Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Sci Rep ; 14(1): 18971, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152294

RESUMEN

Little is known about the prognostic value of left atrial strain by four-dimensional speckle-tracking echocardiography in end-stage renal disease patients with preserved left ventricular ejection fraction. This prospective study collected clinical and echocardiographic data from 80 stable dialysis patients (mean age 57 ± 10 years; 62.5% men). All patients underwent the dedicated four-dimensional speckle-tracking echocardiography to measure LASr (peak longitudinal strain of reservoir function), LAScd (peak longitudinal strain of conduit function), LASct (peak longitudinal strain of contractile function), LASr_c (peak circumferential strain of reservoir function), LAScd_c (peak circumferential strain of conduit function) and LASct_c (peak circumferential strain of contractile function). These patients were enrolled from August 2021 to August 2023 and followed-up for 19 months (interquartile-range 15 to 20 months). The primary outcome was a composite of all-cause mortality or major adverse cardiovascular events (MACEs). The study patients were classified into event (developed mortality or MACEs) and event-free group according to the primary outcome. Multivariate Cox regression analysis was used to investigate risk factors for all-cause mortality or MACEs. The event group had lower LASr (16.4% vs. 21.2%, P = 0.0003), LASct (8.2% vs. 11.2%, P = 0.01), LASr_c (25.2% vs. 35.0%, P = 0.0004) and LASct_c (14.9% vs. 20.9%, P = 0.001) than the event-free group. Using optimal cut-off value determined by ROC curve, the less LASr (LASr < 18.5%), LASct (LASct < 8.5%), LASr_c (LASr_c < 28.5%), and LASct_c (LASct_c < 17.5%) group had a higher mortality or MACEs rate. Multivariate cox regression analyses revealed that LASr (HR = 0.81, 95% CI [0.17; 0.91], P = 0.0005, per 1% increase) and LASr_c (HR = 0.93, 95% CI [0.87; 0.98], P = 0.01, per 1% increase) were independent predictors of all-cause mortality or MACEs. Less peak longitudinal and circumferential strains of reservoir function are predictive of poor prognosis among end-stage renal disease patients with preserved left ventricular ejection fraction.


Asunto(s)
Ecocardiografía , Volumen Sistólico , Uremia , Humanos , Persona de Mediana Edad , Femenino , Masculino , Pronóstico , Ecocardiografía/métodos , Anciano , Estudios Prospectivos , Uremia/diagnóstico por imagen , Uremia/fisiopatología , Uremia/mortalidad , Atrios Cardíacos/fisiopatología , Atrios Cardíacos/diagnóstico por imagen , Fallo Renal Crónico/fisiopatología , Fallo Renal Crónico/mortalidad , Fallo Renal Crónico/diagnóstico por imagen , Función del Atrio Izquierdo/fisiología , Diálisis Renal
2.
BMC Public Health ; 24(1): 1873, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004719

RESUMEN

BACKGROUND: Organic phosphorus insecticides (OPPs) are a class of environmental pollutants widely used worldwide with potential human health risks. We aimed to assess the association between exposure to OPPs and osteoarthritis (OA) particularly in participants with atherosclerotic cardiovascular disease (ASCVD). METHODS: Participants' information was obtained from data in the National Health and Nutrition Examination (NHANES). Weighted logistic regression models were utilized to detect associations between OPPs metabolites and OA. Restricted cubic spline plots (RCS) were drawn to visualize the dose-response relationship between each metabolite and OA prevalence. Weighted quantile sum (WQS) regression and Bayesian kernel-machine regression (BKMR), were applied to investigate the joint effect of mixtures of OPPs on OA. RESULTS: A total of 6871 samples were included in our study, no significant associations between OPPs exposure and OA incidence were found in whole population. However, in a subset of 475 individuals with ASCVD, significant associations between DMP (odds ratio [OR] as a continuous variable = 1.22, 95% confidence interval [CI]: 1.07,1.28), DEP ((odds ratio [OR] of the highest tertile compared to the lowest = 2.43, 95% confidence interval [CI]: 1.21,4.86), and OA were observed. DMP and DEP showed an increasing dose-response relationship to the prevalence of OA, while DMTP, DETP, DMDTP and DEDTP showed a nonlinear relationship. Multi-contamination modeling revealed a 1.34-fold (95% confidence intervals:0.80, 2.26) higher prevalence of OA in participants with high co-exposure to OPPs compared to those with low co-exposure, with a preponderant weighting (0.87) for the dimethyl dialkyl phosphate metabolites (DMAPs). The BKMR also showed that co-exposure of mixed OPPs was associated with an increased prevalence of OA, with DMP showing a significant dose-response relationship. CONCLUSION: High levels of urine dialkyl phosphate metabolites (DAP) of multiple OPPs are associated with an increased prevalence of OA in patients with ASCVD, suggesting the need to prevent exposure to OPPs in ASCVD patients to avoid triggering OA and further avoid the occurrence of cardiovascular events caused by OA.


Asunto(s)
Exposición a Riesgos Ambientales , Insecticidas , Osteoartritis , Humanos , Femenino , Masculino , Persona de Mediana Edad , Osteoartritis/epidemiología , Exposición a Riesgos Ambientales/efectos adversos , Anciano , Compuestos Organofosforados , Encuestas Nutricionales , Aterosclerosis/epidemiología , Adulto
3.
Circ Res ; 135(5): 596-613, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39056179

RESUMEN

BACKGROUND: Macrophages are key players in obesity-associated cardiovascular diseases, which are marked by inflammatory and immune alterations. However, the pathophysiological mechanisms underlying macrophage's role in obesity-induced cardiac inflammation are incompletely understood. Our study aimed to identify the key macrophage population involved in obesity-induced cardiac dysfunction and investigate the molecular mechanism that contributes to the inflammatory response. METHODS: In this study, we used single-cell RNA-sequencing analysis of Cd45+CD11b+F4/80+ cardiac macrophages to explore the heterogeneity of cardiac macrophages. The CCR2+ (C-C chemokine receptor 2) macrophages were specifically removed by a dual recombinase approach, and the macrophage CCR2 was deleted to investigate their functions. We also performed cleavage under target and tagmentation analysis, chromatin immunoprecipitation-polymerase chain reaction, luciferase assay, and macrophage-specific lentivirus transfection to define the impact of lysozyme C in macrophages on obesity-induced inflammation. RESULTS: We find that the Ccr2 cluster undergoes a functional transition from homeostatic maintenance to proinflammation. Our data highlight specific changes in macrophage behavior during cardiac dysfunction under metabolic challenge. Consistently, inducible ablation of CCR2+CX3CR1+ macrophages or selective deletion of macrophage CCR2 prevents obesity-induced cardiac dysfunction. At the mechanistic level, we demonstrate that the obesity-induced functional shift of CCR2-expressing macrophages is mediated by the CCR2/activating transcription factor 3/lysozyme 1/NF-κB (nuclear factor kappa B) signaling. Finally, we uncover a noncanonical role for lysozyme 1 as a transcription activator, binding to the RelA promoter, driving NF-κB signaling, and strongly promoting inflammation and cardiac dysfunction in obesity. CONCLUSIONS: Our findings suggest that lysozyme 1 may represent a potential target for the diagnosis of obesity-induced inflammation and the treatment of obesity-induced heart disease.


Asunto(s)
Macrófagos , Muramidasa , Obesidad , Receptores CCR2 , Animales , Obesidad/complicaciones , Obesidad/metabolismo , Macrófagos/metabolismo , Receptores CCR2/metabolismo , Receptores CCR2/genética , Ratones , Muramidasa/metabolismo , Muramidasa/genética , Ratones Endogámicos C57BL , Masculino , Ratones Noqueados , Transducción de Señal , Inflamación/metabolismo , Inflamación/genética , Cardiopatías/etiología , Cardiopatías/metabolismo , Cardiopatías/genética
4.
Biochem Genet ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836961

RESUMEN

Panax japonicus Meyer, a perennial herb of the dicotyledonaceae family Araliaceae, is a rare folk traditional Chinese medicine, known as "the king of herbal medicine" in China. To understand the genes involved in secondary pathways under drought and salt stress, the transcriptomic analysis of P. japonicus is of vital importance. The transcriptome of underground rhizomes, stems, and leaves under drought and salt stress in P. japonicus were performed using the Illumina HiSeq platform. After de novo assembly of transcripts, expression profiling and identified differentially expressed genes (DEGs) were performed. Furthermore, putative functions of identified DEGs correlated with ginsenoside in P. japonicus were explored using Gene Ontology terms and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analysis. A total of 221,804 unigenes were obtained from the transcriptome of P. japonicus. The further analysis revealed that 10,839 unigenes were mapped to 91 KEGG pathways. Furthermore, a total of two metabolic pathways of P. japonicus in response to drought and salt stress related to triterpene saponin synthesis were screened. The sesquiterpene and triterpene metabolic pathways were annotated and finally putatively involved in ginsenoside content and correlation analysis of the expression of these genes were analyzed to identify four genes, ß-amyrin synthase, isoprene synthase, squalene epoxidase, and 1-deoxy-D-ketose-5-phosphate synthase, respectively. Our results paves the way for screening highly expressed genes and mining genes related to triterpenoid saponin synthesis. It also provides valuable references for the study of genes involved in ginsenoside biosynthesis and signal pathway of P. japonicus.

5.
Sci Total Environ ; 926: 171717, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38490419

RESUMEN

Oxidation technologies based on peroxymonosulfate (PMS) have been effectively used for the remediation of soil organic pollutants due to their high efficiency. However, the effects of advanced PMS-based oxidation technologies on other soil pollutants, such as heavy metals, remain unknown. In this study, changes in the form of heavy metals in soil after using PMS and the risk of pollution to the ecological environment were investigated. Furthermore, two risk assessment methods, the mung bean germination toxicity test and groundwater leaching soil column test, were employed to evaluate the soil before and after PMS treatment. The results showed that PMS has a strong ability to degrade complex compounds, enabling the transformation of heavy metals, such as Cd, Pb, and Zn, from stable to active states in the soil. The risk assessments showed that PMS treatment activated heavy metals in the soil, which delayed the growth of plants, increased heavy metal content in plant tissues and the risk of groundwater pollution. These findings provide a new perspective for understanding the effects of PMS on soil, thus facilitating the sustained and reliable development of future research in the field of advanced oxidation applied to soil treatment.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Suelo , Metales Pesados/toxicidad , Metales Pesados/análisis , Peróxidos , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Plantas , Medición de Riesgo , China , Monitoreo del Ambiente/métodos
6.
Front Immunol ; 15: 1333086, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38504994

RESUMEN

Osteoporosis is a common chronic metabolic bone disorder. Recently, increasing numbers of studies have demonstrated that Toll-like receptor 4 (TLR4, a receptor located on the surface of osteoclasts and osteoblasts) plays a pivotal role in the development of osteoporosis. Herein, we performed a comprehensive review to summarize the findings from the relevant studies within this topic. Clinical data showed that TLR4 polymorphisms and aberrant TLR4 expression have been associated with the clinical significance of osteoporosis. Mechanistically, dysregulation of osteoblasts and osteoclasts induced by abnormal expression of TLR4 is the main molecular mechanism underlying the pathological processes of osteoporosis, which may be associated with the interactions between TLR4 and NF-κB pathway, proinflammatory effects, ncRNAs, and RUNX2. In vivo and in vitro studies demonstrate that many promising substances or agents (i.e., methionine, dioscin, miR-1906 mimic, artesunate, AEG-1 deletion, patchouli alcohol, and Bacteroides vulgatus) have been able to improve bone metabolism (i.e., inhibits bone resorption and promotes bone formation), which may partially attribute to the inhibition of TLR4 expression. The present review highlights the important role of TLR4 in the clinical significance and the pathogenesis of osteoporosis from the aspects of inflammation and immunity. Future therapeutic strategies targeting TLR4 may provide a new insight for osteoporosis treatment.


Asunto(s)
Osteoporosis , Receptor Toll-Like 4 , Humanos , Receptor Toll-Like 4/metabolismo , Osteoclastos/metabolismo , Remodelación Ósea , Osteoporosis/metabolismo , Inflamación/metabolismo
7.
Quant Imaging Med Surg ; 14(2): 1904-1915, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38415116

RESUMEN

Background: The hepatocyte phase (HCP) in gadoxetic acid disodium (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) plays an important role in the detection and characterization of liver lesions, treatment planning, and liver function evaluation. However, the imaging protocol is complicated and time-consuming. This cross-sectional study aimed to develop a convenient and reproducible protocol for the HCP acquisition in Gd-EOB-DTPA-enhanced MRI. Methods: A total of 107 patients were prospectively included and assigned to three groups based on Child-Pugh (CP) classification, with 37, 40, and 30 in the non-cirrhosis, CP A, and CP B groups, respectively. Dynamic HCPs were acquired every 5 min after the Gd-EOB-DTPA administration and ended in 25 min in non-cirrhosis patients and 40 min in cirrhotic patients. The HCP acquired 5 min after the initial visualization of the intrahepatic bile duct (IBD) was selected from the dynamic HCPs as the adequate HCP (HCPproposed) and the corresponding acquisition time was recorded as Timeproposed. In addition, according to the 2016 Expert Consensus (EC) on the definition of the adequate HCP from the European Society of Gastrointestinal and Abdominal Radiology (ESGAR), the adequate HCPEC and the corresponding TimeEC were also determined from the dynamic HCPs. The hepatic relative enhancement ratio (RER), the contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR) of hepatic focal lesions in the HCPEC and HCPproposed images, as well as the TimeEC and Timeproposed were compared by the paired t-test for the three groups, respectively. Inter-observer agreement of the determination of the HCPEC and HCPproposed was compared by the χ2 test. Results: The RER, CNR, and SNR showed no significant difference between the HCPEC and HCPproposed in all three groups (all P>0.05). The paired differences between TimeEC and Timeproposed were 1.08±3.56 min (P=0.07), 2.88±4.22 min (P<0.001), and 5.83±5.27 min (P<0.001) in the three groups, respectively. Inter-observer agreement of the determination of the HCPEC and HCPproposed were 0.804 (86/107) and 0.962 (103/107), respectively (χ²=13.09, P=0.001). Conclusions: The adequate HCP could be acquired 5 min after the initial visualization of the IBD, which could serve as a convenient and reproducible protocol for the HCP imaging.

8.
Science ; 383(6683): 586-587, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38330127

RESUMEN

A design strategy overcomes the strength-ductility trade-off in alloy manufacturing.

9.
J Anim Ecol ; 93(1): 45-56, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37970633

RESUMEN

Microplastics can be ingested by a wide range of aquatic animals. Extensive studies have demonstrated that microplastic ingestion-albeit often not lethal-can affect a range of species life-history traits. However, it remains unclear how the sublethal effects of microplastics on individual levels scale up to influence ecosystem-level dynamics through cascading trophic interactions. Here we employ a well-studied, empirically fed three-species trophic chain model, which was parameterized to mimic a common type of aquatic ecosystems to examine how microplastic ingestion by fish on an intermediate trophic level can produce cascading effects on the species at both upper and lower trophic levels. We show that gradually increasing microplastics in the ingested substances of planktivorous fish may cause population structure effects such as skewed size distributions (i.e. reduced average body length vs. increased maximal body size), and induce abrupt declines in fish biomass and reproduction. Our model analysis demonstrates that these abrupt changes correspond to an ecosystem-level tipping point, crossing which difficult-to-reverse ecosystem degradation can happen. Importantly, microplastic pollution may interact with other anthropogenic stressors to reduce safe operating space of aquatic ecosystems. Our work contributes to better understanding complex effects of microplastic pollution and anticipating tipping points of aquatic ecosystems in a changing world. It also calls attention to an emerging threat that novel microplastic contaminants may lead to unexpected and abrupt degradation of aquatic ecosystems, and invites systematic studies on the ecosystem-level consequences of microplastic exposure.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Ecosistema , Plásticos/efectos adversos , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Peces , Ingestión de Alimentos
10.
J Biomed Opt ; 28(12): 126003, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38098981

RESUMEN

Significance: Postoperative surgical wound infection is a serious problem around the globe, including in countries with advanced healthcare systems, and a method for early detection of infection is urgently required. Aim: We explore spatial frequency domain imaging (SFDI) for distinguishing changes in surgical wound healing based on the tissue scattering properties and surgical wound width measurements. Approach: A comprehensive numerical method is developed by applying a three-dimensional Monte Carlo simulation to a vertical heterogeneous wound model. The Monte Carlo simulation results are validated using resin phantom imaging experiments. Results: We report on the SFDI lateral resolution with varying reduced scattering value and wound width and discuss the partial volume effect at the sharp vertical boundaries present in a surgical incision. The detection sensitivity of this method is dependent on spatial frequency, wound reduced scattering coefficient, and wound width. Conclusions: We provide guidelines for future SFDI instrument design and explanation for the expected error in SFDI measurements.


Asunto(s)
Herida Quirúrgica , Humanos , Método de Montecarlo , Diagnóstico por Imagen , Simulación por Computador , Fantasmas de Imagen
11.
Exp Ther Med ; 26(5): 513, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37840569

RESUMEN

Forkhead box D1 (FOXD1) expression is upregulated in various types of human cancer. To the best of our knowledge, the roles of FOXD1 in prostate cancer (PC) remain largely unknown. The Cancer Genome Atlas dataset was used for the bioinformatics analysis of FOXD1 in PC. FOXD1 expression levels in normal immortalized human prostate epithelial cells (RWPE-1) and prostate cancer cells were detected by reverse transcription-quantitative PCR. PC cell viability was detected using Cell Counting Kit-8 assay. Transwell assays were performed to assess the migration and invasion of PC cells. Luciferase reporter gene assay was used to validate the association between FOXD1 and lamin (LMN)B1. LMNB1 is an important part of the cytoskeleton, which serves an important role in the process of tumor occurrence and development, regulating apoptosis and DNA repair. FOXD1 expression was upregulated in PC tissues, with its high expression being associated with clinical stage and survival in PC. Knockdown of FOXD1 inhibited viability, migration and invasion of PC cells. FOXD1 positively regulated LMNB1 expression. The effect of FOXD1 knockdown on PC cells was reversed by LMNB1 overexpression. In conclusion, FOXD1, positively regulated by LMNB1, served as an oncogene in PC and may be a potential biomarker and treatment target for PC.

12.
Ren Fail ; 45(1): 2183726, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37723077

RESUMEN

OBJECTIVES: Metformin is an antidiabetic agent that is used as the first-line treatment of type 2 diabetes mellitus. Gallic acid is a type of phenolic acid that has been shown to be a potential drug candidate to treat diabetic kidney disease, an important complication of diabetes. We aimed to test whether a combination of gallic acid and metformin can exert synergetic effect on diabetic kidney disease in diabetic mice model. METHODS: Streptozotocin (65 mg/kg) intraperitoneal injection was used to induce diabetic kidney disease in mice. The diabetic mice were treated with saline (Vehicle), gallic acid (GA) (30 mg/kg), metformin (MET) (200 mg/kg), or the combination of gallic acid (30 mg/kg) and metformin (200 mg/kg) (GA + MET). RESULTS: Our results demonstrated that compared to the untreated diabetic mice, all three strategies (GA, MET, and GA + MET) exhibited various effects on improving renal morphology and functions, reducing oxidative stress in kidney tissues, and restoring AMP-activated protein kinase (AMPK)/silent mating type information regulation 2 homolog 1 (SIRT1) signaling in kidney tissues of diabetic mice. Notably, the combination strategy (GA + MET) provided the most potent renal protection effects than any single strategies (GA or MET). CONCLUSION: Our results support the hypothesis that gallic acid might serve as a potential supplement to metformin to enhance the therapeutical effect of metformin.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Metformina , Animales , Ratones , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/etiología , Metformina/farmacología , Ácido Gálico/farmacología , Ácido Gálico/uso terapéutico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico
13.
Heliyon ; 9(8): e18651, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37636362

RESUMEN

Keloids, a pathological scar that is induced by the consequence of aberrant wound healing, is still a major global health concern for its unsatisfactory treatment outcomes. HIF-1α, a main regulator of hypoxia, mainly acts through some proteins or signaling pathways and plays important roles in a variety of biological processes. Accumulating evidence has shown that HIF-1α played a crucial role in the process of keloid formation. In this review, we attempted to summarize the current knowledge on the association between HIF-1α expression and the development and progression of keloids. Through a comprehensive analysis, the molecular mechanisms underlying HIF-1α in keloids were shown to be correlated to the proliferation of fibroblasts, angiogenesis, and collagen deposits. The affected proteins and the signaling pathways were multiple. For instance, HIF-1α was reported to promote keloids formation by enhancing angiogenesis, fibroblast proliferation, and collagen deposition through the activation of periostin PI3K/Akt, TGF-ß/Smad and TLR4/MyD88/NF-κB pathway. However, the specific effects of HIF-1α on keloids keloid illnesses in clinical practice is are entirely unclear, and further studies in clinical trials are still warranted. Therefore, an in-depth understanding of the biological mechanisms of HIF-1α in keloid formation is significant to develop promising therapeutic targets for the treatment of keloids in clinical practice.

14.
Materials (Basel) ; 16(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37445064

RESUMEN

It is well known that the development of lightweight alloys with improved comprehensive performance and application value are the future development directions for the ultra-high-strength 7xxx series Al-Zn-Mg-Cu alloys used in the aircraft field. As the lightest metal element in nature, lithium (Li) has outstanding advantages in reducing the density and increasing the elastic modulus in aluminum alloys, so Al-Zn-Mg-Cu alloys containing Li have gained widespread attention. Furthermore, since the Al-Zn-Mg-Cu alloy is usually strengthened by aging treatment, it is crucial to understand how Li addition affects its aging precipitation process. As such, in this article, the effects and mechanism of Li on the aging precipitation behavior and the impact of Li content on the aging precipitation phase of Al-Zn-Mg-Cu alloys are briefly reviewed, and the influence of Li on the service properties, including mechanical properties, wear resistance, and fatigue resistance, of Al-Zn-Mg-Cu alloys are explained. In addition, the corresponding development prospects and challenges of the Al-Zn-Mg-Cu-Li alloy are also proposed. This review is helpful to further understand the role of Li in Al-Zn-Mg-Cu alloys and provides a reference for the development of high-strength aluminum alloys containing Li with good comprehensive properties.

15.
Adv Mater ; 35(38): e2303439, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37279880

RESUMEN

Platinum-based electrocatalysts possess high water electrolysis activity and are essential components for hydrogen evolution reaction (HER). A major challenge, however, is how to break the cost-efficiency trade-off. Here, a novel defect engineering strategy is presented to construct a nanoporous (FeCoNiB0.75 )97 Pt3 (atomic %) high-entropy metallic glass (HEMG) with a nanocrystalline surface structure that contains large amounts of lattice distortion and stacking faults to achieve excellent electrocatalytic performance using only 3 at% of Pt. The defect-rich HEMG achieves ultralow overpotentials at ampere-level current density of 1000 mA cm-2 for HER (104 mV) and oxygen evolution reaction (301 mV) under alkaline conditions, while retains a long-term durability exceeding 200 h at 100 mA cm-2 . Moreover, it only requires 81 and 122 mV to drive the current densities of 1000 and 100 mA cm-2 for HER under acidic and neutral conditions, respectively. Modelling results reveal that lattice distortion and stacking fault defects help to optimize atomic configuration and modulate electronic interaction, while the surface nanoporous architecture provides abundant active sites, thus synergistically contributing to the reduced energy barrier for water electrolysis. This defect engineering approach combined with a HEMG design strategy is expected to be widely applicable for development of high-performance alloy catalysts.

16.
Biomed Res Int ; 2023: 9298728, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36874926

RESUMEN

Objective: The aim of the study was to explore the potential mechanism of Zanthoxylum bungeanum in the treatment of diabetes mellitus (DM) using network pharmacology. Methods: The DrugBank database and TCMSP platform were used to search for the main chemical components and their targets of Zanthoxylum bungeanum, and the genes related to diabetes mellitus were obtained from the genecards database. Import the data into the Venny 2.1.0 platform for intersection analysis to obtain the Zanthoxylum bungeanum-DM-gene dataset. The protein-protein interaction (PPI) analysis of Zanthoxylum bungeanum-DM gene was performed using the String data platform, and the visualization and network topology analysis were performed using Cytoscape 3.8.2. The KEGG pathway enrichment and biological process of GO enrichment analysis were carried out using the David platform. The active ingredients and key targets of Zanthoxylum bungeanum were molecularly docked to verify their biological activities by using Discovery Studio 2019 software. Zanthoxylum bungeanum was extracted and isolated by ethanol and dichloromethane. HepG2 cells were cultured, and cell viability assay was utilized to choose the suitable concentration of Zanthoxylum bungeanum extract (ZBE). The western blot assay was used for measuring the expression of AKT1, IL6, HSP90AA1, FOS, and JUN proteins in HepG2 cells. Results: A total of 5 main compounds, 339 targets, and 16656 disease genes were obtained and retrieved, respectively. A total of 187 common genes were screened, and 20 core genes were finally obtained after further screening. The antidiabetic active ingredients of Zanthoxylum bungeanum are kokusaginin, skimmianin, diosmetin, beta-sitosterol, and quercetin, respectively. The main targets for its antidiabetic effect are AKT1, IL6, HSP90AA1, FOS, and JUN, respectively. GO enrichment analysis revealed that the biological process of Zanthoxylum bungeanum and DM is related to a positive regulation of gene expression, positive regulation of transcription, positive regulation of transcription from RNA polymerase II promoter, response to drug, positive regulation of apoptotic process, and positive regulation of cell proliferation, etc. KEGG enrichment analysis revealed that common biological pathways mainly including the phospholipase D signaling pathway, MAPK signaling pathway, beta-alanine metabolism, estrogen signaling pathway, PPAR signaling pathway, and TNF signaling pathway. Molecular docking results showed that AKT1 with beta-sitosterol and quercetin, IL-6 with diosmetin and skimmianin, HSP90AA1 with diosmetin and quercetin, FOS with beta-sitosterol and quercetin, and JUN with beta-sitosterol and diosmetin have relatively strong binding activity, respectively. Experiment verification results showed that DM could be significantly improved by downregulating the expression of AKT1, IL6, HSP90AA1, FOS, and JUN proteins after being treated at concentrations of 20 µmol/L and 40 µmol/L of ZBE. Conclusion: The active components of Zanthoxylum bungeanum mainly including kokusaginin, skimmianin, diosmetin, beta-sitosterol, and quercetin. The therapeutic effect of Zanthoxylum bungeanum on DM may be achieved by downregulating core target genes including AKT1, IL6, HSP90AA1, FOS, and JUN, respectively. Zanthoxylum bungeanum is an effective drug in treatment of DM related to the above targets.


Asunto(s)
Diabetes Mellitus , Zanthoxylum , Quercetina , Farmacología en Red , Simulación del Acoplamiento Molecular , Interleucina-6 , Hipoglucemiantes
17.
BMC Surg ; 23(1): 46, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36855117

RESUMEN

BACKGROUND: Dynesys stabilization (DS) is utilized to preserve mobility at the instrumental segments and prevent adjacent segment pathology in clinical practice. However, the advantages of DS method in medium and long-term follow-up remain controversial. OBJECTIVE: To compare the radiographic and clinical outcomes between DS and instrumented fusion in the treatment of degenerative lumbar spine disease with or without grade I spondylolisthesis with a minimum follow-up period of 2 years. METHODS: We conducted a comprehensive search of PubMed, EMBASE, Cochrane, and Web of Science databases, Chinese National Knowledge Databases, and Wanfang Database for potentially eligible articles. Clinical outcomes were assessed in terms of VAS and ODI scores, screw loosening and breakage, and surgical revision. Radiographic outcomes were assessed in terms of postoperative range of movement (ROM) and disc heigh. Moreover, adjacent segment degeneration (ASDeg) and adjacent segment disease (ASDis) were evaluated. RESULTS: Seventeen studies with 1296 patients were included in the meta-analysis. The DS group was associated with significantly lower postoperative VAS scores for low-back and leg pain, and lower rate of surgical revision than the fusion group. Moreover, the Dynesys group showed significantly less ASDeg than the fusion group but showed no significant advantage over the fusion group in terms of preventing ASDis. Additionally, the ROM at the stabilized segments of the fusion group decreased significantly and that at the adjacent segments increased significantly compared with those of the DS group. CONCLUSION: DS showed comparable clinical outcomes and provided benefits in preserving the motion at the stabilized segments, thus limiting the hypermobility at the adjacent segments and preventing ASDeg compared with the fusion method in degenerative disease with or without grade I spondylolisthesis.


Asunto(s)
Espondilolistesis , Humanos , Tornillos Óseos , Bases de Datos Factuales , Reoperación , Espondilolistesis/diagnóstico por imagen , Espondilolistesis/cirugía , Fusión Vertebral
19.
J Hazard Mater ; 448: 130874, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36716559

RESUMEN

Membrane separation and sulfate radicals-based advanced oxidation processes (SR-AOPs) can be combined as an efficient technique for the elimination of organic pollutants. The immobilization of metal oxide catalysts on ceramic membranes can enrich the membrane separation technology with catalytic oxidation avoiding recovering suspended catalysts. Herein, nanostructured Co3O4 ceramic catalytic membranes with different Co loadings were fabricated via a simple ball-milling and calcination process. Uniform distribution of Co3O4 nanoparticles in the membrane provided sufficient active sites for catalytic oxidation of 4-hydroxybenzoic acid (HBA). Mechanistic studies were conducted to determine the reactive radicals and showed that both SO4•- and •OH were present in the catalytic process while SO4•- plays the dominant role. The anti-fouling performance of the composite Co@Al2O3 membranes was also evaluated, showing that a great flux recovery was achieved with the addition of PMS for the fouling caused by humic acid (HA).

20.
J Anim Ecol ; 92(2): 367-376, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36062409

RESUMEN

The relationship between biodiversity and ecosystem functions (BEFs) has attracted great interest. Studies on BEF have so far focused on the average trend of ecosystem function as species diversity increases. A tantalizing but rarely addressed question is why large variations in ecosystem functions are often observed across systems with similar species diversity, likely obscuring observed BEFs. Here we use a multi-trophic food web model in combination with empirical data to examine the relationships between species richness and the variation in ecosystem functions (VEFs) including biomass, metabolism, decomposition, and primary and secondary production. We then probe the mechanisms underlying these relationships, focusing on the role of trophic interactions. While our results reinforce the previously documented positive BEF relationships, we found that ecosystem functions exhibit significant variation within each level of species richness and the magnitude of this variation displays a hump-shaped relationship with species richness. Our analyses demonstrate that VEFs is reduced when consumer diversity increases through elevated nonlinearity in trophic interactions, and/or when the diversity of basal species such as producers and decomposers decreases. This explanation is supported by a 34-year empirical food web time series from the Gulf of Riga ecosystem. Our work suggests that biodiversity loss may not only result in ecosystem function decline, but also reduce the predictability of functions by generating greater function variability among ecosystems. It thus helps to reconcile the debate on the generality of positive BEF relationships and to disentangle the drivers of ecosystem stability. The role of trophic interactions and the variation in their strengths mediated by functional responses in shaping ecosystem function variation warrants further investigations and better incorporation into biodiversity-ecosystem functioning research.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Cadena Alimentaria , Biomasa , Estado Nutricional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA