Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
2.
Nucleic Acids Res ; 52(1): 404-419, 2024 Jan 11.
Article En | MEDLINE | ID: mdl-38000383

The bacterial ribonuclease RNase E plays a key role in RNA metabolism. Yet, with a large substrate spectrum and poor substrate specificity, its activity must be well controlled under different conditions. Only a few regulators of RNase E are known, limiting our understanding on posttranscriptional regulatory mechanisms in bacteria. Here we show that, RebA, a protein universally present in cyanobacteria, interacts with RNase E in the cyanobacterium Anabaena PCC 7120. Distinct from those known regulators of RNase E, RebA interacts with the catalytic region of RNase E, and suppresses the cleavage activities of RNase E for all tested substrates. Consistent with the inhibitory function of RebA on RNase E, depletion of RNase E and overproduction of RebA caused formation of elongated cells, whereas the absence of RebA and overproduction of RNase E resulted in a shorter-cell phenotype. We further showed that the morphological changes caused by altered levels of RNase E or RebA are dependent on their physical interaction. The action of RebA represents a new mechanism, potentially conserved in cyanobacteria, for RNase E regulation. Our findings provide insights into the regulation and the function of RNase E, and demonstrate the importance of balanced RNA metabolism in bacteria.


Anabaena , Endoribonucleases , Anabaena/genetics , Cyanobacteria/genetics , Cyanobacteria/metabolism , Endoribonucleases/genetics , Endoribonucleases/metabolism , RNA , RNA, Bacterial/genetics , RNA, Bacterial/metabolism
3.
Commun Biol ; 6(1): 643, 2023 06 15.
Article En | MEDLINE | ID: mdl-37322092

Transcriptional and translational regulations are important mechanisms for cell adaptation to environmental conditions. In addition to house-keeping tRNAs, the genome of the filamentous cyanobacterium Anabaena sp. strain PCC 7120 (Anabaena) has a long tRNA operon (trn operon) consisting of 26 genes present on a megaplasmid. The trn operon is repressed under standard culture conditions, but is activated under translational stress in the presence of antibiotics targeting translation. Using the toxic amino acid analog ß-N-methylamino-L-alanine (BMAA) as a tool, we isolated and characterized several BMAA-resistance mutants from Anabaena, and identified one gene of unknown function, all0854, named as trcR, encoding a transcription factor belonging to the ribbon-helix-helix (RHH) family. We provide evidence that TrcR represses the expression of the trn operon and is thus the missing link between the trn operon and translational stress response. TrcR represses the expression of several other genes involved in translational control, and is required for maintaining translational fidelity. TrcR, as well as its binding sites, are highly conserved in cyanobacteria, and its functions represent an important mechanism for the coupling of the transcriptional and translational regulations in cyanobacteria.


Anabaena , Cyanobacteria , Bacterial Proteins/metabolism , Anabaena/genetics , Anabaena/metabolism , Cyanobacteria/genetics , Transcription Factors/metabolism , Operon , RNA, Transfer/metabolism
4.
Proc Natl Acad Sci U S A ; 120(13): e2221874120, 2023 03 28.
Article En | MEDLINE | ID: mdl-36947515

Cyclic-di-GMP (c-di-GMP) is a ubiquitous bacterial signaling molecule. It is also a critical player in the regulation of cell size and cell behaviors such as cell aggregation and phototaxis in cyanobacteria, which constitute an important group of prokaryotes for their roles in the ecology and evolution of the Earth. However, c-di-GMP receptors have never been revealed in cyanobacteria. Here, we report the identification of a c-di-GMP receptor, CdgR, from the filamentous cyanobacterium Anabaena PCC 7120. Crystal structural analysis and genetic studies demonstrate that CdgR binds c-di-GMP at the dimer interface and this binding is required for the control of cell size in a c-di-GMP-dependent manner. Different functions of CdgR, in ligand binding and signal transmission, could be separated genetically, allowing us to dissect its molecular signaling functions. The presence of the apo-form of CdgR triggers cell size reduction, consistent with the similar effects observed with a decrease of c-di-GMP levels in cells. Furthermore, we found that CdgR exerts its function by interacting with a global transcription factor DevH, and this interaction was inhibited by c-di-GMP. The lethal effect triggered by conditional depletion of DevH or by the production of several point-mutant proteins of CdgR in cells indicates that this signaling pathway plays critical functions in Anabaena. Our studies revealed a mechanism of c-di-GMP signaling in the control of cell size, an important and complex trait for bacteria. CdgR is highly conserved in cyanobacteria, which will greatly expand our understanding of the roles of c-di-GMP signaling in these organisms.


Cyanobacteria , Signal Transduction , Cyanobacteria/metabolism , Cyclic GMP/metabolism , Gene Expression Regulation , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial
5.
Microbiol Spectr ; 11(1): e0422822, 2023 02 14.
Article En | MEDLINE | ID: mdl-36625639

Each bacterial species possesses a specific cell size and morphology, which constitute important and recognizable physical traits. How bacteria maintain their particular cell size and morphology remains an essential question in microbiology. Cyanobacteria are oxygen-evolving photosynthetic prokaryotes. Although monophyletic, these organisms are highly diverse in their cell morphology and cell size. How these physical traits of cyanobacteria are controlled is poorly understood. Here, we report the identification of a two-component signaling system, composed of a histidine kinase CdgK and a response regulator CdgS, involved in cell size regulation in the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. Inactivation of cdgK or cdgS led to reduction of cell length and width with little effect on cell growth capacity. CdgS has a GGDEF domain responsible for the synthesis of the second messenger c-di-GMP. Based on genetic and biochemical studies, we proposed a signaling pathway initiated by CdgK, leading to the phosphorylation of CdgS, and thereby an enhanced enzymatic activity for c-di-GMP synthesis of the latter. The GGDEF domain of CdgS was essential in cell size control, and the reduction of cell size observed in various mutants could be rescued by the expression of a c-di-GMP synthetase from E. coli. These results provided evidence that a minimal threshold of c-di-GMP level was required for maintaining cell size in Anabaena. IMPORTANCE Cyanobacteria are considered the first organisms to produce oxygen on Earth, and their activities shaped the evolution of our ecosystems. Cell size is an important trait fixed early in evolution, with the diversification of micro- and macrocyanobacterial species during the Great Oxidation Event. However, the genetic basis underlying cell size control in cyanobacteria was not understood. Our studies demonstrated that the CdgK-CdgS signaling pathway participates in the control of cell size, and their absence did not affect cell growth. CdgK has multiple domains susceptible to signal input, which are necessary for cell size regulation. This observation suggests that cell size in Anabaena could respond to environmental signals. These studies paved the way for genetic dissection of cell size regulation in cyanobacteria.


Anabaena , Cyanobacteria , Escherichia coli/metabolism , Ecosystem , Signal Transduction , Anabaena/genetics , Anabaena/metabolism , Cell Size , Oxygen/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial
6.
Proc Natl Acad Sci U S A ; 119(36): e2207963119, 2022 09 06.
Article En | MEDLINE | ID: mdl-36037363

The filamentous, multicellular cyanobacterium Anabaena sp. PCC 7120 (Anabaena) is a prokaryotic model for the study of cell differentiation and cell-cell interactions. Upon combined-nitrogen deprivation, Anabaena forms a particular cell type, heterocyst, for aerobic nitrogen fixation. Heterocysts are semiregularly spaced among vegetative cells. Heterocyst differentiation is coupled to cell division, but the underlying mechanism remains unclear. This mechanism could be mediated by the putative protease HetF, which is a divisome component and is necessary for heterocyst differentiation. In this study, by suppressor screening, we identified PatU3, as a negative regulator acting downstream of HetF for cell division and heterocyst development. The inactivation of patU3 restored the capacity of cell division and heterocyst differentiation in the ΔhetF mutant, and overexpression of patU3 inhibited both processes in the wild-type background. We demonstrated that PatU3 was a specific substrate of the protease activity of HetF. Consequently, PatU3 accumulated in the hetF-deficient mutant, which was responsible for the resultant mutant phenotype. The cleavage site of PatU3 by HetF was mapped after the Arg117 residue, whose mutation made PatU3 resistant to HetF processing, and mimicked the effect of hetF deletion. Our results provided evidence that HetF regulated cell division and heterocyst differentiation by controlling the inhibitory effects of PatU3. This proteolytic pathway constituted a mechanism for the coordination between cell division and differentiation in a prokaryotic model used for studies on developmental biology and multicellularity.


Anabaena , Bacterial Proteins , Cell Division , Proteolysis , Anabaena/cytology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial
7.
Methods Mol Biol ; 2377: 143-157, 2022.
Article En | MEDLINE | ID: mdl-34709615

Cyanobacteria, a group of diverse bacteria capable of oxygenic photosynthesis, are excellent models for investigating many important cellular processes, such as photosynthesis, nitrogen fixation, and prokaryotic cell differentiation. They also have great potential to become the next-generation cell factories for sustainable biosynthesis of valuable products. However, genetic manipulation in cyanobacteria is not as convenient as in other model bacteria. Particularly, handling essential genes in cyanobacteria has been difficult due to the lack of appropriate tools, limiting our understanding of many important cellular functions encoded by them. We recently develop a CRISPR-based method for constructing the conditional mutants of cyanobacterial essential genes by engineering the ribosome binding site to a theophylline-responsive riboswitch. Here, we provide the details of this method. The principle of this method could be used to construct conditional mutants in a wide range of bacterial species.


Cyanobacteria , Genes, Essential , CRISPR-Cas Systems , Cyanobacteria/genetics , Mutation , Nitrogen Fixation , Photosynthesis
8.
mLife ; 1(1): 21-39, 2022 Mar.
Article En | MEDLINE | ID: mdl-38818322

RNA turnover plays critical roles in the regulation of gene expression and allows cells to respond rapidly to environmental changes. In bacteria, the mechanisms of RNA turnover have been extensively studied in the models Escherichia coli and Bacillus subtilis, but not much is known in other bacteria. Cyanobacteria are a diverse group of photosynthetic organisms that have great potential for the sustainable production of valuable products using CO2 and solar energy. A better understanding of the regulation of RNA decay is important for both basic and applied studies of cyanobacteria. Genomic analysis shows that cyanobacteria have more than 10 ribonucleases and related proteins in common with E. coli and B. subtilis, and only a limited number of them have been experimentally investigated. In this review, we summarize the current knowledge about these RNA-turnover-related proteins in cyanobacteria. Although many of them are biochemically similar to their counterparts in E. coli and B. subtilis, they appear to have distinct cellular functions, suggesting a different mechanism of RNA turnover regulation in cyanobacteria. The identification of new players involved in the regulation of RNA turnover and the elucidation of their biological functions are among the future challenges in this field.

9.
Front Microbiol ; 12: 793336, 2021.
Article En | MEDLINE | ID: mdl-34925302

c-di-GMP is a ubiquitous bacterial signal regulating various physiological process. Anabaena PCC 7120 (Anabaena) is a filamentous cyanobacterium able to form regularly-spaced heterocysts for nitrogen fixation, in response to combined-nitrogen deprivation in 24h. Anabaena possesses 16 genes encoding proteins for c-di-GMP metabolism, and their functions are poorly characterized, except all2874 (cdgS) whose deletion causes a decrease in heterocyst frequency 48h after nitrogen starvation. We demonstrated here that c-di-GMP levels increased significantly in Anabaena after combined-nitrogen starvation. By inactivating each of the 16 genes, we found that the deletion of all1175 (cdgSH) led to an increase of heterocyst frequency 24h after nitrogen stepdown. A double mutant ΔcdgSHΔcdgS had an additive effect over the single mutants in regulating heterocyst frequency, indicating that the two genes acted at different time points for heterocyst spacing. Biochemical and genetic data further showed that the functions of CdgSH and CdgS in the setup or maintenance of heterocyst frequency depended on their opposing effects on the intracellular levels of c-di-GMP. Finally, we demonstrated that heterocyst differentiation was completely inhibited when c-di-GMP levels became too high or too low. Together, these results indicate that the homeostasis of c-di-GMP level is important for heterocyst differentiation in Anabaena.

10.
Front Microbiol ; 12: 765878, 2021.
Article En | MEDLINE | ID: mdl-34745074

Bacterial cell shape is determined by the peptidoglycan (PG) layer. The cyanobacterium Anabaena sp. PCC 7120 (Anabaena) is a filamentous strain with ovoid-shaped cells connected together with incomplete cell constriction. When deprived of combined nitrogen in the growth medium, about 5-10% of the cells differentiate into heterocysts, cells devoted to nitrogen fixation. It has been shown that PG synthesis is modulated during heterocyst development and some penicillin-binding proteins (PBPs) participating in PG synthesis are required for heterocyst morphogenesis or functioning. Anabaena has multiple PBPs with functional redundancy. In this study, in order to examine the function of PG synthesis and its relationship with heterocyst development, we created a conditional mutant of mraY, a gene necessary for the synthesis of the PG precursor, lipid I. We show that mraY is required for cell and filament integrity. Furthermore, when mraY expression was being limited, persistent septal PG synthetic activity was observed, resulting in increase in cell width. Under non-permissive conditions, filaments and cells were rapidly lysed, and no sign of heterocyst development within the time window allowed was detected after nitrogen starvation. When mraY expression was being limited, a high percentage of heterocyst doublets were found. These doublets are formed likely as a consequence of delayed cell division and persistent septal PG synthesis. MraY interacts with components of both the elongasome and the divisome, in particular those directly involved in PG synthesis, including HetF, which is required for both cell division and heterocyst formation.

11.
Environ Microbiol ; 23(8): 4823-4837, 2021 08.
Article En | MEDLINE | ID: mdl-34296514

FtsZ is a tubulin-like GTPase that polymerizes to initiate the process of cell division in bacteria. Heterocysts are terminally differentiated cells of filamentous cyanobacteria that have lost the capacity for cell division and in which the ftsZ gene is downregulated. However, mechanisms of FtsZ regulation during heterocyst differentiation have been scarcely investigated. The patD gene is NtcA dependent and involved in the optimization of heterocyst frequency in Anabaena sp. PCC 7120. Here, we report that the inactivation of patD caused the formation of multiple FtsZ-rings in vegetative cells, cell enlargement, and the retention of peptidoglycan synthesis activity in heterocysts, whereas its ectopic expression resulted in aberrant FtsZ polymerization and cell division. PatD interacted with FtsZ, increased FtsZ precipitation in sedimentation assays, and promoted the formation of thick straight FtsZ bundles that differ from the toroidal aggregates formed by FtsZ alone. These results suggest that in the differentiating heterocysts, PatD interferes with the assembly of FtsZ. We propose that in Anabaena FtsZ is a bifunctional protein involved in both vegetative cell division and regulation of heterocyst differentiation. In the differentiating cells PatD-FtsZ interactions appear to set an FtsZ activity that is insufficient for cell division but optimal to foster differentiation.


Anabaena , Cyanobacteria , Anabaena/genetics , Anabaena/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Division/genetics , Cyanobacteria/metabolism , Gene Expression Regulation, Bacterial
12.
mBio ; 12(4): e0138221, 2021 08 31.
Article En | MEDLINE | ID: mdl-34253066

Bacterial cell division, with a few exceptions, is driven by FtsZ through a treadmilling mechanism to remodel and constrict the rigid peptidoglycan (PG) layer. Yet different organisms may differ in the composition of the cell division complex (divisome). In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, hetF is required for the initiation of the differentiation of heterocysts, cells specialized in N2 fixation under combined-nitrogen deprivation. In this study, we demonstrate that hetF is expressed in vegetative cells and necessary for cell division under certain conditions. Under nonpermissive conditions, cells of a ΔhetF mutant stop dividing, consistent with increased levels of HetF under similar conditions in the wild type. Furthermore, HetF is a membrane protein located at midcell and cell-cell junctions. In the absence of HetF, FtsZ rings are still present in the elongated cells; however, PG remodeling is abolished. This phenotype is similar to that observed with the inhibition of the septal PG synthase FtsI. We further reveal that HetF is recruited to or stabilized at the divisome by interacting with FtsI and that this interaction is necessary for HetF function in cell division. Our results indicate that HetF is a member of the divisome depending mainly on light intensity and reveal distinct features of the cell division machinery in cyanobacteria that are of high ecological and environmental importance. IMPORTANCE Cyanobacteria shaped the Earth's evolutionary history and are still playing important roles for elementary cycles in different environments. They consist of highly diverse species with different cell shapes, sizes, and morphologies. Although these properties are strongly affected by the process of cytokinesis, the mechanism remains largely unexplored. Using different approaches, we demonstrate that HetF is a new component of the cell division machinery under certain environmental conditions in the filamentous cyanobacterium Anabaena sp. strain PCC 7120. The common and diverged characteristics of cell division in prokaryotes reflect the evolutionary history of different bacteria as an adaptive measure to proliferate under certain environmental conditions. As a protein for cell differentiation, the recruitment of HetF to the septum illustrates such an adaptive mechanism in cyanobacteria.


Anabaena/genetics , Anabaena/metabolism , Bacterial Proteins/metabolism , Cell Division/genetics , Anabaena/chemistry , Bacterial Proteins/genetics , Cell Division/physiology , Gene Expression Regulation, Bacterial , Phenotype
13.
Toxins (Basel) ; 12(8)2020 08 13.
Article En | MEDLINE | ID: mdl-32823543

Produced by cyanobacteria and some plants, BMAA is considered as an important environmental factor in the occurrence of some neurodegenerative diseases. Neither the underlying mechanism of its toxicity, nor its biosynthetic or metabolic pathway in cyanobacteria is understood. Interestingly, BMAA is found to be toxic to some cyanobacteria, making it possible to dissect the mechanism of BMAA metabolism by genetic approaches using these organisms. In this study, we used the cyanobacterium Anabaena PCC 7120 to isolate BMAA-resistant mutants. Following genomic sequencing, several mutations were mapped to two genes involved in amino acids transport, suggesting that BMAA was taken up through amino acid transporters. This conclusion was supported by the protective effect of several amino acids against BMAA toxicity. Furthermore, targeted inactivation of genes encoding different amino acid transport pathways conferred various levels of resistance to BMAA. One mutant inactivating all three major amino acid transport systems could no longer take up BMAA and gained full resistance to BMAA toxicity. Therefore, BMAA is a substrate of amino acid transporters, and cyanobacteria are interesting models for genetic analysis of BMAA transport and metabolism.


Amino Acid Transport Systems/genetics , Amino Acids, Diamino/metabolism , Amino Acids/metabolism , Anabaena/genetics , Anabaena/metabolism , Amino Acids, Diamino/pharmacology , Anabaena/drug effects , Cyanobacteria Toxins , Genome, Bacterial , Mutation , Neurotoxins/metabolism
14.
J Bacteriol ; 201(21)2019 11 01.
Article En | MEDLINE | ID: mdl-31405917

In the filamentous multicellular cyanobacterium Anabaena sp. strain PCC 7120, 5 to 10% of the cells differentiate into heterocysts, which are specialized in N2 fixation. Heterocysts and vegetative cells are mutually dependent for filament growth through nutrient exchange. Thus, the heterocyst frequency should be optimized to maintain the cellular carbon and nitrogen (C/N) balance for filament fitness in the environment. Here, we report the identification of patD, whose expression is directly activated in developing cells by the transcription factor NtcA. The inactivation of patD increases heterocyst frequency and promotes the upregulation of the positive regulator of heterocyst development hetR, whereas its overexpression decreases the heterocyst frequency. The change in heterocyst frequency resulting from the inactivation of patD leads to the reduction in competitiveness of the filaments under combined-nitrogen-depleted conditions. These results indicate that patD regulates heterocyst frequency in Anabaena sp. PCC 7120, ensuring its optimal filament growth.IMPORTANCE Microorganisms have evolved various strategies in order to adapt to the environment and compete with other organisms. Heterocyst differentiation is a prokaryotic model for studying complex cellular regulation. The NtcA-regulated gene patD controls the ratio of heterocysts relative to vegetative cells on the filaments of Anabaena sp. strain PCC 7120. Such a regulation provides a mechanism through which carbon fixation by vegetative cells and nitrogen fixation by heterocysts are properly balanced to ensure optimal growth and keep a competitive edge for long-term survival.


Anabaena/genetics , Bacterial Proteins/genetics , Anabaena/metabolism , Carbon/metabolism , Gene Expression Regulation, Bacterial/genetics , Nitrogen/metabolism , Nitrogen Fixation/genetics , Transcription Factors/genetics , Up-Regulation/genetics
15.
ACS Synth Biol ; 8(1): 170-180, 2019 01 18.
Article En | MEDLINE | ID: mdl-30525474

CRISPR systems, such as CRISPR-Cas9 and CRISPR-Cpf1, have been successfully used for genome editing in a variety of organisms. Although the technique of CRISPR-Cpf1 has been applied in cyanobacteria recently, its use was limited without exploiting the full potential of such a powerful genetic system. Using the cyanobacterium Anabaena PCC 7120 as a model strain, we improved the tools and designed genetic strategies based on CRISPR-Cpf1, which enabled us to realize genetic experiments that have been so far difficult to do in cyanobacteria. The development includes: (1) a "two-spacers" strategy for single genomic modification, with a success rate close to 100%; (2) rapid multiple genome editing using editing plasmids with different resistance markers; (3) using sacB, a counter-selection marker conferring sucrose sensitivity, to enable the active loss of the editing plasmids and facilitate multiple rounds of genetic modification or phenotypic analysis; (4) manipulation of essential genes by the creation of conditional mutants, using as example, polA encoding the DNA polymerase I essential for DNA replication and repair; (5) large DNA fragment deletion, up to 118 kb, from the Anabaena chromosome, corresponding to the largest bacterial chromosomal region removed with CRISPR systems so far. The genome editing vectors and the strategies developed here will expand our ability to study and engineer cyanobacteria, which are extensively used for fundamental studies, biotechnological applications including biofuel production, and synthetic biology research. The vectors developed here have a broad host range, and could be readily used for genetic modification in other microorganisms.


Anabaena/genetics , Bacterial Proteins/genetics , CRISPR-Cas Systems/genetics , Genome, Bacterial/genetics , DNA Polymerase I/genetics , Gene Editing
16.
Front Microbiol ; 9: 791, 2018.
Article En | MEDLINE | ID: mdl-29740419

Cyanobacteria were the first oxygenic photosynthetic organisms during evolution and were ancestors of plastids. Cyanobacterial cells exhibit an extraordinary diversity in their size and shape, and bacterial cell morphology largely depends on the synthesis and the dynamics of the peptidoglycan (PG) layer. Here, we used a fluorescence analog of the PG synthesis precursor D-Ala, 7-Hydroxycoumarin-amino-D-alanine (HADA), to probe the PG synthesis pattern in live cells of cyanobacteria with different morphology. They displayed diverse synthesis patterns, with some strains showing an intensive HADA incorporation at the septal region, whereas others gave an HADA signal distributed around the cells. Growth zones covering several cells at the tips of the filament were present in some filamentous strains such as in Arthrospira. In Anabaena PCC 7120, which is capable of differentiating heterocysts for N2 fixation, PG synthesis followed the cell division cycle. In addition, an HADA incorporation was strongly activated from 12 to 15 h following the initiation of heterocyst development, indicating a thickening of the PG layer in heterocysts. The PG synthesis pattern is diverse in cyanobacteria and responds to developmental regulation. The use of fluorescent analogs may serve as a useful tool for understanding the mechanisms of cell growth and morphogenesis operating in these organisms.

17.
Proc Natl Acad Sci U S A ; 115(2): 403-408, 2018 01 09.
Article En | MEDLINE | ID: mdl-29279392

The coordination of carbon and nitrogen metabolism is essential for bacteria to adapt to nutritional variations in the environment, but the underlying mechanism remains poorly understood. In autotrophic cyanobacteria, high CO2 levels favor the carboxylase activity of ribulose 1,5 bisphosphate carboxylase/oxygenase (RuBisCO) to produce 3-phosphoglycerate, whereas low CO2 levels promote the oxygenase activity of RuBisCO, leading to 2-phosphoglycolate (2-PG) production. Thus, the 2-PG level is reversely correlated with that of 2-oxoglutarate (2-OG), which accumulates under a high carbon/nitrogen ratio and acts as a nitrogen-starvation signal. The LysR-type transcriptional repressor NAD(P)H dehydrogenase regulator (NdhR) controls the expression of genes related to carbon metabolism. Based on genetic and biochemical studies, we report here that 2-PG is an inducer of NdhR, while 2-OG is a corepressor, as found previously. Furthermore, structural analyses indicate that binding of 2-OG at the interface between the two regulatory domains (RD) allows the NdhR tetramer to adopt a repressor conformation, whereas 2-PG binding to an intradomain cleft of each RD triggers drastic conformational changes leading to the dissociation of NdhR from its target DNA. We further confirmed the effect of 2-PG or 2-OG levels on the transcription of the NdhR regulon. Together with previous findings, we propose that NdhR can sense 2-OG from the Krebs cycle and 2-PG from photorespiration, two key metabolites that function together as indicators of intracellular carbon/nitrogen status, thus representing a fine sensor for the coordination of carbon and nitrogen metabolism in cyanobacteria.


Carbon/metabolism , Cyanobacteria/metabolism , Genes, Regulator , NAD(P)H Dehydrogenase (Quinone)/metabolism , Nitrogen/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbon Dioxide/metabolism , Cyanobacteria/genetics , Gene Expression Regulation, Bacterial , Glycolates/metabolism , Ketoglutaric Acids/metabolism , NAD(P)H Dehydrogenase (Quinone)/genetics , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism , Signal Transduction
18.
RNA ; 20(4): 568-79, 2014 Apr.
Article En | MEDLINE | ID: mdl-24563514

RNase E, a central component involved in bacterial RNA metabolism, usually has a highly conserved N-terminal catalytic domain but an extremely divergent C-terminal domain. While the C-terminal domain of RNase E in Escherichia coli recruits other components to form an RNA degradation complex, it is unknown if a similar function can be found for RNase E in other organisms due to the divergent feature of this domain. Here, we provide evidence showing that RNase E forms a complex with another essential ribonuclease-the polynucleotide phosphorylase (PNPase)-in cyanobacteria, a group of ecologically important and phylogenetically ancient organisms. Sequence alignment for all cyanobacterial RNase E proteins revealed several conserved and variable subregions in their noncatalytic domains. One such subregion, an extremely conserved nonapeptide (RRRRRRSSA) located near the very end of RNase E, serves as the PNPase recognition site in both the filamentous cyanobacterium Anabaena PCC7120 and the unicellular cyanobacterium Synechocystis PCC6803. These results indicate that RNase E and PNPase form a ribonuclease complex via a common mechanism in cyanobacteria. The PNPase-recognition motif in cyanobacterial RNase E is distinct from those previously identified in Proteobacteria, implying a mechanism of coevolution for PNPase and RNase E in different organisms.


Cyanobacteria/metabolism , Endoribonucleases/metabolism , Oligopeptides/metabolism , Polyribonucleotide Nucleotidyltransferase/metabolism , RNA, Bacterial/genetics , Amino Acid Sequence , Catalytic Domain , Computational Biology , Cyanobacteria/genetics , Cyanobacteria/growth & development , Endoribonucleases/genetics , Immunoblotting , Molecular Sequence Data , Polyribonucleotide Nucleotidyltransferase/genetics , RNA, Bacterial/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Two-Hybrid System Techniques
19.
BMC Struct Biol ; 12: 1, 2012 Jan 30.
Article En | MEDLINE | ID: mdl-22289274

BACKGROUND: Protein-DNA interactions play a crucial role in the life of biological organisms in controlling transcription, regulation, as well as DNA recombination and repair. The deep understanding of these processes, which requires the atomic description of the interactions occurring between the proteins and their DNA partners is often limited by the absence of a 3D structure of such complexes. RESULTS: In this study, using a method combining sequence homology, structural analogy modeling and biochemical data, we first build the 3D structure of the complex between the poorly-characterized PerR-like regulator Slr1738 and its target DNA, which controls the defences against metal and oxidative stresses in Synechocystis. In a second step, we propose an expanded version of the Slr1738-DNA structure, which accommodates the DNA binding of Slr1738 multimers, a feature likely operating in the complex Slr1738-mediated regulation of stress responses. Finally, in agreement with experimental data we present a 3D-structure of the Slr1738-DNA complex resulting from the binding of multimers of the FUR-like regulator onto its target DNA that possesses internal repeats. CONCLUSION: Using a combination of different types of data, we build and validate a relevant model of the tridimensional structure of a biologically important protein-DNA complex. Then, based on published observations, we propose more elaborated multimeric models that may be biologically important to understand molecular mechanisms.


Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Models, Genetic , Synechocystis/genetics , Transcription, Genetic , Amino Acid Sequence , Bacterial Proteins/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , GC Rich Sequence , Homeostasis/genetics , Iron/metabolism , Molecular Dynamics Simulation , Molecular Sequence Data , Nucleic Acid Conformation , Oxidative Stress/genetics , Protein Multimerization , Protein Structure, Quaternary , Synechocystis/metabolism
20.
Microbiology (Reading) ; 155(Pt 5): 1418-1426, 2009 May.
Article En | MEDLINE | ID: mdl-19383713

Heterocysts, cells specialized in N(2) fixation in cyanobacteria, appeared at near to 2.1 Ga. They constitute one of the oldest forms of differentiated cells in evolution, and are thus an interesting model for studies on evolutionary-developmental biology. How heterocysts arose during evolution remains unknown. In Anabaena PCC 7120, heterocyst development requires, among other genes, hetR for the initiation of heterocyst differentiation, and patS, encoding a diffusible inhibitor of heterocyst formation. In this study, we report that both hetR and patS are widespread among filamentous cyanobacteria that do not form heterocysts or fix N(2). hetR and patS are found in proximity on the chromosome in several cases, such as Arthrospira platensis, in which the level of HetR increased following nitrogen deprivation. The hetR gene of A. platensis could complement a hetR mutant of Anabaena PCC 7120, and patS of A. platensis could suppress heterocyst differentiation in Anabaena PCC 7120. Thus, key regulatory genes, including hetR and patS, involved in heterocyst development may have evolved before heterocysts appeared, suggesting that their function was not limited to heterocyst differentiation.


Bacterial Proteins/metabolism , Cyanobacteria/growth & development , Cyanobacteria/metabolism , Amino Acid Sequence , Anabaena/classification , Anabaena/genetics , Anabaena/growth & development , Anabaena/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cyanobacteria/classification , Cyanobacteria/genetics , Gene Expression Regulation, Bacterial , Molecular Sequence Data , Phylogeny
...