Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
1.
Int J Biol Macromol ; 279(Pt 2): 135258, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39233166

RESUMEN

Moisture-induced electricity generation (MEG), which can directly harvest electricity from moisture, is considered as an effective strategy for alleviating the growing energy crisis. Recently, tremendous efforts have been devoted to developing MEG active materials from wood lignocellulose (WLC) due to its excellent properties including environmental friendliness, sustainability, and biodegradability. This review comprehensively summarizes the recent advances in MEG based on WLC (wood, cellulose, lignin, and woody biochar), covering its principles, preparation, performances, and applications. In detail, the basic working mechanisms of MEG are discussed, and the natural features of WLC and their significant advantages in the fabrication of MEG active materials are emphasized. Furthermore, the recent advances in WLC-based MEG for harvesting electrical energy from moisture are specifically discussed, together with their potential applications (sensors and power sources). Finally, the main challenges of current WLC-based MEG are presented, as well as the potential solutions or directions to develop highly efficient MEG from WLC.

2.
Adv Mater ; : e2412340, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39308257

RESUMEN

The cardiotoxicity induced by immune checkpoint inhibitors (ICIs) is associated with high mortality rates. T cells play an important role in ICI-induced cardiac injury. The inhibition of local T-cell activity is considered an effective strategy for alleviating ICI-related cardiotoxicity. Tumor-derived extracellular vesicles (EVs) contribute to immunosuppression via PD-L1 overexpression. In this study, a bioorthogonal metabolic engineering-driven EV redirecting (Biomeder) strategy for in situ engineered EVs with myocardial-targeting peptides is developed. Accumulated tumor-derived EV (TuEVs) reverses the immune environment in the heart by increasing PD-L1 levels in cardiomyocytes and/or by directly inhibiting T-cell activity. More importantly, it is found that the redirection of TuEVs further disrupts immunosuppression in tumors, which facilitates anti-tumor activity. Thus, redirecting TuEVs to the heart simultaneously enhances the antitumor efficacy and safety of ICI-based therapy. Furthermore, the Biomeder strategy is successfully expanded to prevent ICI-induced type 1 diabetes. This Biomeder technique is a universal method for the treatment of various ICI-related adverse events.

3.
Adv Healthc Mater ; : e2402216, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109966

RESUMEN

The treatment of breast cancer bone metastasis is an unresolved clinical challenge, mostly because currently therapeutic approaches cannot simultaneously block the tumor growth and repair the osteolytic bone injuries at the metastatic site. Herein, the study develops a novel nanomedicine to treat breast cancer bone metastasis. The nanomedicine is based on phosphate ion-responsive and calcium peroxide-based nanoparticles carrying the bone-targeting agent zoledronic acid on the surface and loaded with the photosensitizer indocyanine green. Following intravenous administration to a mouse model of breast cancer bone metastasis, the nanoparticles efficiently accumulate at the bone metastasis site, react with free phosphate ions, and form hydroxyapatite nanoaggregates and O2, while releasing the photosensitizer. Hydroxyapatite nanoaggregates elicit the remineralization of the collagenous bone matrix and trigger tumor cell apoptosis. Upon irradiating tumor-bearing legs with an 808 nm laser source, the O2 and free photosensitizer produced 1O2 by the reaction of the nanoparticles with phosphate ions, further boosting the anti-tumor effect. Tumor killing hampers the vicious cycle at the site of bone metastasis, translating to osteolysis blockade and further encouraging the remineralization of bone matrix. This work sheds light on the development of a novel, safe, and efficient approach for the treatment of breast cancer bone metastasis.

4.
Heliyon ; 10(15): e35481, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170584

RESUMEN

Guizhou Province has many multi-layer, thin-thick coal seams; however, complex geology, incomplete reservoir characterization, and sweet-spot selection technology prevent large-scale coalbed methane (CBM) development. This study evaluates the CBM reservoir properties within the Dahebian block using logging data, coal sample analysis, and well-testing data and develops a 3D static reservoir properties model to analyze their spatial and vertical propagation. A sweet spot evaluation model was established using a multi-level fuzzy method based on 9 parameters extracted from a 3D static reservoir properties model. The coal measure has 22 coal seams, and seams >2 m thick have 2 or 3 thin non-coal layers intercalated. Coal seams 1#, 7#, and 11# are thin to thick, deeply buried, widely distributed, and have high gas content and saturation. Undeformed and cataclastic coal predominates the coal seam 1# and 7#, whereas coal seam 11# is dominated by cataclastic and granulated coal. The southern and central parts of coal seam 7# and 11# have less tectonically deformed coal (TDC). Coal seams 1# and 7# have low permeability relative to seam 11# and are localized, while coal seams 11# have high permeability, are extensively distributed, and contain substantial gas concentrations. Comparative analysis of evaluation scores and CBM production statistics shows that high scores indicate sweet spots for CBM development. Sweet-spot potential was classified as high, medium, and low. Scattered sweet spots are found in single layers, while combined development (1# + 7#+11#) reveals a wider high-potential area in the south-central region. This area, featuring deep, thick coal seams, high permeability, gas saturation, reservoir pressure, and low TDC proportion, indicates significant development potential. This study validates CBM development statistics, identifies future development areas, and guides the development of geologically complex Guizhou CBM.

5.
Adv Mater ; : e2407525, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39165065

RESUMEN

Adoptive cell therapy (ACT) has shown great success in the clinic for treating hematologic malignancies. However, solid tumor treatment with ACT monotherapy is still challenging, owing to insufficient expansion and rapid exhaustion of adoptive cells, tumor antigen downregulation/loss, and dense tumor extracellular matrix. Delivery strategies for combination cell therapy have great potential to overcome these hurdles. The delivery of vaccines, immune checkpoint inhibitors, cytokines, chemotherapeutics, and photothermal reagents in combination with adoptive cells, have been shown to improve the expansion/activation, decrease exhaustion, and promote the penetration of adoptive cells in solid tumors. Moreover, the delivery of nucleic acids to engineer immune cells directly in vivo holds promise to overcome many of the hurdles associated with the complex ex vivo cell engineering strategies. Here, these research advance, as well as the opportunities and challenges for integrating delivery technologies into cell therapy s are discussed, and the outlook for these emerging areas are criticlly analyzed.

6.
Heliyon ; 10(14): e34204, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39100463

RESUMEN

Coalbed methane represents an important kind of natural gas resource in many countries. However, the low-concentration property of coalbed methane limits its applications. To gain insight into the combustion kinetics of coalbed methane and facilitate its combustion utilization, this work reports an experimental and kinetic simulation study on the autoignition properties of methane at ultra-lean and lean conditions. A shock-tube (ST) facility is used for ignition delay time (IDT) measurements with equivalence ratios at 0.5, 0.1, and 0.05 with pressure at 2 and 10 bar under the temperature ranging from 1320 to 1850 K. The measured IDTs can be correlated into a general Arrhenius expression, and the equivalence ratio effect on IDTs is then analyzed. Seven detailed chemical kinetic mechanisms are employed to predict the IDTs and statistical error indicators are used to evaluate their performance. Detailed kinetic analysis via sensitivity and reaction path analysis is performed to uncover the kinetic differences among the seven mechanisms. It is shown that some of the reaction paths only exist in the NUIGMech1.3 mechanism, while the other detailed mechanisms do not consider them. Reaction path analysis indicates that the reactions related to O2, OH and O species become more important compared to the reactions involving CH3 and H radicals as the equivalence ratio decreases from lean to ultra-lean conditions. Detailed chemical kinetics analysis is also conducted to demonstrate the uncertainty of key reactions. The present work should be valuable to gain insight into the methane ignition characteristics and to facilitate kinetic mechanism optimization of methane combustion.

7.
Sensors (Basel) ; 24(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39124067

RESUMEN

Laser metal deposition (LMD) is a technology for the production of near-net-shape components. It is necessary to control the manufacturing process to obtain good geometrical accuracy and metallurgical properties. In the present study, a closed-loop control method of melt pool temperature for the deposition of small Ti6Al4V blocks in open environment was proposed. Based on the developed melt pool temperature sensor and deposition height sensor, a closed-loop control system and proportional-integral (PI) controller were developed and tested. The results show that with a PI temperature controller, the melt pool temperature tends to the desired value and remains stable. Compared to the deposition block without the controller, a flatter surface and no oxidation phenomenon are obtained with the controller.

8.
Sci China Life Sci ; 67(9): 1867-1880, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38951428

RESUMEN

Cancer stem cells (CSCs) play an important role in metastasis development, tumor recurrence, and treatment resistance, and are essential for the eradication of cancer. Currently, therapies fail to eradicate CSCs due to their therapeutic stress-induced cellular escape, which leads to enhanced aggressive behaviors compared with CSCs that have never been treated. However, the underlying mechanisms regulating the therapeutic escape remain unknown. To this end, we established a model to isolate the therapeutic escaped CSCs (TSCSCs) from breast CSCs and performed the transcription profile to reveal the mechanism. Mechanistically, we demonstrated that the behavior of therapeutic escape was regulated through the p38/MAPK signaling pathway, resulting in TSCSCs exhibiting enhanced motility and metastasis. Notably, blocking the p38/MAPK signaling pathway effectively reduced motility and metastasis ability both in vitro and in vivo, which were further supported by downregulated motility-related genes and epithelial-mesenchymal transition (EMT)-related proteins vimentin and N-cadherin. The obtained findings reveal the p38/MAPK pathway as a potential therapeutic target for TSCSCs and would provide profound implications for cancer therapy.


Asunto(s)
Neoplasias de la Mama , Movimiento Celular , Transición Epitelial-Mesenquimal , Sistema de Señalización de MAP Quinasas , Células Madre Neoplásicas , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Ratones Endogámicos BALB C
9.
Small ; : e2401110, 2024 Jun 14.
Artículo en Catalán | MEDLINE | ID: mdl-38874051

RESUMEN

For cancer metastasis inhibition, the combining of nanozymes with immune checkpoint blockade (ICB) therapy remains the major challenge in controllable reactive oxygen species (ROS) generation for creating effective immunogenicity. Herein, new nanozymes with light-controlled ROS production in terms of quantity and variety are developed by conjugating supramolecular-wrapped Fe single atom on iridium metallene with lattice-strained nanoislands (FeSA-Ir@PF NSs). The Fenton-like catalysis of FeSA-Ir@PF NSs effectively produced •OH radicals in dark, which induced ferroptosis and apoptosis of cancer cells. While under second near-infrared (NIR-II) light irradiation, FeSA-Ir@PF NSs showed ultrahigh photothermal conversion efficiency (𝜂, 75.29%), cooperative robust •OH generation, photocatalytic O2 and 1O2 generation, and caused significant pyroptosis of cancer cells. The controllable ROS generation, sequential cancer cells ferroptosis and pyroptosis, led 99.1% primary tumor inhibition and multi-immunogenic responses in vivo. Most importantly, the inhibition of cancer lung metastasis is completely achieved by FeSA-Ir@PF NSs with immune checkpoint inhibitors, as demonstrated in different mice lung metastasis models, including circulating tumor cells (CTCs) model. This work provided new inspiration for developing nanozymes for cancer treatments and metastasis inhibition.

10.
ACS Nano ; 18(27): 18046-18057, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38937261

RESUMEN

Tumor metastasis remains a major challenge in cancer management. Among various treatment strategies, immune cell-based cancer therapy holds a great potential for inhibiting metastasis. However, its wide application in cancer therapy is restricted by complex preparations, as well as inadequate homing and controllability. Herein, we present a groundbreaking approach for bioorthogonally manipulating tumor-NK (natural killer) cell assembly to inhibit tumor metastasis. Multiple dibenzocyclootyne (DBCO) groups decorated long single-stranded DNA were tail-modified on core-shell upconversion nanoparticles (CSUCNPs) and condensed by photosensitive chemical linker (PC-Linker) DNA to shield most of the DBCO groups. On the one hand, the light-triggered DNA scaffolds formed a cross-linked network by click chemistry, effectively impeding tumor cell migration. On the other hand, the efficient cellular assembly facilitated the effective communication between tumor cells and NK-92 cells, leading to enhanced immune response against tumors and further suppression of tumor metastasis. These features make our strategy highly applicable to a wide range of metastatic cancers.


Asunto(s)
Rayos Infrarrojos , Células Asesinas Naturales , Humanos , Animales , Ratones , Células Asesinas Naturales/inmunología , Metástasis de la Neoplasia/prevención & control , Nanopartículas/química , Línea Celular Tumoral , ADN/química , Movimiento Celular/efectos de los fármacos , Ratones Endogámicos BALB C , Antineoplásicos/farmacología , Antineoplásicos/química
11.
Adv Mater ; 36(36): e2405930, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38924191

RESUMEN

The elevated levels of lactate in tumor tissue play a pivotal role in fostering an immunosuppressive microenvironment. Therefore, efficiently reducing lactate levels to reprogram tumor immune microenvironment (TIM) is considered a crucial step for boosted immunotherapy. Here, a high-lactate-metabolizing photosynthetic bacteria (LAB-1) is selectively screened for TIM reprogramming, which then improves the efficacy of tumor immunotherapy. The culture medium for LAB-1 screening is initially developed through an orthogonal experiment, simulating the tumor microenvironment (TME) and utilizing lactate as the sole organic carbon source. As demonstrated in a murine 4T1 model, LAB-1 colonizes the TME selectively, resulting in a significant reduction in lactate levels and a subsequent increase in pH values within the tumor tissue. Furthermore, single-cell RNA sequencing analysis reveals that LAB-1 effectively reprograms the TIM, thereby enhancing the effectiveness of antitumor immune therapy. This approach of utilizing lactate-consuming bacteria represents a potent tool for augmenting tumor immunotherapy efficiency.


Asunto(s)
Ácido Láctico , Microambiente Tumoral , Animales , Ácido Láctico/metabolismo , Ratones , Línea Celular Tumoral , Inmunoterapia , Bacterias/metabolismo , Fotosíntesis , Neoplasias/inmunología , Neoplasias/metabolismo , Ratones Endogámicos BALB C
12.
Br J Cancer ; 131(2): 243-257, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38824222

RESUMEN

BACKGROUND: Disorder of cell cycle represents as a major driver of hepatocarcinogenesis and constitutes an attractive therapeutic target. However, identifying key genes that respond to cell cycle-dependent treatments still facing critical challenges in hepatocellular carcinoma (HCC). Increasing evidence indicates that dynein light chain 1 (DYNLL1) is closely related to cell cycle progression and plays a critical role in tumorigenesis. In this study, we explored the role of DYNLL1 in the regulation of cell cycle progression in HCC. METHODS: We analysed clinical specimens to assess the expression and predictive value of DYNLL1 in HCC. The oncogenic role of DYNLL1 was determined by gain or loss-of-function experiments in vitro, and xenograft tumour, liver orthotopic, and DEN/CCl4-induced mouse models in vivo. Mass spectrometry analysis, RNA sequencing, co-immunoprecipitation assays, and forward and reverse experiments were performed to clarify the mechanism by which DYNLL1 activates the interleukin-2 enhancer-binding factor 2 (ILF2)/CDK4 signalling axis. Finally, the sensitivity of HCC cells to palbociclib and sorafenib was assessed by apoptosis, cell counting kit-8, and colony formation assays in vitro, and xenograft tumour models and liver orthotopic models in vivo. RESULTS: DYNLL1 was significantly higher in HCC tissues than that in normal liver tissues and closely related to the clinicopathological features and prognosis of patients with HCC. Importantly, DYNLL1 was identified as a novel hepatocarcinogenesis gene from both in vitro and in vivo evidence. Mechanistically, DYNLL1 could interact with ILF2 and facilitate the expression of ILF2, then ILF2 could interact with CDK4 mRNA and delay its degradation, which in turn activates downstream G1/S cell cycle target genes CDK4. Furthermore, palbociclib, a selective CDK4/6 inhibitor, represents as a promising therapeutic strategy for DYNLL1-overexpressed HCC, alone or particularly in combination with sorafenib. CONCLUSIONS: Our work uncovers a novel function of DYNLL1 in orchestrating cell cycle to promote HCC development and suggests a potential synergy of CDK4/6 inhibitor and sorafenib for the treatment of HCC patients, especially those with increased DYNLL1.


Asunto(s)
Carcinoma Hepatocelular , Ciclo Celular , Quinasa 4 Dependiente de la Ciclina , Dineínas Citoplasmáticas , Neoplasias Hepáticas , Piperazinas , Piridinas , Humanos , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/genética , Animales , Ratones , Piridinas/farmacología , Piperazinas/farmacología , Dineínas Citoplasmáticas/genética , Dineínas Citoplasmáticas/metabolismo , Masculino , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino , Proliferación Celular
13.
iScience ; 27(6): 109804, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770138

RESUMEN

Nucleic acid therapeutics offer tremendous promise for addressing a wide range of common public health conditions. However, the in vivo nucleic acids delivery faces significant biological challenges. Lipid nanoparticles (LNPs) possess several advantages, such as simple preparation, high stability, efficient cellular uptake, endosome escape capabilities, etc., making them suitable for delivery vectors. However, the extensive hepatic accumulation of LNPs poses a challenge for successful development of LNPs-based nucleic acid therapeutics for extrahepatic diseases. To overcome this hurdle, researchers have been focusing on modifying the surface properties of LNPs to achieve precise delivery. The review aims to provide current insights into strategies for LNPs-based organ-selective nucleic acid delivery. In addition, it delves into the general design principles, targeting mechanisms, and clinical development of organ-selective LNPs. In conclusion, this review provides a comprehensive overview to provide guidance and valuable insights for further research and development of organ-selective nucleic acid delivery systems.

14.
RSC Adv ; 14(21): 14470-14479, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38708116

RESUMEN

Promoting angiogenesis following biomaterial implantation is essential to bone tissue regeneration. Herein, the composite scaffolds composed of zein, whitlockite (WH), and levofloxacin (LEVO) were fabricated to augment bone repair by facilitating osteogenesis and angiogenesis. First, three-dimensional composite scaffolds containing zein and WH were prepared using the salt-leaching method. Then, as a model antibiotic drug, the LEVO was loaded into zein/WH scaffolds. Moreover, the addition of WH enhanced the adhesion, differentiation, and mineralization of osteoblasts. The zein/WH/LEVO composite scaffolds not only had significant osteoinductivity but also showed excellent antibacterial properties. The prepared composite scaffolds were then implanted into a calvarial defect model to evaluate their osteogenic induction effects in vivo. Micro-CT observation and histological analysis indicate that the scaffolds can accelerate bone regeneration with the contribution of endogenous cytokines. Based on amounts of data in vitro and in vivo, the scaffolds present profound effects on improving bone regeneration, especially for the favorable osteogenic, intensive angiogenic, and alleviated inflammation abilities. The results showed that the synthesized scaffolds could be a potential material for bone tissue engineering.

15.
Small ; : e2401282, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716970

RESUMEN

Activatable near-infrared (NIR) fluorogenic probes offer a potent tool for real-time, in situ detection of hepatic biomarkers, significantly advancing the precision in diagnosing inflammatory liver disease (ILD). However, the limited distribution of small molecule fluorogenic probes in the liver and their rapid clearance impair the accuracy of fluorescence imaging and in ILD diagnosis. In this study, an effective utilization of ionizable lipid nanoparticles (iLNPs) is presented as liver-targeted carriers for efficient delivery of fluorogenic probes, aiming to overcome biodistribution barriers and achieve accurate detection of hepatic biomarkers. Based on this strategy, a liver-targeted NIR fluorogenic nanoprobe hCy-H2O2@iLNP is prepared using hCy-H2O2 as a small molecule reporter for visualizing the over-produced hydrogen peroxide (H2O2) in situ of liver. Notably, iLNPs not only significantly enhance probe accumulation in the liver, but also enable sequence activation of fluorescent nanoprobes. This response is achieved through primary liposome-dissociation release and secondary hCy-H2O2 response with pathological H2O2, enabling high-precision detection of oxidative stress in hepatocytes. These distinctive features facilitate accurate early diagnosis of acetaminophen (APAP)-induced inflammatory liver injury as well as lipopolysaccharide (LPS)-induced hepatitis. Therefore, the organ-targeted nanoprobe design strategy showcasts great potential for early and accurate diagnosis of lesions in situ in different organs.

16.
Int J Biol Macromol ; 268(Pt 2): 131854, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677683

RESUMEN

Cellulose-based separators have great application prospects in the field of lithium-ion batteries (LIBs) due to their excellent wettability and thermal stability. However, most current cellulose-based separators come from high-cost nanocellulose and bacterial cellulose. Herein, regenerated cellulose (RC) separators were prepared from dissolving pulp with different degrees of polymerization (DPs) by using the NaOH/urea/thiourea dissolution system as well as a nonsolvent-induced phase separation method. The results showed that the DP of cellulose had a significant influence on the mechanical properties, pore structure, and electrochemical properties of the resultant RC separator. An appropriate increase in the DP could improve the mechanical strength, porosity, and ionic conductivity of the separator. The RC separator with a DP of 599 exhibited the best performance with a porosity of 56.1 %, an average pore size of 305 nm, an electrolyte uptake of 339 %, a tensile strength of 38.3 MPa, and an ionic conductivity of 1.88 mS·cm-1. The lithium-ion battery prepared with the optimal RC separator had a specific capacity of 156.55 mAh/g for 100 cycles at a current density of 0.5 C and a coulombic efficiency of more than 96 %, which was a clear advantage over the commercially available Celgard2400 and cellulose separators. This work makes contributions to the development of high-performance LIBs separators from cellulose.


Asunto(s)
Celulosa , Suministros de Energía Eléctrica , Litio , Polimerizacion , Celulosa/química , Litio/química , Porosidad , Conductividad Eléctrica , Iones/química , Resistencia a la Tracción
17.
Bioact Mater ; 36: 48-61, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38434148

RESUMEN

Photosynthetic bacteria (PSB) has shown significant potential as a drug or drug delivery system owing to their photothermal capabilities and antioxidant properties. Nevertheless, the actualization of their potential is impeded by inherent constraints, including their considerable size, heightened immunogenicity and compromised biosafety. Conquering these obstacles and pursuing more effective solutions remains a top priority. Similar to extracellular vesicles, bacterial outer membrane vesicles (OMVs) have demonstrated a great potential in biomedical applications. OMVs from PSB encapsulate a rich array of bioactive constituents, including proteins, nucleic acids, and lipids inherited from their parent cells. Consequently, they emerge as a promising and practical alternative. Unfortunately, OMVs have suffered from low yield and inconsistent particle sizes. In response, bacteria-derived nanovesicles (BNVs), created through controlled extrusion, adeptly overcome the challenges associated with OMVs. However, the differences, both in composition and subsequent biological effects, between OMVs and BNVs remain enigmatic. In a groundbreaking endeavor, our study meticulously cultivates PSB-derived OMVs and BNVs, dissecting their nuances. Despite minimal differences in morphology and size between PSB-derived OMVs and BNVs, the latter contains a higher concentration of active ingredients and metabolites. Particularly noteworthy is the elevated levels of lysophosphatidylcholine (LPC) found in BNVs, known for its ability to enhance cell proliferation and initiate downstream signaling pathways that promote angiogenesis and epithelialization. Importantly, our results indicate that BNVs can accelerate wound closure more effectively by orchestrating a harmonious balance of cell proliferation and migration within NIH-3T3 cells, while also activating the EGFR/AKT/PI3K pathway. In contrast, OMVs have a pronounced aptitude in anti-cancer efforts, driving macrophages toward the M1 phenotype and promoting the release of inflammatory cytokines. Thus, our findings not only provide a promising methodological framework but also establish a definitive criterion for discerning the optimal application of OMVs and BNVs in addressing a wide range of medical conditions.

18.
J Mater Chem B ; 12(8): 2070-2082, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38305057

RESUMEN

The natural healing of diabetic wounds is collectively impeded by multiple factors, including hyperglycemia, angiogenesis disorders, acute oxidative stress, and prolonged inflammation. Although considerable effort has been devoted to solving these problems, the treatment of diabetic wounds remains a major clinical obstacle. In light of this, we developed an innovative wound microenvironment self-adaptive hydrogel to promote the healing of diabetic wounds. The hydrogel was constructed by the crosslinking of 3-aminobenzeneboronic acid (PBA)-modified gelatin (Gel) and polyvinyl alcohol (PVA) by borate ester bonds, which showed high responsiveness to glucose. Meanwhile, the liposomes that encapsulated metformin, L-arginine, and L(+)-ascorbic acid were incorporated into the hydrogel framework. The hydrogel@lipo composite demonstrated shape adaptability, glucose responsiveness, and all-in-one capability, thereby effectively improving the intricate microenvironment of diabetic wounds. In vitro and in vivo experiments demonstrated the ability of hydrogel@lipo to mitigate oxidative stress, enhance angiogenesis, and attenuate inflammatory responses. Consequently, the hydrogel@lipo could accelerate diabetic wound healing (within two weeks). The cumulative findings strongly suggest the potential of hydrogel@lipo as a highly promising therapeutic dressing for advancing diabetic wound recovery.


Asunto(s)
Diabetes Mellitus , Hidrogeles , Humanos , Hidrogeles/farmacología , Arginina , Ácido Ascórbico , Glucosa
19.
Foods ; 13(2)2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38254494

RESUMEN

Dairy products are susceptible to modifications in protein oxidation during heat processing, which can lead to changes in protein function, subsequently affecting intestinal health. Despite being a unique nutritional source, yak milk has not been thoroughly examined for the effects of its oxidized proteins on intestinal microbiota and metabolism. Hence, this study employed different heat treatment methods (low-temperature pasteurization, high-temperature pasteurization, and high-temperature sterilization) to induce oxidation in yak milk proteins. The study then assessed the degree of oxidation in these proteins and utilized mice as research subjects. Using metagenomics and metabolomics methods, this study examined the structure of intestinal microbial communities and metabolic products in mice consuming oxidized yak milk. The results showed a decrease in carbonyl and total thiol contents of yak milk proteins after different heat treatments, indicating that heat treatment causes oxidation in yak milk proteins. Metagenomic analysis of mouse intestinal microbiota revealed significant changes in 66 genera. In the high-temperature sterilization group (H), key differential genera included Verrucomicrobiales, Verrucomicrobiae, Akkermansiaceae, and 28 others. The high-temperature pasteurization group (M) mainly consisted of Latilactobacillus, Bacillus, and Romboutsia. The low-temperature pasteurization group (L) primarily comprised of Faecalibacterium, Chaetomium, Paenibacillaceae, Eggerthella, Sordariales, and 33 others. Functionally, compared to the control group (C), the H group upregulated translation and energy metabolism functions, the L group the M group significantly upregulated metabolism of other amino acids, translation, and cell replication and repair functions. Based on metabolomic analysis, differential changes in mouse metabolites could affect multiple metabolic pathways in the body. The most significantly affected metabolic pathways were phenylalanine metabolism, vitamin B6 metabolism, steroid hormone biosynthesis, and pantothenate and CoA biosynthesis. The changes were similar to the functional pathway analysis of mouse metagenomics, affecting amino acid and energy metabolism in mice. In summary, moderate oxidation of yak milk proteins exhibits a positive effect on mouse intestinal microbiota and metabolism. In conclusion, yak milk has a positive effect on mouse intestinal microflora and metabolism, and this study provides a scientific basis for optimizing dairy processing technology and further developing and applying yak milk.

20.
Adv Mater ; 36(4): e2305300, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37547955

RESUMEN

Lipid nanoparticles (LNPs) are currently the most promising clinical nucleic acids drug delivery vehicles. LNPs prevent the degradation of cargo nucleic acids during blood circulation. Upon entry into the cell, specific components of the lipid nanoparticles can promote the endosomal escape of nucleic acids. These are the basic properties of lipid nanoparticles as nucleic acid carriers. As LNPs exhibit hepatic aggregation characteristics, enhancing targeting out of the liver is a crucial way to improve LNPs administrated in vivo. Meanwhile, endosomal escape of nucleic acids loaded in LNPs is often considered inadequate, and therefore, much effort is devoted to enhancing the intracellular release efficiency of nucleic acids. Here, different strategies to efficiently deliver nucleic acid delivery from LNPs are concluded and their mechanisms are investigated. In addition, based on the information on LNPs that are in clinical trials or have completed clinical trials, the issues that are necessary to be approached in the clinical translation of LNPs are discussed, which it is hoped will shed light on the development of LNP nucleic acid drugs.


Asunto(s)
Nanopartículas , Ácidos Nucleicos , Lípidos , Liposomas , ARN Interferente Pequeño
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA