Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Bull (Beijing) ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38880682

RESUMEN

The water-energy nexus has garnered worldwide interest. Current dual-functional research aimed at co-producing freshwater and electricity faces significant challenges, including sub-optimal capacities ("1 + 1 < 2"), poor inter-functional coordination, high carbon footprints, and large costs. Mainstream water-to-electricity conversions are often compromised owing to functionality separation and erratic gradients. Herein, we present a sustainable strategy based on renewable biomass that addresses these issues by jointly achieving competitive solar-evaporative desalination and robust clean electricity generation. Using hydrothermally activated basswood, our solar desalination exceeded the 100% efficiency bottleneck even under reduced solar illumination. Through simple size-tuning, we achieved a high evaporation rate of 3.56 kg h-1 m-2 and an efficiency of 149.1%, representing 128%-251% of recent values without sophisticated surface engineering. By incorporating an electron-ion nexus with interfacial Faradaic electron circulation and co-ion-predominated micro-tunnel hydrodynamic flow, we leveraged free energy from evaporation to generate long-term electricity (0.38 W m-3 for over 14d), approximately 322% of peer performance levels. This inter-functional nexus strengthened dual functionalities and validated general engineering practices. Our presented strategy holds significant promise for global human-society-environment sustainability.

2.
Water Res ; 226: 119318, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36369687

RESUMEN

Unlocking the antibacterial potential is an emerging strategy to valorizing the toxic wastewater from hydrothermal liquefaction (HTL). Here, we investigated the response and biological mechanism of antibacterial properties of HTL wastewater. Four different biowastes i.e. microalgae, cornstalk, cow manure and swine manure were used as the feedstock of HTL to create wastewater with diverse molecule spectrum, whereas ten strains i.e. five gram-positive strains and five gram-negative strains were employed to represent typical pathogenic microorganism. HTL wastewater exhibited antibacterial potential and obvious reduction on cell viability at high inclusion ratio, although the minimum inhibitory concentration (MIC) and cell response intensity varied depending on different HTL feedstocks and strain species. The decreased ATP generation and increased H2O2 accumulation in treated cells further confirmed the inhibition of HTL wastewater on the cell metabolism. The antibacterial mechanism of HTL wastewater was confirmed, including damage to biomolecules or membranes, depletion of crucial components, disruption of metabolic circuits and imbalance of creation of redox cofactor. The complex compounds in HTL wastewater were probably attributed to the multiple inhibition pathways and the relationship among those multiple pathways was speculated. The present study contributes to the mechanism analysis of complex compound mixture and bactericide characteristics of HTL wastewater.


Asunto(s)
Microalgas , Aguas Residuales , Animales , Porcinos , Aguas Residuales/análisis , Estiércol , Peróxido de Hidrógeno/análisis , Antibacterianos/farmacología , Biocombustibles/análisis , Temperatura , Biomasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...