Multimodal/métodos , Interpretación de Imagen Asistida por Computador/métodos , Algoritmos , Imagen por Resonancia Magnética/métodos
4.
Int J Cardiol ; 411: 132265, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38880416

RESUMEN

BACKGROUND: The prognostic efficacy of a coronary computed tomography angiography (CCTA)-derived myocardial radiomics model in patients with chronic myocardial infarction (MI) is unclear. METHODS: In this retrospective study, a cohort of 236 patients with chronic MI who underwent both CCTA and cardiac magnetic resonance (CMR) examinations within 30 days were enrolled and randomly divided into training and testing datasets at a ratio of 7:3. The clinical endpoints were major adverse cardiovascular events (MACE), defined as all-cause death, myocardial reinfarction and heart failure hospitalization. The entire three-dimensional left ventricular myocardium on CCTA images was segmented as the volume of interest for the extraction of radiomics features. Five models, namely the clinical model, CMR model, clinical+CMR model, CCTA-radiomics model, and clinical+CCTA-radiomics model, were constructed using multivariate Cox regression. The prognostic performances of these models were evaluated through receiver operating characteristic curve analysis and the index of concordance (C-index). RESULTS: Fifty-one (20.16%) patients experienced MACE during a median follow-up of 1439.5 days. The predictive performance of the CCTA-radiomics model surpassed that of the clinical model, CMR model, and clinical+CMR model in both the training (area under the curve (AUC) of 0.904 vs. 0.691, 0.764, 0.785; C-index of 0.88 vs. 0.71, 0.75, 0.76, all p values <0.001) and testing (AUC of 0.893 vs. 0.704, 0.851, 0.888; C-index of 0.86 vs. 0.73, 0.85, 0.85, all p values <0.05) datasets. CONCLUSIONS: The CCTA-based myocardial radiomics model is a valuable tool for predicting adverse outcomes in chronic MI, providing incremental value to conventional clinical and CMR parameters.


Asunto(s)
Angiografía por Tomografía Computarizada , Angiografía Coronaria , Infarto del Miocardio , Valor Predictivo de las Pruebas , Humanos , Femenino , Masculino , Persona de Mediana Edad , Infarto del Miocardio/diagnóstico por imagen , Estudios Retrospectivos , Angiografía por Tomografía Computarizada/métodos , Angiografía Coronaria/métodos , Anciano , Enfermedad Crónica , Imagen por Resonancia Cinemagnética/métodos , Estudios de Seguimiento , Pronóstico , Estudios de Cohortes , Radiómica
5.
IEEE Trans Med Imaging ; PP2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861432

RESUMEN

Estimation of the fractional flow reserve (FFR) pullback curve from invasive coronary imaging is important for the intraoperative guidance of coronary intervention. Machine/deep learning has been proven effective in FFR pullback curve estimation. However, the existing methods suffer from inadequate incorporation of intrinsic geometry associations and physics knowledge. In this paper, we propose a constraint-aware learning framework to improve the estimation of the FFR pullback curve from invasive coronary imaging. It incorporates both geometrical and physical constraints to approximate the relationships between the geometric structure and FFR values along the coronary artery centerline. Our method also leverages the power of synthetic data in model training to reduce the collection costs of clinical data. Moreover, to bridge the domain gap between synthetic and real data distributions when testing on real-world imaging data, we also employ a diffusion-driven test-time data adaptation method that preserves the knowledge learned in synthetic data. Specifically, this method learns a diffusion model of the synthetic data distribution and then projects real data to the synthetic data distribution at test time. Extensive experimental studies on a synthetic dataset and a real-world dataset of 382 patients covering three imaging modalities have shown the better performance of our method for FFR estimation of stenotic coronary arteries, compared with other machine/deep learning-based FFR estimation models and computational fluid dynamics-based model. The results also provide high agreement and correlation between the FFR predictions of our method and the invasively measured FFR values. The plausibility of FFR predictions along the coronary artery centerline is also validated.

6.
IEEE Trans Biomed Eng ; 71(10): 3000-3013, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38805338

RESUMEN

OBJECTIVE: Non-invasive computation of the index of microcirculatory resistance from coronary computed tomography angiography (CTA), referred to as IMR[Formula: see text], is a promising approach for quantitative assessment of coronary microvascular dysfunction (CMD). However, the computation of IMR[Formula: see text] remains an important unresolved problem due to its high requirement for the accuracy of coronary blood flow. Existing CTA-based methods for estimating coronary blood flow rely on physiological assumption models to indirectly identify, which leads to inadequate personalization of total and vessel-specific flow. METHODS: To overcome this challenge, we propose a vascular deformation-based flow estimation (VDFE) model to directly estimate coronary blood flow for reliable IMR[Formula: see text] computation. Specifically, we extract the vascular deformation of each vascular segment from multi-phase CTA. The concept of inverse problem solving is applied to implicitly derive coronary blood flow based on the physical constraint relationship between blood flow and vascular deformation. The vascular deformation constraints imposed on each segment within the vascular structure ensure sufficient individualization of coronary blood flow. RESULTS: Experimental studies on 106 vessels collected from 89 subjects demonstrate the validity of our VDFE, achieving an IMR[Formula: see text] accuracy of 82.08 %. The coronary blood flow estimated by VDFE has better reliability than the other four existing methods. CONCLUSION: Our proposed VDFE is an effective approach to non-invasively compute IMR[Formula: see text] with excellent diagnostic performance. SIGNIFICANCE: The VDFE has the potential to serve as a safe, effective, and cost-effective clinical tool for guiding CMD clinical treatment and assessing prognosis.


Asunto(s)
Angiografía por Tomografía Computarizada , Angiografía Coronaria , Circulación Coronaria , Vasos Coronarios , Humanos , Angiografía por Tomografía Computarizada/métodos , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/fisiopatología , Vasos Coronarios/fisiología , Circulación Coronaria/fisiología , Angiografía Coronaria/métodos , Masculino , Microcirculación/fisiología , Persona de Mediana Edad , Femenino , Modelos Cardiovasculares , Anciano , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/fisiopatología
7.
Comput Biol Med ; 177: 108608, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38796880

RESUMEN

BACKGROUND AND OBJECTIVE: Cardiac computed tomography angiography (CTA) is the preferred modality for preoperative planning in aortic valve stenosis. However, it cannot provide essential functional hemodynamic data, specifically the mean transvalvular pressure gradient (MPG). This study aims to introduce a computational fluid dynamics (CFD) approach for MPG quantification using cardiac CTA, enhancing its diagnostic value. METHODS: Twenty patients underwent echocardiography, cardiac CTA, and invasive catheterization for pressure measurements. Cardiac CTA employed retrospective electrocardiographic gating to capture multi-phase data throughout the cardiac cycle. We segmented the region of interest based on mid-systolic phase cardiac CTA images. Then, we computed the average flow velocity into the aorta as the inlet boundary condition, using variations in end-diastolic and end-systolic left ventricular volume. Finally, we conducted CFD simulations using a steady-state model to obtain pressure distribution within the computational domain, allowing for the derivation of MPG. RESULTS: The mean value of MPG, measured via invasive catheterization (MPGInv), echocardiography (MPGEcho), and cardiac CTA (MPGCT), were 51.3 ± 28.4 mmHg, 44.8 ± 19.5 mmHg, and 55.8 ± 25.6 mmHg, respectively. In comparison to MPGInv, MPGCT exhibited a higher correlation of 0.91, surpassing that of MPGEcho, which was 0.82. Moreover, the limits of agreement for MPGCT ranged from -27.7 to 18.7, outperforming MPGEcho, which ranged from -40.1 to 18.0. CONCLUSIONS: The proposed method based on cardiac CTA enables the evaluation of MPG for aortic valve stenosis patients. In future clinical practice, a single cardiac CTA examination can comprehensively assess both the anatomical and functional hemodynamic aspects of aortic valve disease.


Asunto(s)
Angiografía por Tomografía Computarizada , Hemodinámica , Humanos , Angiografía por Tomografía Computarizada/métodos , Masculino , Femenino , Anciano , Hemodinámica/fisiología , Persona de Mediana Edad , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/fisiopatología , Enfermedad de la Válvula Aórtica/diagnóstico por imagen , Enfermedad de la Válvula Aórtica/fisiopatología , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Estenosis de la Válvula Aórtica/fisiopatología , Modelos Cardiovasculares , Ecocardiografía/métodos
8.
Comput Med Imaging Graph ; 115: 102381, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38640620

RESUMEN

Vascular structure segmentation in intravascular ultrasound (IVUS) images plays an important role in pre-procedural evaluation of percutaneous coronary intervention (PCI). However, vascular structure segmentation in IVUS images has the challenge of structure-dependent distractions. Structure-dependent distractions are categorized into two cases, structural intrinsic distractions and inter-structural distractions. Traditional machine learning methods often rely solely on low-level features, overlooking high-level features. This way limits the generalization of these methods. The existing semantic segmentation methods integrate low-level and high-level features to enhance generalization performance. But these methods also introduce additional interference, which is harmful to solving structural intrinsic distractions. Distraction cue methods attempt to address structural intrinsic distractions by removing interference from the features through a unique decoder. However, they tend to overlook the problem of inter-structural distractions. In this paper, we propose distraction-aware hierarchical learning (DHL) for vascular structure segmentation in IVUS images. Inspired by distraction cue methods for removing interference in a decoder, the DHL is designed as a hierarchical decoder that gradually removes structure-dependent distractions. The DHL includes global perception process, distraction perception process and structural perception process. The global perception process and distraction perception process remove structural intrinsic distractions then the structural perception process removes inter-structural distractions. In the global perception process, the DHL searches for the coarse structural region of the vascular structures on the slice of IVUS sequence. In the distraction perception process, the DHL progressively refines the coarse structural region of the vascular structures to remove structural distractions. In the structural perception process, the DHL detects regions of inter-structural distractions in fused structure features then separates them. Extensive experiments on 361 subjects show that the DHL is effective (e.g., the average Dice is greater than 0.95), and superior to ten state-of-the-art IVUS vascular structure segmentation methods.


Asunto(s)
Ultrasonografía Intervencional , Humanos , Ultrasonografía Intervencional/métodos , Aprendizaje Automático , Intervención Coronaria Percutánea
9.
IEEE Trans Biomed Eng ; 71(9): 2599-2611, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38598371

RESUMEN

Determining the location of myocardial infarction is crucial for clinical management and therapeutic stratagem. However, existing diagnostic tools either sacrifice ease of use or are limited by their spatial resolution. Addressing this, we aim to refine myocardial infarction localization via surface potential reconstruction of the ventricles in 12-lead electrocardiograms (ECG). A notable obstacle is the ill-posed nature of such reconstructions. To overcome this, we introduce the frequency-enhanced geometric-constrained iterative network (FGIN). FGIN begins by mining the latent features from ECG data across both time and frequency domains. Subsequently, it increases the data dimensionality of ECG and captures intricate features using convolutional layers. Finally, FGIN incorporates ventricular geometry as a constraint on surface potential distribution. It allocates variable weights to distinct edges. Experimental validation of FGIN confirms its efficacy over synthetic and clinical datasets. On the synthetic dataset, FGIN outperforms seven existing reconstruction methods, attaining the highest Pearson Correlation Coefficient of 0.8624, the lowest Root Mean Square Error of 0.1548, and the highest Structural Similarity Index Measure of 0.7988. On the clinical public dataset (2007 PhysioNet/Computers in Cardiology Challenge), FGIN achieves better localization results than other approaches, according to the clinical standard 17-segment model, achieving an average Segment Overlap of 87.2%. Clinical trials on 50 patients demonstrate FGIN's effectiveness, showing an average accuracy of 91.6% and an average Segment Overlap of 88.2%.


Asunto(s)
Algoritmos , Electrocardiografía , Infarto del Miocardio , Procesamiento de Señales Asistido por Computador , Humanos , Electrocardiografía/métodos , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/diagnóstico por imagen
10.
IEEE Trans Med Imaging ; 43(6): 2215-2228, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38329865

RESUMEN

Multi-dimensional analysis in echocardiography has attracted attention due to its potential for clinical indices quantification and computer-aided diagnosis. It can utilize various information to provide the estimation of multiple cardiac indices. However, it still has the challenge of inter-task conflict. This is owing to regional confusion, global abnormalities, and time-accumulated errors. Task mapping methods have the potential to address inter-task conflict. However, they may overlook the inherent differences between tasks, especially for multi-level tasks (e.g., pixel-level, image-level, and sequence-level tasks). This may lead to inappropriate local and spurious task constraints. We propose cross-space consistency (CSC) to overcome the challenge. The CSC embeds multi-level tasks to the same-level to reduce inherent task differences. This allows multi-level task features to be consistent in a unified latent space. The latent space extracts task-common features and constrains the distance in these features. This constrains the task weight region that satisfies multiple task conditions. Extensive experiments compare the CSC with fifteen state-of-the-art echocardiographic analysis methods on five datasets (10,908 patients). The result shows that the CSC can provide left ventricular (LV) segmentation, (DSC = 0.932), keypoint detection (MAE = 3.06mm), and keyframe identification (accuracy = 0.943). These results demonstrate that our method can provide a multi-dimensional analysis of cardiac function and is robust in large-scale datasets.


Asunto(s)
Algoritmos , Ecocardiografía , Humanos , Ecocardiografía/métodos , Interpretación de Imagen Asistida por Computador/métodos , Corazón/diagnóstico por imagen , Bases de Datos Factuales , Procesamiento de Imagen Asistido por Computador/métodos
11.
IEEE Trans Image Process ; 33: 910-925, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38224516

RESUMEN

Limited-angle tomographic reconstruction is one of the typical ill-posed inverse problems, leading to edge divergence with degraded image quality. Recently, deep learning has been introduced into image reconstruction and achieved great results. However, existing deep reconstruction methods have not fully explored data consistency, resulting in poor performance. In addition, deep reconstruction methods are still mathematically inexplicable and unstable. In this work, we propose an iterative residual optimization network (IRON) for limited-angle tomographic reconstruction. First, a new optimization objective function is established to overcome false negative and positive artifacts induced by limited-angle measurements. We integrate neural network priors as a regularizer to explore deep features within residual data. Furthermore, the block-coordinate descent is employed to achieve a novel iterative framework. Second, a convolution assisted transformer is carefully elaborated to capture both local and long-range pixel interactions simultaneously. Regarding the visual transformer, the multi-head attention is further redesigned to reduce computational costs and protect reconstructed image features. Third, based on the relative error convergence property of the convolution assisted transformer, a mathematical convergence analysis is also provided for our IRON. Both numerically simulated and clinically collected real cardiac datasets are employed to validate the effectiveness and advantages of the proposed IRON. The results show that IRON outperforms other state-of-the-art methods.

12.
IEEE Trans Med Imaging ; 43(4): 1462-1475, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38048241

RESUMEN

Aortic segmentation from computed tomography (CT) is crucial for facilitating aortic intervention, as it enables clinicians to visualize aortic anatomy for diagnosis and measurement. However, aortic segmentation faces the challenge of variable geometry in space, as the geometric diversity of different diseases and the geometric transformations that occur between raw and measured images. Existing constraint-based methods can potentially solve the challenge, but they are hindered by two key issues: inaccurate definition of properties and inappropriate topology of transformation in space. In this paper, we propose a deformable constraint transport network (DCTN). The DCTN adaptively extracts aortic features to define intra-image constrained properties and guides topological implementation in space to constrain inter-image geometric transformation between raw and curved planar reformation (CPR) images. The DCTN contains a deformable attention extractor, a geometry-aware decoder and an optimal transport guider. The extractor generates variable patches that preserve semantic integrity and long-range dependency in long-sequence images. The decoder enhances the perception of geometric texture and semantic features, particularly for low-intensity aortic coarctation and false lumen, which removes background interference. The guider explores the geometric discrepancies between raw and CPR images, constructs probability distributions of discrepancies, and matches them with inter-image transformation to guide geometric topology in space. Experimental studies on 267 aortic subjects and four public datasets show the superiority of our DCTN over 23 methods. The results demonstrate DCTN's advantages in aortic segmentation for different types of aortic disease, for different aortic segments, and in the measurement of clinical indexes.


Asunto(s)
Aorta , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Aorta/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos
13.
Radiology ; 309(2): e231149, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37962501

RESUMEN

Background CT is helpful in guiding the revascularization of chronic total occlusion (CTO), but manual prediction scores of percutaneous coronary intervention (PCI) success have challenges. Deep learning (DL) is expected to predict success of PCI for CTO lesions more efficiently. Purpose To develop a DL model to predict guidewire crossing and PCI outcomes for CTO using coronary CT angiography (CCTA) and evaluate its performance compared with manual prediction scores. MATERIALS AND METHODS: Participants with CTO lesions were prospectively identified from one tertiary hospital between January 2018 and December 2021 as the training set to develop the DL prediction model for PCI of CTO, with fivefold cross validation. The algorithm was tested using an external test set prospectively enrolled from three tertiary hospitals between January 2021 and June 2022 with the same eligibility criteria. All participants underwent preprocedural CCTA within 1 month before PCI. The end points were guidewire crossing within 30 minutes and PCI success of CTO.Results A total of 534 participants (mean age, 57.7 years ± 10.8 [SD]; 417 [78.1%] men) with 565 CTO lesions were included. In the external test set (186 participants with 189 CTOs), the DL model saved 85.0% of the reconstruction and analysis time of manual scores (mean, 73.7 seconds vs 418.2-466.9 seconds) and had higher accuracy than manual scores in predicting guidewire crossing within 30 minutes (DL, 91.0%; CT Registry of Chronic Total Occlusion Revascularization, 61.9%; Korean Multicenter CTO CT Registry [KCCT], 68.3%; CCTA-derived Multicenter CTO Registry of Japan (J-CTO), 68.8%; P < .05) and PCI success (DL, 93.7%; KCCT, 74.6%; J-CTO, 75.1%; P < .05). For DL, the area under the receiver operating characteristic curve was 0.97 (95% CI: 0.89, 0.99) for the training test set and 0.96 (95% CI: 0.90, 0.98) for the external test set. Conclusion The DL prediction model accurately predicted the percutaneous recanalization outcomes of CTO lesions and increased the efficiency of noninvasively grading the difficulty of PCI. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Pundziute-do Prado in this issue.


Asunto(s)
Aprendizaje Profundo , Intervención Coronaria Percutánea , Femenino , Humanos , Masculino , Persona de Mediana Edad , Angiografía por Tomografía Computarizada , Angiografía Coronaria , Tomografía Computarizada por Rayos X , Anciano , Estudios Multicéntricos como Asunto
14.
Artículo en Inglés | MEDLINE | ID: mdl-37843998

RESUMEN

Computerized tomography (CT) is a clinically primary technique to differentiate benign-malignant pulmonary nodules for lung cancer diagnosis. Early classification of pulmonary nodules is essential to slow down the degenerative process and reduce mortality. The interactive paradigm assisted by neural networks is considered to be an effective means for early lung cancer screening in large populations. However, some inherent characteristics of pulmonary nodules in high-resolution CT images, e.g., diverse shapes and sparse distribution over the lung fields, have been inducing inaccurate results. On the other hand, most existing methods with neural networks are dissatisfactory from a lack of transparency. In order to overcome these obstacles, a united framework is proposed, including the classification and feature visualization stages, to learn distinctive features and provide visual results. Specifically, a bilateral scheme is employed to synchronously extract and aggregate global-local features in the classification stage, where the global branch is constructed to perceive deep-level features and the local branch is built to focus on the refined details. Furthermore, an encoder is built to generate some features, and a decoder is constructed to simulate decision behavior, followed by the information bottleneck viewpoint to optimize the objective. Extensive experiments are performed to evaluate our framework on two publicly available datasets, namely, 1) the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) and 2) the Lung and Colon Histopathological Image Dataset (LC25000). For instance, our framework achieves 92.98% accuracy and presents additional visualizations on the LIDC. The experiment results show that our framework can obtain outstanding performance and is effective to facilitate explainability. It also demonstrates that this united framework is a serviceable tool and further has the scalability to be introduced into clinical research.

16.
Ying Yong Sheng Tai Xue Bao ; 34(7): 1763-1770, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37694459

RESUMEN

To investigate the effects of algal detritus export on the trophic structure of macrozoobenthic community in the adjacent benthic habitat during the bloom and decline of macroalgae, we collected macrozoobenthos from the adjacent sea area of Dalian Island in the North Yellow Sea in May (the algal bloom period) and August (the algal decay period) of 2020. We quantifyied the seasonal changes in the trophic structure of macrozoobenthic community by using carbon and nitrogen stable isotope techniques. Results showed that δ13C and δ15N values of macrozoo-benthos in May ranged from -23.14‰ to -14.24‰, 6.21‰ to 12.90‰, respectively, and -22.36‰ to -14.13‰, 5.33‰ to 12.00‰, respectively in August. Results of PERMANOVA analysis showed that δ13C values of macrozoobenthos differed significantly between the two months, while δ15N values were not significantly different. Based on the Euclidean distance, the macrozoobenthic communities in both months could be classified into five trophic functional groups. The trophic levels of macrozoobenthos ranged from 2.00 (Nitidotellina minuta) to 3.97 (Glycera onomichiensis) in May and from 2.00 (N. minuta) to 3.96 (G. onomichiensis) in August. The δ13C range, δ15N range, mean centroid distance, total area and corrected standard ellipse areas which represented community trophic structure indices in August were higher than those in May. Our results indicated that the trophic diversity level and trophic niche width of the macrozoobenthic community in the adjacent sea area of the seaweed bed were higher in the algal decline season.


Asunto(s)
Algas Marinas , Verduras , Estaciones del Año , Carbono , Isótopos de Nitrógeno , China
17.
Eur Radiol ; 33(11): 8203-8213, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37286789

RESUMEN

OBJECTIVES: To evaluate the performance of a deep learning-based multi-source model for survival prediction and risk stratification in patients with heart failure. METHODS: Patients with heart failure with reduced ejection fraction (HFrEF) who underwent cardiac magnetic resonance between January 2015 and April 2020 were retrospectively included in this study. Baseline electronic health record data, including clinical demographic information, laboratory data, and electrocardiographic information, were collected. Short-axis non-contrast cine images of the whole heart were acquired to estimate the cardiac function parameters and the motion features of the left ventricle. Model accuracy was evaluated using the Harrell's concordance index. All patients were followed up for major adverse cardiac events (MACEs), and survival prediction was assessed using Kaplan-Meier curves. RESULTS: A total of 329 patients were evaluated (age 54 ± 14 years; men, 254) in this study. During a median follow-up period of 1041 days, 62 patients experienced MACEs and their median survival time was 495 days. When compared with conventional Cox hazard prediction models, deep learning models showed better survival prediction performance. Multi-data denoising autoencoder (DAE) model reached the concordance index of 0.8546 (95% CI: 0.7902-0.8883). Furthermore, when divided into phenogroups, the multi-data DAE model could significantly discriminate between the survival outcomes of the high-risk and low-risk groups compared with other models (p < 0.001). CONCLUSIONS: The proposed deep learning (DL) model based on non-contrast cardiac cine magnetic resonance imaging could independently predict the outcome of patients with HFrEF and showed better prediction efficiency than conventional methods. CLINICAL RELEVANCE STATEMENT: The proposed multi-source deep learning model based on cardiac magnetic resonance enables survival prediction in patients with heart failure. KEY POINTS: • A multi-source deep learning model based on non-contrast cardiovascular magnetic resonance (CMR) cine images was built to make robust survival prediction in patients with heart failure. • The ground truth definition contains electronic health record data as well as DL-based motion data, and cardiac motion information is extracted by optical flow method from non-contrast CMR cine images. • The DL-based model exhibits better prognostic value and stratification performance when compared with conventional prediction models and could aid in the risk stratification in patients with HF.


Asunto(s)
Aprendizaje Profundo , Insuficiencia Cardíaca , Disfunción Ventricular Izquierda , Masculino , Humanos , Adulto , Persona de Mediana Edad , Anciano , Imagen por Resonancia Cinemagnética , Pronóstico , Estudios Retrospectivos , Factores de Riesgo , Función Ventricular Izquierda , Volumen Sistólico , Valor Predictivo de las Pruebas
18.
Comput Methods Programs Biomed ; 236: 107547, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37126888

RESUMEN

BACKGROUND AND OBJECTIVE: Survival prediction of heart failure patients is critical to improve the prognostic management of the cardiovascular disease. The existing survival prediction methods focus on the clinical information while lacking the cardiac motion information. we propose a motion-based analysis method to predict the survival risk of heart failure patients for aiding clinical diagnosis and treatment. METHODS: We propose a motion-based analysis method for survival prediction of heart failure patients. First, our method proposes the hierarchical spatial-temporal structure to capture the myocardial border. It promotes the model discrimination on border features. Second, our method explores the dense optical flow structure to capture motion fields. It improves the tracking capability on cardiac images. The cardiac motion information is obtained by fusing boundary information and motion fields of cardiac images. Finally, our method proposes the multi-modality deep-cox structure to predict the survival risk of heart failure patients. It improves the survival probability of heart failure patients. RESULTS: The motion-based analysis method is confirmed to be able to improve the survival prediction of heart failure patients. The precision, recall, F1-score, and C-index are 0.8519, 0.8333, 0.8425, and 0.8478, respectively, which is superior to other state-of-the-art methods. CONCLUSIONS: The experimental results show that the proposed model can effectively predict survival risk of heart failure patients. It facilitates the application of robust clinical treatment strategies.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Insuficiencia Cardíaca/diagnóstico , Corazón , Movimiento (Física) , Miocardio
19.
IEEE J Biomed Health Inform ; 27(7): 3314-3325, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37130256

RESUMEN

Vessel contour detection (VCD) in intravascular images is important for the quantitative assessment of vessels. However, it is still a challenging task due to a high degree of morphology variability. Images from a single modality lack sufficient information on the vessel morphology due to the natural limitation of the imaging capability. Therefore, the single-modality VCD methods have difficulty extracting sufficient morphological information. Cross-modality methods have the potential to overcome morphology variability by extracting more information from different modalities. However, they still face the difficulty of the domain discrepancy, i.e., feature space discrepancy and label space inconsistency. In this paper, we aim to address the domain discrepancy for VCD. To overcome label space inconsistency, our method divides the label space into private label space and shared label space. It constructs subdomains for the private label space and the shared label space, and minimizes the task risk at the subdomain level. To overcome feature space discrepancy, it extracts domain-invariant features via domain adaptation between the subdomains. Finally, it uses the domain-invariant features as auxiliary information for each subdomain. Extensive experiments on 130 IVUS sequences (135663 images) and 124 OCT sequences (39857 images) show that our method is effective (e.g., the Dice index [Formula: see text] 0.949), and superior to the nineteen state-of-the-art VCD methods.

20.
Eur Radiol ; 33(10): 6771-6780, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37133521

RESUMEN

OBJECTIVES: Blood flow into the side branch affects the calculation of coronary angiography-derived fractional flow reserve (FFR), called Angio-FFR. Neglecting or improperly compensating for the side branch flow may decrease the diagnostic accuracy of Angio-FFR. This study aims to evaluate the diagnostic accuracy of a novel Angio-FFR analysis that considers the side branch flow based on the bifurcation fractal law. METHODS: A one-dimensional reduced-order model based on the vessel segment was used to perform Angio-FFR analysis. The main epicardial coronary artery was divided into several segments according to the bifurcation nodes. Side branch flow was quantified using the bifurcation fractal law to correct the blood flow in each vessel segment. In order to verify the diagnostic performance of our Angio-FFR analysis, two other computational methods were taken as control groups: (i) FFR_s: FFR calculated by delineating the coronary artery tree to consider side branch flow, (ii) FFR_n: FFR calculated by just delineating the main epicardial coronary artery and neglecting the side branch flow. RESULTS: The analysis of 159 vessels from 119 patients showed that our Anio-FFR calculation method had comparable diagnostic accuracy to FFR_s and provided significantly higher diagnostic accuracy than that of FFR_n. In addition, using invasive FFR as a reference, the Pearson correlation coefficients of Angio-FFR and FFRs were 0.92 and 0.91, respectively, while that of FFR_n was only 0.85. CONCLUSIONS: Our Angio-FFR analysis has demonstrated good diagnostic performance in assessing the hemodynamic significance of coronary stenosis by using the bifurcation fractal law to compensate for side branch flow. CLINICAL RELEVANCE STATEMENT: Bifurcation fractal law can be used to compensate for side branch flow during the Angio-FFR calculation of the main epicardial vessel. Compensating for side branch flow can improve the ability of Angio-FFR to diagnose stenosis functional severity. KEY POINTS: • The bifurcation fractal law could accurately estimate the blood flow from the proximal main vessel into the main branch, thus compensating for the side branch flow. • Angiography-derived FFR based on the bifurcation fractal law is feasible to evaluate the target diseased coronary artery without delineating the side branch.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Reserva del Flujo Fraccional Miocárdico , Humanos , Reserva del Flujo Fraccional Miocárdico/fisiología , Fractales , Angiografía Coronaria/métodos , Hemodinámica , Vasos Coronarios/diagnóstico por imagen , Índice de Severidad de la Enfermedad , Valor Predictivo de las Pruebas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA