Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 12.189
1.
Kidney Int Rep ; 9(4): 1057-1066, 2024 Apr.
Article En | MEDLINE | ID: mdl-38765575

Introduction: Immunoglobulin A nephropathy (IgAN) has been reported to coexist with hepatitis B virus (HBV) infection. Despite the clinical significance of this association, there is a lack of comprehensive research investigating the impact of various common conditions following HBV infection and the potential influence of anti-HBV therapy on the progression of IgAN. Methods: We investigated 3 distinct states of HBV infection, including chronic HBV infection, resolved HBV infection, and the deposition of hepatitis B antigens in renal tissue, in a follow-up database of 1961 patients with IgAN. IgAN progression was defined as a loss of estimated glomerular filtration rate (eGFR) >40%. Multivariable cause-specific hazards models to analyze the relationship between HBV states and IgAN progression. Results: Chronic HBV infection was identified as an independent risk factor for IgAN progression, supported by both prematching analysis (hazard ratio [HR], 1.61; 95% confidence interval [CI], 1.06-2.44; P = 0.024) and propensity-score matching analysis (HR, 1.74; 95% CI 1.28-2.37; P < 0.001). Conversely, resolved HBV infection showed no significant association with IgAN progression (HR, 1.01; 95% CI 0.67-1.52; P = 0.969). Moreover, the presence of HBV deposition in the kidneys and the utilization of anti-HBV therapy did not appear to be significant risk factors for renal outcomes (P > 0.05). Conclusion: Chronic HBV infection is an independent risk factor for IgAN progression, whereas resolved HBV infection is not. In patients with IgAN, management of concurrent chronic HBV infection should be enhanced. The presence of HBV deposition in the kidneys and the use of anti-HBV medications do not impact the kidney disease progression in patients with IgAN with concurrent HBV infection.

2.
Kidney Int Rep ; 9(4): 1067-1071, 2024 Apr.
Article En | MEDLINE | ID: mdl-38765591

Introduction: Telitacicept, a transmembrane activator and cyclophilin ligand interactor (TACI) fusion protein targeting B cell activating factor and a proliferation-inducing ligand (APRIL), has proven efficacy in treating Immunoglobulin A (IgA) nephropathy (IgAN). However, serum biomarkers that could predict the clinical response during the treatment remain unclear. Methods: Plasma samples from 24 participants in the phase 2 clinical trial were collected at baseline and after 4, 12, and 24 weeks; with 8 participants in the placebo group, 9 in the 160 mg group, and 7 in the 240 mg group. We measured the levels of galactose-deficient-IgA1 (Gd-IgA1), IgA-containing immune complexes, C3a, C5a, and sC5b-9. The association between the changes in these markers and proteinuria reduction was analyzed. Results: After 24 weeks of treatment, Gd-IgA1 decreased by 43.9% (95% confidence interval: 29.8%, 55.1%), IgG-IgA immune complex by 31.7% (14.4%, 45.5%), and poly-IgA immune complex by 41.3% (6.5%, 63.1%) in the 160 mg group; Gd-IgA1 decreased by 50.4% (38.6%, 59.9%), IgG-IgA immune complex decreased by 42.7% (29.5%, 53.4%), and poly-IgA immune complex decreased by 67.2% (48.5%,79.1%) in the 240 mg group. There were no significant changes in the circulatory C3a, C5a, or sC5b-9 levels during telitacicept treatment. Decreases in both plasma Gd-IgA1 and IgG-IgA or poly-IgA immune complexes were associated with proteinuria reduction. In turn, IgG-IgA or poly-IgA immune complexes showed a dose-dependent effect, consistent with proteinuria reduction during telitacicept treatment. Conclusion: Telitacicept lowered both circulating Gd-IgA1 and IgA-containing immune complexes, whereas IgA immune complex levels were more consistent with decreased proteinuria.

3.
Front Immunol ; 15: 1372692, 2024.
Article En | MEDLINE | ID: mdl-38720884

Background: The tertiary lymphatic structure (TLS) is an important component of the tumor immune microenvironment and has important significance in patient prognosis and response to immune therapy. However, the underlying mechanism of TLS in soft tissue sarcoma remains unclear. Methods: A total of 256 RNAseq and 7 single-cell sequencing samples were collected from TCGA-SARC and GSE212527 cohorts. Based on published TLS-related gene sets, four TLS scores were established by GSVA algorithm. The immune cell infiltration was calculated via TIMER2.0 and "MCPcounter" algorithms. In addition, the univariate, LASSO, and multivariate-Cox analyses were used to select TLS-related and prognosis-significant hub genes. Single-cell sequencing dataset, clinical immunohistochemical, and cell experiments were utilized to validate the hub genes. Results: In this study, four TLS-related scores were identified, and the total-gene TLS score more accurately reflected the infiltration level of TLS in STS. We further established two hub genes (DUSP9 and TNFSF14) prognosis markers and risk scores associated with soft tissue sarcoma prognosis and immune therapy response. Flow cytometry analysis showed that the amount of CD3, CD8, CD19, and CD11c positive immune cell infiltration in the tumor tissue dedifferentiated liposarcoma patients was significantly higher than that of liposarcoma patients. Cytological experiments showed that soft tissue sarcoma cell lines overexpressing TNFSF14 could inhibit the proliferation and migration of sarcoma cells. Conclusion: This study systematically explored the TLS and related genes from the perspectives of bioinformatics, clinical features and cytology experiments. The total-gene TLS score, risk score and TNFSF14 hub gene may be useful biomarkers for predicting the prognosis and immunotherapy efficacy of soft tissue sarcoma.


Biomarkers, Tumor , Immunotherapy , Sarcoma , Tumor Microenvironment , Humans , Sarcoma/genetics , Sarcoma/therapy , Sarcoma/immunology , Sarcoma/diagnosis , Biomarkers, Tumor/genetics , Prognosis , Immunotherapy/methods , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Gene Expression Regulation, Neoplastic , Female , Male , Tumor Necrosis Factor Ligand Superfamily Member 14/genetics , Gene Expression Profiling , Single-Cell Analysis
4.
Small ; : e2401100, 2024 May 09.
Article En | MEDLINE | ID: mdl-38721947

The increasing need for energy storage devices with high energy density has led to significant interest in Li-metal batteries (LMBs). However, the use of commercial electrolytes in LMBs is problematic due to their flammability, inadequate performance at low temperatures, and tendency to promote the growth of lithium dendrites and other flaws. This study introduces a localized high-concentration electrolyte (LHCE) that addresses these issues by employing non-flammable electrolyte components and incorporating carefully designed additives to enhance flame retardancy and low-temperature performance. By incorporating additives to optimize the electrolyte, it is possible to attain inorganic-dominated solid electrolyte interphases on both the cathode and anode. This achievement results in a uniform deposition of lithium, as well as the suppression of electrolyte decomposition and cathode deterioration. Consequently, this LHCE achieve over 300 stable cycles for both LiNi0.9Mn0.05Co0.05O2||Li cells and LiCoO2||Li cells, as well as 50 cycles for LiNi0.8Mn0.1Co0.1O2 (NCM811||Li) pouch cells. Furthermore, NCM811||Li cells maintain 84% discharge capacity at -20 °C, in comparison to the capacity at room temperature. The utilization of this electrolyte presents novel perspectives for the safe implementation of LMBs.

5.
Plants (Basel) ; 13(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38732452

Over the years, the changes in the agriculture industry have been inevitable, considering the need to feed the growing population. As the world population continues to grow, food security has become challenged. Resources such as arable land and freshwater have become scarce due to quick urbanization in developing countries and anthropologic activities; expanding agricultural production areas is not an option. Environmental and climatic factors such as drought, heat, and salt stresses pose serious threats to food production worldwide. Therefore, the need to utilize the remaining arable land and water effectively and efficiently and to maximize the yield to support the increasing food demand has become crucial. It is essential to develop climate-resilient crops that will outperform traditional crops under any abiotic stress conditions such as heat, drought, and salt, as well as these stresses in any combinations. This review provides a glimpse of how plant breeding in agriculture has evolved to overcome the harsh environmental conditions and what the future would be like.

6.
Cancer Immunol Immunother ; 73(7): 125, 2024 May 11.
Article En | MEDLINE | ID: mdl-38733402

BACKGROUND: Despite the success of PD-1 blockade in recurrent/metastatic nasopharyngeal carcinoma (NPC), its effect for locoregionally advanced NPC (LANPC) remains unclear. This study aimed to evaluate the benefit of adding PD-1 blockade to the current standard treatment (gemcitabine and cisplatin IC  plus cisplatin CCRT ) for LANPC patients. METHODS: From January 2020 to November 2022, 347 patients with non-metastatic high-risk LANPC (stage III-IVA, excluding T3-4N0) were included. Of the 347 patients, 268 patients were treated with standard treatment (IC-CCRT), and 79 received PD-1 blockade plus IC-CCRT (PD-1 group). For the PD-1 group, PD-1 blockade was given intravenously once every 3 weeks for up to 9 cycles (3 induction and 6 adjuvant). The primary endpoint was disease-free survival (DFS) (i.e. freedom from local/regional/distant failure or death). The propensity score matching (PSM) with the ratio of 1:2 was performed to control confounding factors. RESULTS: After PSM analysis, 150 patients receiving standard treatment and 75 patients receiving additional PD-1 blockade remained in the current analysis. After three cycles of IC, the PD-1 group had significantly higher rates of complete response (defined as disappearance of all target lesions; 24% vs. 9%; P = 0.006) and complete biological response (defined as undetectable cell-free Epstein-Barr virus DNA, cfEBV DNA; 79% vs. 65%; P = 0.046) than that in the standard group. And the incidence of grade 3-4 toxicity during IC was 47% in the PD-1 group and 41% in the standard group, with no significant difference (P = 0.396). During follow-up period, additional PD-1 blockade to standard treatment improved 3-year DFS from 84 to 95%, with marginal statistical significance (HR, 0.28; 95%CI, 0.06-1.19; P = 0.064). CONCLUSION: Additiaonl PD-1 blockade to gemcitabine and cisplatin IC and adjuvant treatment results in significant improvement in tumor regression, cfEBV DNA clearance, superior DFS, and comparable toxicity profiles in high-risk LANPC patients.


Chemoradiotherapy , Induction Chemotherapy , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Propensity Score , Humans , Male , Female , Nasopharyngeal Carcinoma/therapy , Nasopharyngeal Carcinoma/mortality , Nasopharyngeal Carcinoma/drug therapy , Middle Aged , Chemoradiotherapy/methods , Adult , Nasopharyngeal Neoplasms/therapy , Nasopharyngeal Neoplasms/mortality , Nasopharyngeal Neoplasms/drug therapy , Induction Chemotherapy/methods , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Immune Checkpoint Inhibitors/therapeutic use , Aged , Cisplatin/therapeutic use , Cisplatin/administration & dosage , Cisplatin/adverse effects , Deoxycytidine/analogs & derivatives , Deoxycytidine/therapeutic use , Deoxycytidine/administration & dosage , Retrospective Studies , Gemcitabine
7.
Transl Cancer Res ; 13(4): 1762-1772, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38737684

Background: Lung cancer is one of the malignancies with the highest incidence and mortality rates. Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are recommended as the first-line treatment for patients with EGFR-mutated lung adenocarcinoma (LUAD). However, some patients with EGFR-sensitive mutations develop primary resistance to EGFR-TKIs. This study aims to analyze the clinical characteristics of LUAD patients with primary resistance to EGFR-TKIs, identify independent risk factors for primary resistance, and establish a risk predictive model to provide reference for clinical decision-making. Methods: We collected data from LUAD patients with EGFR-sensitive mutations (19del/21L858R) who were hospitalized in our institution between 2020 and 2022 and received first-generation EGFR-TKIs with follow-up exceeding 6 months. These patients were categorized into primary resistance and sensitive groups based on treatment outcomes. We compared general clinical data, laboratory tests, and tumor-related characteristics between the two groups, analyzed risk factors for primary resistance to EGFR-TKIs, and constructed a risk predictive model. The model's predictive value was comprehensively assessed using receiver operating characteristic (ROC) curves, calibration curves, and decision curves. Results: Serum neuron-specific enolase (NSE) concentration (P=0.03), serum pro-gastrin-releasing peptide (ProGRP) concentration (P=0.01), and Ki67 expression (P<0.001) were identified as independent risk factors for primary resistance to EGFR-TKIs in LUAD. The combined presence of these three risk factors had the highest predictive value [area under the curve (AUC) =0.975, P<0.001]. We constructed a predictive model for the risk of primary resistance to EGFR-TKIs in LUAD patients, incorporating these three parameters, and represented it through a visually interpretable nomogram. The calibration curve of the nomogram demonstrated its strong predictive ability. Further decision curve analysis indicated the model's clinical utility. Conclusions: Based on a single-center retrospective case-control study, we identified serum NSE concentration, ProGRP concentration, and Ki67 expression as independent risk factors for primary resistance to EGFR-TKIs in LUAD patients. We constructed and validated a risk predictive model based on these findings. This predictive model holds promise for clinical application, aiding in the development of personalized treatment strategies and providing a scientific basis for early identification of primary resistance patients.

8.
Heliyon ; 10(9): e30524, 2024 May 15.
Article En | MEDLINE | ID: mdl-38726122

Background: Respiratory failure requiring mechanical ventilation (MV) is a common and severe complication of Guillain-Barré syndrome (GBS) with a reported incidence ranging from 20 % to 30 %. Thus, we aim to develop a nomogram to evaluate the risk of MV in patients with GBS at admission and tailor individualized care and treatment. Methods: A total of 633 patients with GBS (434 in the training set, and 199 in the validation set) admitted to the First Hospital of Jilin University, Changchun, China from January 2010 to January 2021 were retrospectively enrolled. Subjects (n = 71) from the same institution from January 2021 to May 2022 were prospectively collected and allocated to the testing set. Multivariable logistic regression analysis was applied to build a predictive model incorporating the optimal features selected in the least absolute shrinkage and selection operator (LASSO) in the training set. The predictive model was validated using internal bootstrap resampling, an external validation set, and a prospective testing set, and the model's performance was assessed by using the concordance index (C-index), calibration curves, and decision curve analysis (DCA). Finally, we established a multivariable logistic model by using variables of the Erasmus GBS Respiratory Insufficiency Score (EGRIS) and did the same analysis to compare the performance of our predictive model with the EGRIS model. Results: Variables in the final model selected by LASSO included time from onset to admission, facial and/or bulbar weakness, Medical Research Council sum score at admission, neutrophil-to-lymphocyte ratio, and platelet-lymphocyte ratio. The model presented as a nomogram displaying favorable discriminative ability with a C-index of 0.914 in the training set, 0.903 in the internal validation set, 0.953 in the external validation set, and 0.929 in the testing set. The model was well-calibrated and clinically useful as assessed by the calibration curve and DCA. As compared with the EGRIS model, our predictive model displayed satisfactory performance. Conclusions: We constructed a nomogram for early prediction of the risk of MV in patients with GBS. This model had satisfactory performance and appeared more efficient than the EGRIS model in Chinese patients with GBS.

9.
Brief Bioinform ; 25(3)2024 Mar 27.
Article En | MEDLINE | ID: mdl-38711371

T-cell receptor (TCR) recognition of antigens is fundamental to the adaptive immune response. With the expansion of experimental techniques, a substantial database of matched TCR-antigen pairs has emerged, presenting opportunities for computational prediction models. However, accurately forecasting the binding affinities of unseen antigen-TCR pairs remains a major challenge. Here, we present convolutional-self-attention TCR (CATCR), a novel framework tailored to enhance the prediction of epitope and TCR interactions. Our approach utilizes convolutional neural networks to extract peptide features from residue contact matrices, as generated by OpenFold, and a transformer to encode segment-based coded sequences. We introduce CATCR-D, a discriminator that can assess binding by analyzing the structural and sequence features of epitopes and CDR3-ß regions. Additionally, the framework comprises CATCR-G, a generative module designed for CDR3-ß sequences, which applies the pretrained encoder to deduce epitope characteristics and a transformer decoder for predicting matching CDR3-ß sequences. CATCR-D achieved an AUROC of 0.89 on previously unseen epitope-TCR pairs and outperformed four benchmark models by a margin of 17.4%. CATCR-G has demonstrated high precision, recall and F1 scores, surpassing 95% in bidirectional encoder representations from transformers score assessments. Our results indicate that CATCR is an effective tool for predicting unseen epitope-TCR interactions. Incorporating structural insights enhances our understanding of the general rules governing TCR-epitope recognition significantly. The ability to predict TCRs for novel epitopes using structural and sequence information is promising, and broadening the repository of experimental TCR-epitope data could further improve the precision of epitope-TCR binding predictions.


Receptors, Antigen, T-Cell , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/genetics , Humans , Epitopes/chemistry , Epitopes/immunology , Computational Biology/methods , Neural Networks, Computer , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry , Antigens/chemistry , Antigens/immunology , Amino Acid Sequence
10.
Am J Transl Res ; 16(4): 1135-1144, 2024.
Article En | MEDLINE | ID: mdl-38715806

OBJECTIVE: To establish a cellular-level mechanical injury model for human skeletal muscle cells and investigate changes in the mechanical effect mechanism after such injuries. METHODS: The FX-5000™ Compression System was used to apply constant static mechanical pressure to human skeletal muscle cells. A factorial design analysis was conducted to discover the optimal injury model by evaluating the correlation between the amount of pressure, the duration of mechanical stimulation, and the number of days of observation. Skeletal muscle cell injury was evaluated by measuring cell metabolism, morphology, and calcium homeostasis. RESULTS: Mechanical injury was modeled as continuous pressure of 1 MPa for 2 hours with observation for 3 days. The results show that mechanical injury increased creatine kinase, intracellular Ca2+ concentration, and malondialdehyde content, decreased superoxide dismutase, and caused cell swelling and severe cytoplasmic vacuolization (all P < 0.05). CONCLUSION: This model of mechanically-injured human skeletal muscle cells provides an experimental model for the clinically common skeletal muscle injury caused by static loading pressure. It may be used to study the mechanism of action of treatment methods for mechanically injured skeletal muscle.

11.
Nature ; 2024 May 08.
Article En | MEDLINE | ID: mdl-38720069

Lipoprotein(a) (Lp(a)), an independent, causal cardiovascular risk factor, is a lipoprotein particle that is formed by the interaction of a low-density lipoprotein (LDL) particle and apolipoprotein(a) (apo(a))1,2. Apo(a) first binds to lysine residues of apolipoprotein B-100 (apoB-100) on LDL through the Kringle IV (KIV) 7 and 8 domains, before a disulfide bond forms between apo(a) and apoB-100 to create Lp(a) (refs. 3-7). Here we show that the first step of Lp(a) formation can be inhibited through small-molecule interactions with apo(a) KIV7-8. We identify compounds that bind to apo(a) KIV7-8, and, through chemical optimization and further application of multivalency, we create compounds with subnanomolar potency that inhibit the formation of Lp(a). Oral doses of prototype compounds and a potent, multivalent disruptor, LY3473329 (muvalaplin), reduced the levels of Lp(a) in transgenic mice and in cynomolgus monkeys. Although multivalent molecules bind to the Kringle domains of rat plasminogen and reduce plasmin activity, species-selective differences in plasminogen sequences suggest that inhibitor molecules will reduce the levels of Lp(a), but not those of plasminogen, in humans. These data support the clinical development of LY3473329-which is already in phase 2 studies-as a potent and specific orally administered agent for reducing the levels of Lp(a).

12.
J Org Chem ; 2024 May 13.
Article En | MEDLINE | ID: mdl-38741072

A convenient method for the synthesis of perdeuterated alkyl amides/amines is disclosed. Perdeuterated acetyl amides can be achieved by a hydrogen-deuterium (H/D) exchange protocol with Pt/C as a catalyst and D2O as a deuterium source under mild conditions. After removal or reduction of the acetyl group, this protocol can provide perdeuterated primary, secondary, and tertiary amines, which are difficult to achieve via other methods.

13.
BMC Musculoskelet Disord ; 25(1): 349, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702706

BACKGROUND: Although it is generally believed that the femoral neck fracture is related to the femoral neck geometric parameters (FNGPs), the association between the risk of osteoporotic fracture of the femoral neck and FNGPs in native Chinese women is still unclear. METHODS: A total of 374 female patients (mean age 70.2 ± 9.32 years) with osteoporotic fracture of the femoral neck, and 374 non-fracture control groups were completely matched with the case group according to the age ratio of 1:1. Using DXA bone densitometer to measured eight FNGPs: the outer diameter (OD), cross-sectional area (CSA), cortical thickness (CT), endocortical diameter (ED), buckling ratio (BR), section modulus (SM), cross-sectional moment of inertia (CSMI), and compressive strength index (CSI) at the narrowest point of the femoral neck. RESULTS: Compared with the control group, the average values of OD (2.9%), ED (4.5%), and BR (26.1%) in the patient group significantly increased (p = 0.015 to < 0.001), while CSA (‒15.3%), CT (‒18.2%), SM (‒10.3%), CSMI (‒6.4%), and CSI (‒10.8%) significantly decreased (all p < 0.001). The prevalence of osteoporosis in the lumbar spine, femoral neck, and total hip was, respectively, 82%, 81%, and 65% in fracture patients. Cox proportional hazard model analysis showed that in the age adjusted model, the fracture hazard ratio (HR) of CSA, CT, BR, SM, and CSI significantly increased (HRs = 1.60‒8.33; 95% CI = 1.08‒16.6; all p < 0.001). In the model adjusted for age and femoral neck BMD, HRs of CT (HRs = 3.90‒8.03; 95% CI = 2.45‒15.1; all p < 0.001) and BR (HRs = 1.62‒2.60; 95% CI = 1.20‒5.44; all p < 0.001) were still significantly increased. CONCLUSION: These results suggest that the majority of osteoporotic fractures of the femoral neck of native Chinese women occur in patients with osteoporosis. CT thinning or BR increase of FNGPs may be independent predictors of fragility fracture of femoral neck in native Chinese women unrelated to BMD.


Absorptiometry, Photon , Bone Density , Femoral Neck Fractures , Femur Neck , Osteoporotic Fractures , Humans , Female , Osteoporotic Fractures/epidemiology , Osteoporotic Fractures/diagnostic imaging , Femoral Neck Fractures/diagnostic imaging , Femoral Neck Fractures/epidemiology , Femoral Neck Fractures/ethnology , Aged , Femur Neck/diagnostic imaging , Middle Aged , China/epidemiology , Aged, 80 and over , Case-Control Studies , Asian People , Risk Factors , East Asian People
14.
J Ginseng Res ; 48(3): 298-309, 2024 May.
Article En | MEDLINE | ID: mdl-38707638

Background: 20(S)-ginsenoside Rh2(GRh2), an effective natural histone deacetylase inhibitor, can inhibit acute myeloid leukemia (AML) cell proliferation. Lactate regulated histone lactylation, which has different temporal dynamics from acetylation. However, whether the high level of lactylation modification that we first detected in acute promyelocytic leukemia (APL) is associated with all-trans retinoic acid (ATRA) resistance has not been reported. Furthermore, Whether GRh2 can regulate lactylation modification in ATRA-resistant APL remains unknown. Methods: Lactylation and METTL3 expression levels in ATRA-sensitive and ATRA-resistant APL cells were detected by Western blot analysis, qRT-PCR and CO-IP. Flow cytometry (FCM) and APL xenograft mouse models were used to determine the effect of METTL3 and GRh2 on ATRA-resistance. Results: Histone lactylation and METTL3 expression levels were considerably upregulated in ATRA-resistant APL cells. METTL3 was regulated by histone lactylation and direct lactylation modification. Overexpression of METTL3 promoted ATRA-resistance. GRh2 ameliorated ATRA-resistance by downregulated lactylation level and directly inhibiting METTL3. Conclusions: This study suggests that lactylation-modified METTL3 could provide a promising strategy for ameliorating ATRA-resistance in APL, and GRh2 could act as a potential lactylation-modified METTL3 inhibitor to ameliorate ATRA-resistance in APL.

15.
ACS Omega ; 9(17): 19657-19668, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38708245

Stress relief-induced enhanced permeability is one of the crucial measures for promoting gas desorption flow and strengthening gas extraction. In order to examine the impact of stress relief and its magnitude on gas migration, this article explores the gas desorption flow during the stress relief process and elucidates the influence of stress relief degree on gas extraction. The results indicate that considering the analysis of the pore structure effect on gas seepage, the four coal samples' permeability is ranked as PDS > CSL > JZS > GHS. Throughout the stress relief process, the gas desorption rates of different coal samples under various stress paths exhibit varying degrees of increase. As an illustration, following 3600 s of stress alterations, the gas desorption rate of CSL1# experiences a notable increase, surging by 2.57 times; PDS2# shows 55.93 times increase after 4200 s, and JZS3# exhibits 3.13 times increase after 5400 s. A stress relief degree model is established to investigate the variation of horizontal stress and stress relief degrees under different borehole spacings, vertical stresses, cohesion, and internal friction angles for various borehole diameters (coal output). Optimal stress relief is achieved with a borehole diameter greater than 1.52 m with a borehole spacing set at 4 m. When the stress relief degree exceeds 30%, the corresponding borehole diameter ranges for different vertical stresses are 1.49-1.6 m. Similarly, for cohesion, the ranges are 1.25-1.68 m, and for internal friction angles, the ranges are 1.39-1.53 m. The research results can provide valuable insights for determining parameters in the on-site construction of stress relief boreholes.

17.
Article En | MEDLINE | ID: mdl-38691150

Urinary tract infection (UTI) is one of the most prevalent bacterial infectious diseases worldwide. However, the resistance of urinary pathogens to other UTI antibiotics such as trimethoprim and trimethoprim/sulphamethoxazole increased. Pivmecillinam is a prodrug of mecillinam, which is effective for the treatment of urinary tract infections. The purpose of this study was to assess the safety, and pharmacokinetics of pivmecillinam and mecillinam after single- and multiple-dose oral administration of pivmecillinam tablets in healthy Chinese subjects. The study also investigated the profile of urinary excretion of mecillinam, as well as the effect of food and gender on the pharmacokinetics of pivmecillinam and mecillinam. This study was a single-center, open-label phase I study carried out in three groups. In total, 34 subjects were included in the study: group 1-food effect study with pivmecillinam 200 mg (n = 12); group 2-single- and multiple-dose study with pivmecillinam 400 mg (n = 12); group 3-single dose study with pivmecillinam 600 mg (n = 10). The plasma and urine concentrations of pivmecillinam and mecillinam were measured, and their pharmacokinetics were calculated. Treatment-emergent adverse events were evaluated and recorded in safety assessments for three groups. No severe adverse events were found in this study. After a single dose of pivmecillinam was taken orally, the maximum plasma concentration (Cmax) and the area under the concentration-time curve (AUC) of pivmecillinam increased in a dose-proportional manner, nor did mecillinam. Food had significant effects on Cmax and AUC0-t of pivmecillinam and Cmax of mecillinam. The mean cumulative percentage of urine excretion of mecillinam at 0 to 24 h ranged from 35.5 to 44.0%. Urinary cumulative excretion is relative to the drug dose, but the diet and multiple-dose administration did not affect the urinary cumulative excretion rate. The safety and pharmacokinetics of pivmecillinam and mecillinam after single- (200/400/600 mg) or multiple-dose (400 mg) administration were demonstrated in healthy Chinese subjects. Food affected the pharmacokinetics of pivmecillinam and mecillinam.

18.
Chemosphere ; : 142262, 2024 May 05.
Article En | MEDLINE | ID: mdl-38714252

Industrialization has caused a significant global issue with cadmium (Cd) pollution. In this study, Biochar (Bc), generated through initial pyrolysis of rice straw, underwent thorough mixing with magnetized bentonite clay, followed by activation with KOH and subsequent pyrolysis. Consequently, a magnetized bentonite modified rice straw biochar (Fe3O4@B-Bc) was successfully synthesized for effective treatment and remediation of this problem. Fe3O4@B-Bc not only overcomes the challenges associated with the difficult separation of individual bentonite or biochar from water, but also exhibited a maximum adsorption capacity of Cd(II) up to 241.52 mg g-1. The characterization of Fe3O4@B-Bc revealed that its surface was rich in C, O and Fe functional groups, which enable efficient adsorption. The quantitative calculation of the contribution to the adsorption mechanism indicates that cation exchange and physical adsorption accounted for 65.87% of the total adsorption capacity. In conclusion, Fe3O4@B-Bc can be considered a low-cost and recyclable green adsorbent, with broad potential for treating cadmium-polluted water.

19.
J Phys Ther Sci ; 36(5): 294-302, 2024 May.
Article En | MEDLINE | ID: mdl-38694003

[Purpose] To determine the optimal Tuina rolling manipulation parameters for improving peripheral blood circulation and to observe the duration of these effects. [Participants and Methods] A total of 162 healthy males and 20 males with coronary heart disease were recruited, with a mean age of 29.5 ± 6.4 years. The change in blood flow was used as the observation index, and the best combination of parameters was selected using a cyclic orthogonal experiment. We observed changes in rolling manipulation across different time periods and groups. [Results] There were significant interactions between pressure, frequency and duration in the rolling manipulation. The combination mode of 4 kg, 120 repetitions/min and 10 min is the most effective to improve the average blood flow increase rate of popliteal artery. At 15 minutes after manipulation, different degrees of significant increase were observed, but 20 minutes after manipulation, the average blood flow rate returned to the premanipulation level. There was no difference in blood flow rate between healthy males and coronary heart disease patients. [Conclusion] An effective dynamic model of rolling manipulation was constructed. These results contradicted the idea that more pressure and longer continuous manipulation led to stronger effects. The effect of rolling manipulation on improving peripheral circulation can be maintained for 20 minutes.

...