Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 871
1.
Water Res ; 257: 121708, 2024 May 01.
Article En | MEDLINE | ID: mdl-38723355

The ammonia recovery from wastewater via electrochemical technologies represents a promising way for wastewater treatment, resource recovery, and carbon emissions reduction. However, chemicals consumption and reactors scalability of the existing electrochemical systems have become the key challenges for their development and application. In this study, a stacked transmembrane electro-chemisorption (sTMECS) system was developed to utilize authigenic acid and base on site for enhancing ammonia recovery from wastewater. The easily scaled up system was achieved via innovatively connecting the cathode chamber in a unit with the anode chamber in the adjacent unit by a hydrophobic gas permeable membrane (GPM). Thus, authigenic base at cathodes and authigenic acid at anodes could be utilized as stripper and absorbent on site to enhance the transmembrane chemisorption of ammonia. Continuous power supply, reducing the distances of electrodes to GPM and moderate aeration of the catholyte could promote ammonia recovery. Applied to the ammonia recovery from the simulated urine, the sTMECS under the current density 62.5 A/cm2 with a catholyte aeration rate of 3.2 L/(L⋅min) for operation time 4 h showed the transmembrane ammonia flux of 26.00 g N/(m2·h) and the system energy consumption of 10.5 kWh/kg N. Accordingly, the developed sTMECS system with chemicals saving, easy scale-up and excellent performance shows good prospects in recovering ammonia from wastewater.

2.
Theriogenology ; 224: 9-18, 2024 May 04.
Article En | MEDLINE | ID: mdl-38714024

Sertoli cell (SC) proliferation plays an important role in sperm production and quality; however, the regulatory mechanism of SC proliferation is not well understood. This study investigated the role of adenosine monophosphate-activated protein kinase (AMPK) in the regulation of immature boar SC activity. Cell counting kit-8, Seahorse XFe96, mitochondrial respiratory enzyme-related assay kits, and transmission electron microscopy were used to detect SC proliferative viability, oxygen consumption rate (OCR), mitochondrial respiratory enzyme activity, and the ultrastructure of primary cultured SCs in vitro from the testes of 21-day-old boars. A dual luciferase reporter assay was performed to determine the miRNA-mRNA target interaction. Western blotting was used to analyze cell proliferation-related protein expression of p38, p21, proliferating cell nuclear antigen (PCNA), Cyclin-dependent kinase 4 (CDK4), Cyclin D3, and phosphorylated retinoblastoma protein (Rb). Each experiment had a completely randomized design, with three replicates in each experiment. The results showed that the AMPK inhibitor (Compound C, 20 µM-24 h) increased cell proliferation viability, ATP production, and maximal respiration of SCs by 0.64-, 0.12-, and 0.08-fold (p < 0.05), respectively; increased the SC protein expression of PCNA, CDK4, Cyclin D3, and p-Rb by 0.13-, 0.09-, 0.88-, and 0.12-fold (p < 0.05), respectively; and decreased the SC protein expression of p38 and p21 by 0.36- and 0.27-fold (p < 0.05), respectively. The AMPK agonist AICAR (2 mM-6 h) significantly inhibited SC ultrastructure, OCR, mitochondrial respiratory enzyme activity, and cell proliferation-related protein levels. AMPK was validated to be a target gene of miR-1285 based on the result in which the miR-1285 mimic inhibited the luciferase activity of wild-type AMPK by 0.54-fold (p < 0.001). MiR-1285 mimic promoted the OCR of SCs, with 0.45-, 0.15-, 0.21-, and 0.30-fold (p < 0.01) increases in ATP production, basal and maximal respiration, and spare capacity, respectively. MiR-1285 mimic increased the mitochondrial respiratory enzyme activity of SCs, with 0.63-, 0.70-, and 0.97-fold (p < 0.01) increases in NADH-Q oxidoreductase, cytochrome c oxidase, and ATP synthase, respectively. Moreover, the miR-1285 mimic increased the protein expression of PCNA, CDK4, Cyclin D3, and p-Rb by 0.24-, 0.30-, 0.22-, and 0.13-fold (p < 0.05), respectively, and reduced the protein expression of p38 and p21 by 0.58- and 0.66-fold (p < 0.001). MiR-1285 inhibitor showed opposite effects on the above indicators and induced numerous autophagosomes and large lipid droplets in SCs. A high dose of estradiol (10 µM-6 h, showed a promotion of AMPK activation in a previous study) significantly inhibited SC ultrastructure, mitochondrial function, and proliferation-related pathways, while these adverse effects were weakened by Compound C treatment or miR-1285 mimic transfection. Our findings suggest that the activation and inhibition of AMPK induced by specific drugs or synthesized targeted miRNA fragments could regulate immature boar SC proliferative activity by influencing the CDK4/Cyclin D3 pathway and mitochondrial function; this helps to provide a basis for the prevention and treatment of male sterility in clinical practice.

3.
Heliyon ; 10(8): e29275, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38699747

Background: The clinical significance of immune-related antigen CD58 in gliomas remains uncertain. The aim of this study was to examine the clinical importance and possible core related genes of CD58 in gliomas. Methods: Pan-cancer analysis was to observe the association between CD58 and different tumors, glioma RNA sequencing data and clinical sample analyses were used to observe the relationship between CD58 and glioma, shRNA interference models were to observe the impact of CD58 on glioma cell function, and four glioma datasets and two online analysis platforms were used to explore the core related genes affecting the correlation between CD58 and glioma. Results: High CD58 expression was associated with worse prognosis in various tumors and higher malignancy in glioma. Down regulation of CD58 expression was linked to decreased proliferation, increased apoptosis, and reduced metastasis in glioma cells. The pathways involved in CD58-related effects were enriched for immune cell adhesion and immune factor activation, and the core genes were CASP1, CCL2, IL18, MYD88, PTPRC, and TLR2. The signature of CD58 and its core-related genes showed superior predictive power for glioma prognosis. Conclusion: High CD58 expression is correlated with more malignant glioma types, and also an independent risk factor for mortality in glioma. CD58 and its core-related genes may serve as novel biomarkers for diagnosing and treating glioma.

4.
Front Psychol ; 15: 1411095, 2024.
Article En | MEDLINE | ID: mdl-38708016

[This corrects the article DOI: 10.3389/fpsyg.2023.1087513.].

5.
BMC Cancer ; 24(1): 549, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693523

BACKGROUND: Accurate assessment of axillary status after neoadjuvant therapy for breast cancer patients with axillary lymph node metastasis is important for the selection of appropriate subsequent axillary treatment decisions. Our objectives were to accurately predict whether the breast cancer patients with axillary lymph node metastases could achieve axillary pathological complete response (pCR). METHODS: We collected imaging data to extract longitudinal CT image features before and after neoadjuvant chemotherapy (NAC), analyzed the correlation between radiomics and clinicopathological features, and developed models to predict whether patients with axillary lymph node metastasis can achieve axillary pCR after NAC. The clinical utility of the models was determined via decision curve analysis (DCA). Subgroup analyses were also performed. Then, a nomogram was developed based on the model with the best predictive efficiency and clinical utility and was validated using the calibration plots. RESULTS: A total of 549 breast cancer patients with metastasized axillary lymph nodes were enrolled in this study. 42 independent radiomics features were selected from LASSO regression to construct a logistic regression model with clinicopathological features (LR radiomics-clinical combined model). The AUC of the LR radiomics-clinical combined model prediction performance was 0.861 in the training set and 0.891 in the testing set. For the HR + /HER2 - , HER2 + , and Triple negative subtype, the LR radiomics-clinical combined model yields the best prediction AUCs of 0.756, 0.812, and 0.928 in training sets, and AUCs of 0.757, 0.777 and 0.838 in testing sets, respectively. CONCLUSIONS: The combination of radiomics features and clinicopathological characteristics can effectively predict axillary pCR status in NAC breast cancer patients.


Axilla , Breast Neoplasms , Lymph Nodes , Lymphatic Metastasis , Neoadjuvant Therapy , Nomograms , Tomography, X-Ray Computed , Humans , Female , Breast Neoplasms/pathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Lymphatic Metastasis/diagnostic imaging , Middle Aged , Lymph Nodes/pathology , Lymph Nodes/diagnostic imaging , Tomography, X-Ray Computed/methods , Neoadjuvant Therapy/methods , Adult , Aged , Retrospective Studies , Radiomics
6.
Tree Physiol ; 2024 May 01.
Article En | MEDLINE | ID: mdl-38691446

Legumes account for a significant proportion of plants in the terrestrial ecosystems. Nitrogen-fixing capability of certain legumes is a pivotal trait that contributes to their ecological dominance. Yet, the functional traits and trait relationships between N-fixer and non-N-fixer legumes are poorly understood. Here, we investigated 27 functional traits associated with morphology, nutrients, hydraulic conductance, and photosynthesis in 42 woody legumes (19 N-fixers and 23 non-N-fixers) in a common garden. Our results showed that N-fixers had higher specific leaf area, photosynthetic phosphorus (P) use efficiency, leaf nitrogen (N) and iron concentrations on both area and mass basis, N/P ratio, and carbon (C) to P ratio, but lower wood density, area-based maximum photosynthetic rate (Aa), photosynthetic N use efficiency, leaf mass- and area-based P and molybdenum and area-based boron concentrations, and C/N ratio, compared to non-N-fixers. The mass-based maximum photosynthetic rate (Am), stomatal conductance (gs), intrinsic water use efficiency (WUEi), mass- and area-based leaf potassium and mass-based boron concentrations, leaf hydraulic conductance (Kleaf), and whole-shoot hydraulic conductance (Kshoot) showed no difference between N-fixers and non-N-fixers. Significant positive associations between all hydraulic and photosynthetic trait pairs were found in N-fixers, but only one pair (Kshoot-Aa) in non-N-fixers, suggesting that hydraulic conductance plays a more important role in mediating photosynthetic capacity in N-fixers compared to non-N-fixers. Higher mass-based leaf N was linked to lower time-integrated gs and higher WUEi among non-N-fixer legumes or all legumes pooled after phylogeny was considered. Moreover, mass-based P concentration was positively related to Am and gs in N-fixers, but not in non-N-fixers, indicating that the photosynthetic capacity and stomatal conductance in N-fixers were more dependent on leaf P status than in non-N-fixers. These findings expand our understanding of the trait-based ecology within and across N-fixer and non-N-fixer legumes in tropics.

7.
Water Res ; 258: 121655, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38762914

Ammonia recovery from wastewater is of great significance for aquatic ecology safety, human health and carbon emissions reduction. Electrochemical methods have gained increasing attention since the authigenic base and acid of electrochemical systems can be used as stripper and absorbent for transmembrane chemisorption of ammonia, respectively. However, the separation of electrodes and gas permeable membrane (GPM) significantly restricts the ammonia transfer-transformation process and the authigenic acid-base utilization. To break the restrictions, this study developed a gas permeable membrane electrode assembly (GPMEA), which innovatively integrated anode and cathode on each side of GPM through easy phase inversion of polyvinylidene fluoride binder, respectively. With the GPMEA assembled in a stacked transmembrane electro-chemisorption (sTMECS) system, in situ utilization of authigenic acid and base for transmembrane electro-chemisorption of ammonia was achieved to enhance the ammonia recovery from wastewater. At current density of 60 A/m2, the transmembrane ammonia flux of the GPMEA was 693.0 ± 15.0 g N/(m2·d), which was 86 % and 28 % higher than those of separate GPM and membrane cathode, respectively. The specific energy consumption of the GPMEA was 9.7∼16.1 kWh/kg N, which were about 50 % and 25 % lower than that of separate GPM and membrane cathode, respectively. Moreover, the application of GPMEA in the ammonia recovery from wastewater is easy to scale up in the sTMECS system. Accordingly, with the features of excellent performance, energy saving and easy scale-up, the GPMEA showed good prospects in electrochemical ammonia recovery from wastewater.

9.
J Neurogenet ; : 1-10, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38647210

As the contribution of de novo mutations (DNMs) to human genetic diseases has been gradually uncovered, analyzing the global research landscape over the past 20 years is essential. Because of the large and rapidly increasing number of publications in this field, understanding the current landscape of the contribution of DNMs in the human genome to genetic diseases remains a challenge. Bibliometric analysis provides an approach for visualizing these studies using information in published records in a specific field. This study aimed to illustrate the current global research status and explore trends in the field of DNMs underlying genetic diseases. Bibliometric analyses were performed using the Bibliometrix Package based on the R language version 4.1.3 and CiteSpace version 6.1.R2 software for publications from 2000 to 2021 indexed under the Web of Science Core Collection (WoSCC) about DNMs underlying genetic diseases on 17 September 2022. We identified 3435 records, which were published in 731 journals by 26,538 authors from 6052 institutes in 66 countries. There was an upward trend in the number of publications since 2013. The USA, China, and Germany contributed the majority of the records included. The University of Washington, Columbia University, and Baylor College of Medicine were the top-producing institutions. Evan E Eichler of the University of Washington, Stephan J Sanders of the Yale University School of Medicine, and Ingrid E Scheffer of the University of Melbourne were the most high-ranked authors. Keyword co-occurrence analysis suggested that DNMs in neurodevelopmental disorders and intellectual disabilities were research hotspots and trends. In conclusion, our data show that DNMs have a significant effect on human genetic diseases, with a noticeable increase in annual publications over the last 5 years. Furthermore, potential hotspots are shifting toward understanding the causative role and clinical interpretation of newly identified or low-frequency DNMs observed in patients.

10.
Glob Chang Biol ; 30(4): e17274, 2024 Apr.
Article En | MEDLINE | ID: mdl-38605677

Climate change and other anthropogenic disturbances are increasing liana abundance and biomass in many tropical and subtropical forests. While the effects of living lianas on species diversity, ecosystem carbon, and nutrient dynamics are receiving increasing attention, the role of dead lianas in forest ecosystems has been little studied and is poorly understood. Trees and lianas coexist as the major woody components of forests worldwide, but they have very different ecological strategies, with lianas relying on trees for mechanical support. Consequently, trees and lianas have evolved highly divergent stem, leaf, and root traits. Here we show that this trait divergence is likely to persist after death, into the afterlives of these organs, leading to divergent effects on forest biogeochemistry. We introduce a conceptual framework combining horizontal, vertical, and time dimensions for the effects of liana proliferation and liana tissue decomposition on ecosystem carbon and nutrient cycling. We propose a series of empirical studies comparing traits between lianas and trees to answer questions concerning the influence of trait afterlives on the decomposability of liana and tree organs. Such studies will increase our understanding of the contribution of lianas to terrestrial biogeochemical cycling, and help predict the effects of their increasing abundance.


Ecosystem , Tropical Climate , Forests , Trees , Carbon
11.
ACS Pharmacol Transl Sci ; 7(4): 1126-1141, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38633584

Renal fibrosis is a complex pathological process that contributes to the development of chronic kidney disease due to various risk factors. Conservative treatment to curb progression without dialysis or renal transplantation is widely applicable, but its effectiveness is limited. Here, the inhibitory effect of the novel peptide DR3penA (DHα-(4-pentenyl)-AlaNPQIR-NH2), which was developed by our group, on renal fibrosis was assessed in cells and mice with established fibrosis and fibrosis triggered by transforming growth factor-ß1 (TGF-ß1), unilateral ureteral obstruction, and repeated low-dose cisplatin. DR3penA preserved renal function and ameliorated renal fibrosis at a dose approximately 100 times lower than that of captopril, which is currently used in the clinic. DR3penA also significantly reduced existing fibrosis and showed similar efficacy after subcutaneous or intraperitoneal injection. Mechanistically, DR3penA repressed TGF-ß1 signaling via miR-212-5p targeting of low-density lipoprotein receptor class a domain containing 4, which interacts with Smad2/3. In addition to having good pharmacological effects, DR3penA could preferentially target injured kidneys and exhibited low toxicity in acute and chronic toxicity experiments. These results unveil the advantages of DR3penA regarding efficacy and toxicity, making it a potential candidate compound for renal fibrosis therapy.

12.
J Fluoresc ; 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38656646

Superoxide anion (O2•-), a significant reactive oxygen species (ROS) within biological systems, plays a widespread role in cellular function regulation and is closely linked to the onset and progression of numerous diseases. To unveil the pathological implications of O2•- in these diseases, the development of effective monitoring techniques within biological systems is imperative. Small molecule fluorescent probes have garnered considerable attention due to their advantages: simplicity in operation, heightened sensitivity, exceptional selectivity, and direct applicability in monitoring living cells, tissues, and animals. In the past few years, few reports have focused on small molecule fluorescence probes for the detection of O2•-. In this small review, we systematically summarize the design and application of O2•- responsive small molecule fluorescent probes. In addition, we present the limitations of the current detection of O2•- and suggest the construction of new fluorescent imaging probes to indicate O2•- in living cells and in vivo.

13.
Theriogenology ; 223: 1-10, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38642435

Heat stress reduces the number of Sertoli cells, which is closely related to an imbalanced redox status. Glutamate functions to maintain the equilibrium of redox homeostasis. However, the role of glutamate in heat treated Sertoli cells remains unclear. Herein, Sertoli cells from 3-week-old piglets were treated at 44 °C for 30 min (heat stress). Glutamate levels increased significantly following heat stress treatment, followed by a gradual decrease during recovery, while glutathione (GSH) showed a gradual increase. The addition of exogenous glutamate (700 µM) to Sertoli cells before heat stress significantly reduced the heat stress-induced apoptosis rate, mediated by enhanced levels of antioxidant substances (superoxide dismutase (SOD), total antioxidant capacity (TAC), and GSH) and reduced levels of oxidative substances (reactive oxygen species (ROS) and malondialdehyde (MDA)). Glutamate addition to Sertoli cells before heat stress upregulated the levels of glutamate-cysteine ligase, modifier subunit (Gclm), glutathione synthetase (Gss), thioredoxin (Trx1) and B-cell leukemia/lymphoma 2 (Bcl-2), and the ratio of phosphorylated Akt (protein kinase B)/total Akt. However, it decreased the levels of Bcl2-associated X protein (Bax) and cleaved-caspase 3. Addition of the inhibitor of glutaminase (Gls1), Bptes (Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide, 30 µM)to Sertoli cells before heat stress reversed these effects. These results inferred that glutamate rescued heat stress-induced apoptosis in Sertoli cells by enhancing activity of antioxidant enzymes and activating the Trx1-Akt pathway. Thus, glutamate supplementation might represent a novel strategy to alleviate the negative effect of heat stress.


Antioxidants , Apoptosis , Glutamic Acid , Heat-Shock Response , Proto-Oncogene Proteins c-akt , Sertoli Cells , Signal Transduction , Animals , Sertoli Cells/drug effects , Sertoli Cells/metabolism , Male , Apoptosis/drug effects , Glutamic Acid/metabolism , Antioxidants/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Heat-Shock Response/drug effects , Signal Transduction/drug effects , Swine , Thioredoxins/metabolism , Cells, Cultured
14.
Oncologist ; 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38537665

BACKGROUND: According to the American Society of Clinical Oncology/College of American Pathologists (ASCO/CAP) criteria, both immunohistochemical HER2 (3+) and HER2 (2+)/in situ hybridization (ISH) amplified [HER2 (2+)/ISH+] breast cancers (BCs) fall under the HER2-positive BC category. However, there is a lack of studies exploring the difference of neoadjuvant therapeutic response between patients with HER2 (3+) and HER2 (2+)/ISH+ early BC. We aimed to evaluate the neoadjuvant therapeutic response, long-term outcome, and intrinsic subtype heterogeneity between HER2 (3+) and HER2 (2+)/ISH+ BC. METHODS: We examined 2 distinct cohorts. Cohort 1 (C1) encompassed 2648 patients with HER2-positive early BC diagnoses, and they received neoadjuvant therapy (NT) and surgery between January 1, 2009 and December 31, 2022, from the Shanghai Jiao Tong University Breast Cancer Data Base. Cohort 2 (C2) comprised 135 patients with early-stage HER2-positive BC who underwent NT and surgery at Henan Cancer Hospital from January 1, 2021, to December 31, 2022. These patients had available genomic and transcriptomic data at their disposal. C1 and C2 were further categorized into 2 patient cohorts as follows: (1) patients with IHC HER2 (3+) early BC [HER2 (3+) group], (2) patients with HER2 (2+)/ISH+ early BC [HER2 (2+)/ISH+ group]. Among those excluded from the analysis were patients < 18 years or >80 years of age. Clinicopathological parameters, long-term outcomes, and intrinsic subtypes were analyzed. RESULTS: In the C1 population, 83.7% had HER2 (3+) BC, while 16.3% had HER2 (2+)/ISH+ BC. Patients with HER2 (3+) had a significantly higher pathological complete response (PCR) rate (38.9%) than patients with HER2 (2+)/ISH+ (18.1%; P < .001), but the disease-free survival (DFS) was comparable after a median follow-up of 29 months (P = .556). The addition of trastuzumab or trastuzumab plus pertuzumab to neoadjuvant chemotherapy (NAC) improved PCR rates and DFS in HER2 (3+) BC but not in HER2 (2+)/ISH+ BC. In the C2 population, 97.75% HER2 (3+) and 52.17% HER2 (2+)/ISH+ were HER2 enriched (HER2E) subtype (P < .001). HER2E showed increased PCR rates compared to non-HER2E (P = .004). CONCLUSIONS: Compared to HER2 (3+) BC, the limited effectiveness of neoadjuvant trastuzumab and pertuzumab therapy for HER2 (2+)/ISH+ BC is due to subtype heterogeneity. Reassessment of targeted therapy efficacy in patients with HER2 (2+)/ISH+ BC is essential.

15.
Medicine (Baltimore) ; 103(12): e37477, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38518016

The objective of this study was to investigate the potential targets and mechanism of Rheum palmatum L in the treatment of colorectal cancer based on the network pharmacology and molecular docking, which could provide the theoretical basis for clinical applications. The potential components were screened using TCMSP database and articles. The gene targets of colorectal cancer were screened through the Genecards database and Online Mendelian Inheritance in Man database. Then, the common targets of components and colorectal cancer were used to construct the network diagram of active components and targets in Cytoscape 3.7.0. The protein-protein interaction (PPI) diagram was generated using String database, and the targets were further analyzed by gene ontology and Kyoto Encyclopedia of Genes and Genomes. Molecular docking between gene targets and active components was analyzed via AutoDock, and visualized through PyMol. Among this study, main targets might be TP53, EGF, MYC, CASP3, JUN, PTGS2, HSP90AA1, MMP9, ESR1, PPARG. And 10 key elements might associate with them, such as aloe-emodin, beta-sitosterol, gallic acid, eupatin, emodin, physcion, cis-resveratrol, rhein, crysophanol, catechin. The treatment process was found to involve nitrogen metabolism, p53 signaling pathway, and various cancer related pathway, as well as the AGE-RAGE signaling pathway, estrogen signaling pathway, interleukin-17 signaling pathway and thyroid hormone signaling pathway. The molecular docking was verified the combination between key components and their respective target proteins. Network pharmacological analysis demonstrated that R palmatum was could regulated p53, AGE-RAGE, interleukin-17 and related signaling pathway in colorectal cancer, which might provide a scientific basis of mechanism.


Colorectal Neoplasms , Drugs, Chinese Herbal , Emodin , Rheum , Humans , Molecular Docking Simulation , Interleukin-17 , Tumor Suppressor Protein p53 , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
16.
J Am Chem Soc ; 146(14): 9819-9827, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38546207

Iron-based phosphate cathode of Na4Fe3(PO4)2(P2O7) has been regarded as a low-cost and structurally stable cathode material for Na-ion batteries (NIBs). However, their practical application is greatly hindered by the insufficient electrochemical performance and limited energy density. Here, we report a new iron-based phosphate cathode of Na4.5Fe3.5(PO4)2.5(P2O7) with the intergrown heterostructure of the maricite-type NaFePO4 and orthorhombic Na4Fe3(PO4)2(P2O7) phases at a mole ratio of 0.5:1. Benefited from the increased composition ratio and the spontaneous activation of the maricite-type NaFePO4 phase, the as-prepared Na4.5Fe3.5(PO4)2.5(P2O7) composites deliver a reversible capacity over 130 mA h g-1 and energy density close to 400 W h kg-1, which is far beyond that of the single-phase Na4Fe3(PO4)2(P2O7) cathode (∼120 mA h g-1 and ∼350 W h kg-1). Moreover, the kg-level products from the scale-up synthesis demonstrate a stable cycling performance over 2000 times at 3 C in pouch cells. We believe that our findings could show the way forward the practical application of the iron-based phosphate cathodes for NIBs.

17.
J Pain Res ; 17: 1077-1089, 2024.
Article En | MEDLINE | ID: mdl-38505505

Objective: Low back pain is one of the main causes of disability in the world. Although regenerative medicine may represent breakthroughs in the management of low back pain, its use remains controversial. Therefore, we conducted a meta-analysis to evaluate the clinical efficacy of platelet-rich plasma (PRP) injection therapy versus different control groups for chronic low back pain during 4 weeks, 3 months, and 6 months. Methods: Different electronic databases were searched for randomized controlled trials up to August 2023. Mean changes from baseline in pain and Oswestry Disability Index (ODI) scores at 4 weeks, 3 months, and 6 months and standard deviations of outcome were recorded. Results: Four articles with 154 cases were finally included in this meta-analysis. After 4 weeks, corticosteroid (CS) was the optimal treatment option for chronic low back pain in terms of improvement in pain and disability index (surface under the cumulative ranking curve [SUCRA]=71.3%, SUCRA=57.8%, respectively). After 3 months, radiofrequency (RF) emerged as the best therapy in pain (SUCRA=100%) and disability index (SUCRA=98.5%), followed by PRP (SUCRA=62.3%, SUCRA=64.3%, respectively), CS (SUCRA=24.6%, SUCRA=25.9%, respectively) and lidocaine (SUCRA=13.1%, SUCRA=11.3%, respectively). At 6 months, RF was most likely to be the best treatment in pain (SUCRA=94.9%) and disability index (SUCRA=77.3%), followed by PRP (SUCRA=71.2%, SUCRA=79.6%, respectively). However, compared with the last follow-up, there was a slight downward trend in improvement pain and disability index with RF, while PRP was still an upward trend. Conclusion: This study demonstrated better short-term improvement of chronic low back pain with CS after 4 weeks. PRP and RF improvement effects matched, but follow-up of at least 6 months showed that PRP seemed to be more advantageous in improvement in disability indices. Considering the limitations of this study, these conclusions still need to be verified by more comparative RCTs and a longer follow-up period.

18.
Angew Chem Int Ed Engl ; : e202403424, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38545934

Rechargeable aluminum batteries (RABs) are a promising candidate for large-scale energy storage, attributing to the abundant reserves, low cost, intrinsic safety, and high theoretical capacity of Al. However, the cathode materials reported thus far still face challenges such as limited capacity, sluggish kinetics, and undesirable cycle life. Herein, we propose an organic cathode benzo[i] benzo[6,7] quinoxalino [2,3-a] benzo [6,7] quinoxalino [2,3-c] phenazine-5,8,13,16,21,24-hexaone (BQQPH) for RABs. The six C=O and six C=N redox active sites in each molecule enable BQQPH to deliver a record ultra-high capacity of 413 mAh g-1 at 0.2 A g-1. Encouragingly, the intermolecular hydrogen bonding network and π-π stacking interactions endow BQQPH with robust structural stability and minimal solubility, enabling an ultra-long lifetime of 100,000 cycles. Moreover, the electron-withdrawing carbonyl group induces a reduction in the energy level of the lowest unoccupied molecular orbital and expands the π-conjugated system, which considerably enhances both the discharge voltage and redox kinetics of BQQPH. In situ and ex situ characterizations combined with theoretical calculations unveil that the charge storage mechanism is reversible coordination/dissociation of AlCl2 + with the N and O sites in BQQPH accompanied by 12-electron transfer. This work provides valuable insights into the design of high-performance organic cathode materials for RABs.

19.
Endocrinology ; 165(5)2024 Mar 29.
Article En | MEDLINE | ID: mdl-38492235

CONTEXT: Obesity is a risk factor for the development of papillary thyroid cancer (PTC). However, the molecular mechanisms by which obesity promotes PTC are unclear. OBJECTIVE: This study aims to identify adipokines that are linked to PTC progression. METHODS: An adipokine antibody array was used to determine the serum levels of 40 adipokines in normal-weight and obese PTC patients. Enzyme-linked immunosorbent assay was used to determine the serum levels of adiponectin. Recombinant human adiponectin was produced by human adipose-derived stem cells and used to treat PTC cells. Cell proliferation and migration were evaluated using the CCK8 and Transwell assays. Bioinformatics analysis was used to predict mechanisms by which adiponectin affects PTC. RESULTS: Adipokines differentially expressed between normal-weight and obese patients showed a gender-dependent pattern. Obese PTC patients had a significantly lower serum adiponectin level than normal-weight patients, especially in female individuals. Adiponectin levels were negatively correlated with aggressive features of PTC, including tumor diameter > 1 cm, extrathyroidal extension, and lymph node metastasis. Recombinant human adiponectin inhibited the proliferation and migration of human PTC cells in vitro. Bioinformatics analysis identified adiponectin receptor 2 (ADIPOR2) and the autophagy pathway as possible mediators of adiponectin function in TC. In vitro experiments confirmed that adiponectin activated autophagy in PTC cells. These findings shed new lights into the role and mechanisms of adiponectin in TC pathogenesis. CONCLUSION: Adiponectin is involved in development of obesity-related PTC. Adiponectin can directly inhibit thyroid cancer growth and metastasis through the autophagy pathway.


Carcinoma, Papillary , Thyroid Neoplasms , Female , Humans , Adipokines , Adiponectin , Autophagy , Carcinoma, Papillary/metabolism , Carcinoma, Papillary/pathology , Cell Line, Tumor , Cell Proliferation , Obesity/complications , Thyroid Cancer, Papillary/metabolism , Thyroid Neoplasms/pathology
20.
Int Immunopharmacol ; 131: 111887, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38503018

BACKGROUND: The purpose of this study was to explore the dynamic changes of genomic mutations and their correlations with the efficacy in metastatic colorectal cancer (mCRC) patients treated with cetuximab plus mFOLFOX as the first-line treatment. METHODS: We included mCRC patients from January 2018 to October 2020 as a studied cohort which were treated with cetuximab plus mFOLFOX as first line therapy. Blood samples were collected for circulating tumor DNA (ctDNA) test at three timepoints: before the first-line therapy(baseline), at the time of first-line progression and at the time of second-line progression. Progression-free survival was considered as the primary endpoint while objective response rate and overall survival were determined as the secondary endpoints. RESULTS: Totally 39 patients received first-line treatment, of which 25 patients entered the second-line treatment, while 10 patients entered the third-line treatment. The median follow-up time was 16.4 months (95 %CI, 14.8-19.3). Along the treatment from first-line progress disease (PD) to second-line PD, proportions of TP53 (12/18, 67 %), APC (10/18, 56 %), FBXW7 (3/18, 17 %), and AMER1 (2/18, 11 %) were gradually increased according to results of single nucleotide variation (SNV). CONCLUSIONS: Resistant gene mutations caused by anti-EGFR drugs in RAS/BRAF wild-type mCRC patients can be observed by dynamic ctDNA analysis. TP53 and AMER1 mutations, tumor mutational burden (TMB) levels, and TP53/AMER1 co-mutation may predict the efficacy of the first-line cetuximab-contained treatment. Situations of genetic mutations were differentiated from first-line PD to second-line PD, which indicated that mutation detection may contribute to predict prognosis of mCRC patients.


Colonic Neoplasms , Colorectal Neoplasms , Rectal Neoplasms , Humans , Cetuximab/therapeutic use , Proto-Oncogene Proteins B-raf/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colonic Neoplasms/drug therapy , Rectal Neoplasms/drug therapy , Mutation , Antineoplastic Combined Chemotherapy Protocols/adverse effects
...