Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 41
1.
J Hazard Mater ; 474: 134812, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38850950

The effective detoxification and removal of arsenite (As(III)) has been widely concerned because of its strong toxicity and migration ability. In this study, we designed a layered double hydroxide-supported polyacrylate stabilized ferrous sulfide composite (PAA/FeS@LDH) and coupled it with UV excitation to purify As(III)-polluted water. The removal efficiency of As(III) under UV irradiation reached almost 100% in 120 min, and the first-order kinetic constant was 3.12 orders of magnitude higher than under dark. UV irradiation significantly accelerated the oxidation and detoxification of As(III) at the interface of PAA/FeS@LDH and treatment solution. It is attributable to the generation of reactive oxygen species (ROS) intermediates, including .O2-, .OH, and SO4.- under UV irradiation, because of the presence of the photogenerated electron-hole pairs and iron valence states cycles. Importantly, .O2- may be rapidly captured and oxidized to 1O2 on the surface of PAA/FeS@LDH that is also an important contributor to the oxidation removal of As(III). Noticeably, As(III) concentrations in the real water were rapidly reduced to below the guideline limitation of drinking water (10 µg/L) within 20 min under UV irradiation. Our outcomes provide a novel photoexcitation treatment system for the efficient detoxification and removal of As from actual wastewater.

2.
Sci Total Environ ; 937: 173370, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38772489

To innovate the design of water treatment technology for algal toxin removal, this research investigated the mechanisms of cyanotoxin microcystin-LR (MC-LR) removal by a coupled adsorption-biodegradation. Eight types of woody carbonaceous adsorbents with and without Sphingopyxis sp. m6, a MC-LR degrading bacterium, were tested for MC-LR removal in water. All adsorbents showed good adsorption capability, removing 40 % to almost 100 % of the MC-LR (4.5 mg/L) within 48 h in batch experiments. Adding Sphingopyxis sp. m6 continuously promoted MC-LR biological removal, and successfully broke the barrier of adsorption capacity of tested adsorbents, removing >90 % of the MC-LR in most of the coupled adsorption-biodegradation tests, especially for those adsorbents had low physiochemical adsorption capacity. Variance partitioning analysis indicated that mesopore was the dominant contributor to adsorption capacity of MC-LR in pure adsorption treatments, which acted synergistically with electrical conductivity, polarity and total functional groups on the absorbent. Pore structure was the key factor beneficial for the growth of Sphingopyxis sp. m6 (51% contribution) and subsequent MC-LR biological removal rate (80 % contribution). Overall, pinewood-based carbonaceous adsorbents (especially pinewood activated carbon) exhibited the highest adsorption capacity towards MC-LR and provided the most favorable conditions for biological removal of MC-LR, largely because of their high mesopore volume, total functional groups and electric conductivity. The research outcomes not only deepened the quantitative understanding of mechanisms for MC-LR removal by the coupled process, but also provided theoretical basis for future materials' selection and modification during the practical application of coupled process.


Biodegradation, Environmental , Marine Toxins , Microcystins , Water Pollutants, Chemical , Water Purification , Microcystins/metabolism , Microcystins/chemistry , Adsorption , Water Purification/methods , Sphingomonadaceae/metabolism
3.
Ecol Lett ; 27(1): e14343, 2024 Jan.
Article En | MEDLINE | ID: mdl-38069561

The Anthropocene's human-dominated habitat expansion endangers global biodiversity. However, large mammalian herbivores experienced few extinctions during the 20th century, hinting at potentially overlooked ecological responses of a group sensitive to global change. Using dental microwear as a proxy, we studied large herbivore dietary niches over a century across mainland China before (1880s-1910s) and after (1970s-1990s) the human population explosion. We uncovered widespread and significant shifts (interspecific microwear differences increased and intraspecific microwear dispersion expanded) within dietary niches linked to geographical areas with rapid industrialization and population growth in eastern China. By contrast, in western China, where human population growth was slower, we found no indications of shifts in herbivore dietary niches. Further regression analysis links the intensity of microwear changes to human land-use expansion. These analyses highlight dietary adjustments of large herbivores as a likely key factor in their adaptation across a century of large-scale human-driven changes.


Herbivory , Mammals , Animals , Humans , Ecosystem , Biodiversity , China
4.
Opt Lett ; 48(20): 5415-5418, 2023 Oct 15.
Article En | MEDLINE | ID: mdl-37831881

A cascading Brillouin random fiber laser with a dual pump (DP-CBRFL) is proposed and demonstrated. The DP-CBRFL can improve the Brillouin gain significantly to achieve an ultra-narrow linewidth (95.5 Hz) with 200 mW pump power, due to two cascading Brillouin gain fibers with an identical Brillouin frequency shift. Compared with the general Brillouin random fiber laser, the proposed random fiber laser has a more stable Brillouin gain spectrum and a lower mode density, which makes it have a lower intensity noise and frequency noise, especially in the low-frequency range. Meanwhile, it exhibits a high slope efficiency of 28% even if the pump power has reached 1.1 W due to the strong suppression ability of the high-order Stokes light.

5.
ACS ES T Water ; 3(9): 3044-3056, 2023 Sep 08.
Article En | MEDLINE | ID: mdl-37705994

Microcystin-LR (MC-LR), the most common algal toxin in freshwater, poses an escalating threat to safe drinking water. This study aims to develop an engineered biofiltration system for water treatment, employing a composite of poly(diallyldimethylammonium chloride)-biochar (PDDA-BC) as a filtration medium. The objective is to capture MC-LR selectively and quickly from water, enabling subsequent biodegradation of toxin by bacteria embedded on the composite. The results showed that PDDA-BC exhibited a high selectivity in adsorbing MC-LR, even in the presence of competing natural organic matter and anions. The adsorption kinetics of MC-LR was faster, and capacity was greater compared to traditional adsorbents, achieving a capture rate of 98% for MC-LR (200 µg/L) within minutes to tens of minutes. Notably, the efficient adsorption of MC-LR was also observed in natural lake waters, underscoring the substantial potential of PDDA-BC for immobilizing MC-LR during biofiltration. Density functional theory calculations revealed that the synergetic effects of electrostatic interaction and π-π stacking predominantly contribute to the adsorption selectivity of MC-LR. Furthermore, experimental results validated that the combination of PDDA-BC with MC-degrading bacteria offered a promising and effective approach to achieve a sustainable removal of MC-LR through an "adsorption-biodegradation" process.

6.
J Food Sci ; 88(6): 2536-2556, 2023 Jun.
Article En | MEDLINE | ID: mdl-37125946

The non-Newtonian fluid-solid interaction food has complex physical properties and complicated contact force, which brings the greater technical challenge to improving the food fetching rate. In this work, we used the smooth particle hydrodynamics and finite element coupling method for a node-to-surface penalty function contact to characterize the contact forces between non-Newtonian fluid food and solid foods. The shear rheological properties and density of non-Newtonian fluid food, including xanthan gum (XG) and guar gum (GG), were investigated by a viscometer and densitometer, respectively. The results showed that the shear viscosity of non-Newtonian fluid food depends to some extent on the mass ratio of the thickening gums. We investigated the effects of the end-effector with different fetching velocities and different inclination angles, and the nut root powder paste (NRPP) food with different ratios of XG and GG, on the fetching rate, stress-strain, and motion behavior. The results showed that the stress increased with increasing v1 and w; however, the v2 had less effect on the stress. The sparseness of the distribution of solid food was related to the v1 and w, whereas it was less influenced by the v2 . The distribution of solid food became denser in the X-Z plane and sparser in the X-Y plane with increasing inclination angle. The motion behavior of viscoelastic solid foods depended on the mass ratio of XG to GG dissolved in NRPP. The present work can provide a theoretical foundation for meal-assisting robots and robots in the field of food engineering with the task of improving the food fetching rate.


Viscosity , Rheology
7.
Opt Express ; 31(5): 8152-8159, 2023 Feb 27.
Article En | MEDLINE | ID: mdl-36859931

In a photon-counting fiber Bragg grating (FBG) sensing system, a shorter probe pulse width reaches a higher spatial resolution, which inevitably causes a spectrum broadening according to the Fourier transform theory, thus affecting the sensitivity of the sensing system. In this work, we investigate the effect of spectrum broadening on a photon-counting FBG sensing system with a dual-wavelength differential detection method. A theoretical model is developed, and a proof-of-principle experimental demonstration is realized. Our results give a numerical relationship between the sensitivity and spatial resolution at the different spectral widths of FBG. In our experiment, for a commercial FBG with a spectral width of 0.6 nm, an optimal spatial resolution of 3 mm and a corresponding sensitivity of 2.03 nm-1 can be achieved.

8.
Animals (Basel) ; 12(21)2022 Nov 07.
Article En | MEDLINE | ID: mdl-36359183

Comprehension of whether human and livestock presence affects wildlife activity is a prerequisite for the planning and management of humans and livestock in protected areas. Xinglong Mountain Nature Reserve (XMNNR) in northwest China, as a green island in a semi-arid mountain ecosystem, is one of the scattered and isolated areas for Alpine musk deer (AMD), an endangered species. AMD cohabits their latent habitat area with foraging livestock and humans. Hence, habitat management within and outside the distribution areas is crucial for the effective conservation of AMD. We applied camera traps to a dataset of 2 years (September 2018-August 2020) to explore seasonal activity patterns and habitat use and assess the impacts of AMD habits in XMNNR. We investigated AMD responses to livestock grazing and human activities and provided effective strategies for AMD conservation. We applied MaxENT modeling to predict the distribution size under current conditions. The activity patterns of the AMD vary among seasons. The optimum habitat average distance to cultivated land ranges of AMD (150~3300 m during grass period/100~3200 m during withered grass period), distances to the residential area ranges (500~5700 m during the grass period/1000~5300 m during the withered grass period), elevation ranges (2350~3400 m during the grass period/2360~3170 m during the withered grass period), aspect ranges (0~50° and 270~360°), normalized vegetation index ranges (0.64~0.72 during the grass period/0.14~0.60 during the withered grass period), and land cover types (forest, shrub, and grassland). Results present that the predicted distributions of AMD were not confined to the areas reported but also covered other potential areas. The results provide evidence of strong spatial-temporal avoidance of AMD in livestock, but gradually adjusting to human activities. These camera trap datasets may open new opportunities for species conservation in much wider tracts, such as human-dominated landscapes, and may offer guidance and mitigate impacts from livestock, as well as increase artificial forest planting and strengthen the investigation of the potential population resources of AMD.

9.
Comput Intell Neurosci ; 2022: 9620755, 2022.
Article En | MEDLINE | ID: mdl-36254202

Few-shot classification aims to enable the network to acquire the ability of feature extraction and label prediction for the target categories given a few numbers of labeled samples. Current few-shot classification methods focus on the pretraining stage while fine-tuning by experience or not at all. No fine-tuning or insufficient fine-tuning may get low accuracy for the given tasks, while excessive fine-tuning will lead to poor generalization for unseen samples. To solve the above problems, this study proposes a hybrid fine-tuning strategy (HFT), including a few-shot linear discriminant analysis module (FSLDA) and an adaptive fine-tuning module (AFT). FSLDA constructs the optimal linear classification function under the few-shot conditions to initialize the last fully connected layer parameters, which fully excavates the professional knowledge of the given tasks and guarantees the lower bound of the model accuracy. AFT adopts an adaptive fine-tuning termination rule to obtain the optimal training epochs to prevent the model from overfitting. AFT is also built on FSLDA and outputs the final optimum hybrid fine-tuning strategy for a given sample size and layer frozen policy. We conducted extensive experiments on mini-ImageNet and tiered-ImageNet to prove the effectiveness of our proposed method. It achieves consistent performance improvements compared to existing fine-tuning methods under different sample sizes, layer frozen policies, and few-shot classification frameworks.


Neural Networks, Computer , Sample Size
10.
Membranes (Basel) ; 12(8)2022 Jul 31.
Article En | MEDLINE | ID: mdl-36005672

Poly(ethylene-chlorotrifluoroethylene) (ECTFE) membrane is a hydrophobic membrane material that can be used to recover water from high-humidity gases in the membrane condenser (MC) process. In this study, ECTFE membranes were prepared by the thermally induced phase separation (TIPS) method using the green binary diluents triglyceride diacetate (TEGDA) and trioctyl trimellitate (TOTM). Thermodynamic phase diagrams of the ECTFE/TEGDA: TOTM system were made. The effects of the diluent composition and cooling rate on the structure and properties of the ECTFE membranes were investigated by characterizing the SEM, contact angle, mechanical properties, pore size and porosity. The results showed that ECTFE membranes with cellular structure were successfully prepared and exhibit good mechanical properties. Moreover, increasing the TOTM content in the binary diluents and decreasing the cooling rate could effectively improve the mean pore size of the ECTFE membranes, but the increase in TOTM content reduced the mechanical properties. During the MC process, the water recovery performance of ECTFE membranes increased with the increase in the mean pore size of the membranes, and the condensation flow and water recovery of membrane prepared at 20% TOTM were 1.71 kg·m-2·h-1 and 54.84%, respectively, which were better than the performance of commercial hydrophobic PVDF membranes in the MC. These results indicated that there is good potential for the application of ECTFE membranes during the MC process.

11.
Animals (Basel) ; 12(13)2022 Jun 28.
Article En | MEDLINE | ID: mdl-35804556

Studying the spatio-temporal niche partitioning among closely related sympatric species is essential for understanding their stable coexistence in animal communities. However, consideration of niche partitioning across multiple ecological dimensions is still poor for many sympatric pheasant species. Here, we studied temporal activity patterns and spatial distributions of the Blue Eared Pheasant (EP, Crossoptilon auritum) and Blood Pheasant (BP, Ithaginis cruentus) in the Qilian Mountains National Nature Reserve (QMNNR), Northwestern China, using 137 camera traps from August 2017 to August 2020. Kernel density estimation was applied to analyze diel activity patterns, and the Maxent model was applied to evaluate their suitable distributions and underlying habitat preferences. Eight Galliformes species were captured in 678 detection records with 485 records of EP and 106 records of BP over a total of 39,206 camera days. Their monthly activity frequencies demonstrate temporal partitioning but their diel activity patterns do not. Furthermore, 90.78% of BP distribution (2867.99 km2) overlaps with the distribution of EP (4355.86 km2) in the QMNNR. However, BP manifests a high dependence on forest habitats and shows larger Normalized Difference Vegetation Index (NDVI) values, while EP showed obvious avoidance of forest with NDVI greater than 0.75. Hence, differentiation in monthly activity patterns and partitioning in habitat preference might facilitate their coexistence in spatiotemporal dimensions. Conservation actions should give priority to highly overlapping areas in the center and east of the QMNNR and should strengthen forest landscape connectivity, as they provide irreplaceable habitats for these threatened and endemic Galliformes.

12.
J Hazard Mater ; 430: 128382, 2022 05 15.
Article En | MEDLINE | ID: mdl-35739652

Soil contamination by hexavalent chromium (Cr(VI)) poses great risks to human health and ecosystem safety. We introduced a new cheap and efficient layered double hydroxide intercalated with diethyldithiocarbamate (DDTC-LDH) for in-situ remediation of Cr(VI)-contaminated soil. The content of Cr(VI) in contaminated soil (134.26 mg kg-1) was rapidly reduced to 1.39 mg kg-1 within 10 days by 0.5% of DDTC-LDH. This result attains to or even exceeds the effectiveness of most of reported soil amendments for Cr(VI) removal in soils. The production cost of DDTC-LDH ($4.02 kg-1) was relatively low than some common materials, such as nano zero-valent iron ($22.80-140.84 kg-1). The growth of water spinach became better with the increase of DDTC-LDH dose from 0% to 0.5%, suggesting the recovery of soil function. DDTC-LDH significantly altered the structure and function of soil microbial communities. The species that have Cr(VI)-resistant or Cr(VI)-reductive ability were enriched in DDTC-LDH remediated soils. Network analysis revealed a significant functional niche differentiation of soil microbial communities. In addition to the enhancement of Cr(VI) reduction, the stimulation of plant growth promoting traits, including siderophore biosynthesis, oxidation resistance to reactive oxygen species, and phosphorus availability by DDTC-LDH was another essential mechanism for the immediate remediation of Cr(VI)-contaminated soil.


Environmental Restoration and Remediation , Soil Pollutants , Chromium/chemistry , Ditiocarb , Ecosystem , Humans , Hydroxides/chemistry , Plant Dispersal , Soil/chemistry , Soil Pollutants/analysis
13.
J Hazard Mater ; 424(Pt A): 127154, 2022 02 15.
Article En | MEDLINE | ID: mdl-34600389

Agricultural sustainability is challenging because of increasingly serious and co-existing issues, e.g., poor nitrogen-fertilizer use and heavy metal pollution. Herein, we introduced a new poly(acrylic acid)-grafted chitosan and biochar composite (PAA/CTS/BC) for soil amendment, and provided a first microbial insight into how PAA/CTS/BC amendment simultaneously improved nitrogen cycling and immobilized heavy metals. Our results suggest that the PAA/CTS/BC amendment significantly promoted soil ammonium retention, and reduced nitrate accumulation, nitrous oxide emission and ammonia volatilization during the rice cultivation. The availability of various heavy metals (Fe, Mn, Cu, Zn, Ni, Pb, Cr, and As) markedly decreased in the PAA/CTS/BC amended soil, thereby reducing their accumulation in rice root. The PAA/CTS/BC amendment significantly altered the structure and function of soil microbial communities. Importantly, the co-occurrence networks of microbial communities became more complex and function-specific after PAA/CTS/BC addition. For example, the keystone species related to organic matter degradation, denitrification, and plant resistance to pathogen or stresses were enriched within the network. In addition to direct adsorption, the effects of PAA/CTS/BC on shaping microbial communities played dominant roles in the soil amendment. Our findings provide a promising strategy of simultaneous nitrogen-use improvement and heavy metal immobilization for achieving crop production improvement, pollution control, and climate change mitigation.


Metals, Heavy , Soil Pollutants , Charcoal , Hydrogels , Metals, Heavy/analysis , Nitrogen , Soil , Soil Pollutants/analysis
14.
J Environ Manage ; 301: 113819, 2022 Jan 01.
Article En | MEDLINE | ID: mdl-34592666

Silicon (Si) deficiency and heavy metals (HMs) pollution are common for farmland soil because of long-term intensive farming. In this study, a novel citrate-modified biochar (C-BC) was introduced as a soil conditioner to simultaneously increase the amount of plant-available Si (PASi) and immobilize HMs. The maximum amount of PASi released was 33.00 mg⋅g-1 from C-BC pre-treated with 0.1 mol⋅L-1 citrate (C-BC0.1). A formation-transport coupling mechanism for increasing the amount of PASi released was developed. Stable Si in the biomass was pyrolyzed to give silicate that was relatively mobile via nucleophilic attack of citrate and hydrolysis of amorphous Si. Silicate species were then released through the porous surface and widening cracks caused by pyrolysis. At citrate concentrations >0.1 mol⋅L-1, the surface and cracks were easily blocked by precipitates formed during pyrolysis. The ability of C-BC to remove HMs was assessed using Cu as an example. C-BC0.1 was optimal for adsorbing Cu, and the maximum adsorption capacity was 271.73 mg⋅g-1. The Cu adsorption mechanism mainly involved surface precipitation, surface complexation, electrostatic attraction and hydrogen bonding. Our research provides important implications for simultaneously addressing Si deficiency and HMs contaminant problems by these materials for soil amendment in agro-ecosystem.


Copper , Silicon , Adsorption , Charcoal , Citric Acid , Ecosystem
15.
Chemosphere ; 292: 133391, 2022 Apr.
Article En | MEDLINE | ID: mdl-34942215

The preparation of easily synthesized and cheap composite materials for the efficient removal of toxic oxoanions still remains challenging in sewage treatment. Herein, a new carbonized manganese-crosslinked sodium alginate (Mn/SA-C) was fabricated for the removal of arsenite (As(III)), arsenate (As(V)) and hexavalent chromium (Cr(VI)) in water. The results indicated that the Mn/SA-C pretreated with MnSO4 solution (Mn/SA-C-S) exhibited a rapid adsorption toward As(III) and As(V) with the removal efficiency of >98% within 10 min, and had a high adsorption capacity toward As(III), As(V), and Cr(VI) with the maximum value of 189.29, 193.29, and 104.50 mg/g based on the Langmuir model, respectively. The removal efficiency of As(III), As(V), and Cr(VI) could be further significantly enhanced by coupling a photocatalytic process. For example, the time in which >98% of Cr(VI) (10 mg/L) was removed dramatically shortened from 360 min (adsorption) to 45 min (adsorption-photocatalysis), and the removal efficiency of As(III) increased by ∼10% within initial 5 min. This was primarily attributed to the Mn-catalyzed production of the photocatalytic excitons for Cr(VI) reduction, and the superoxide (•O2-) and hydroxyl (•OH) radicals for As(III) oxidation. The adsorption removal of arsenic (As) was primarily ascribed to surface complexation with MnO and precipitation by MnS2, and oxidative adsorption because of Mn valence cycle. The removal mechanisms of Cr(VI) mainly contained reduction by MnO and MnS2, complexation with MnO and carboxyl/hydroxyl groups as well as Cr(OH)3 precipitation. Our research provides a promising Mn/SA-C-S material for rapid and efficient removal of As(III), As(V), and Cr(VI) in contaminated water through an adsorption-photocatalysis synergistic strategy.


Arsenites , Water Pollutants, Chemical , Adsorption , Alginates , Arsenates , Chromium/analysis , Hydrogen-Ion Concentration , Manganese , Water , Water Pollutants, Chemical/analysis
16.
Biodivers Data J ; 10: e85992, 2022.
Article En | MEDLINE | ID: mdl-36761589

The Qilian Mountain Basin, on the north-eastern edge of the Qinghai-Tibet Plateau (QTP), supports a high diversity of native and endemic fish. However, the detailed species inventory and distribution patterns concerning fish in the whole Basin remain unknown, which hinders the conservation of biodiversity and assessment of ecological health. We compiled a comprehensive species richness and distribution database of freshwater fish in the Qilian Mountain Basin, based on field investigations and exhaustive data collection from 50 rivers or lakes. Then, we elucidated a distribution pattern using clustering and ordination analyses based on a ßdissim matrix with species presence/absence data. A total of 79 freshwater fish species within eight orders, 17 families and 42 genera were recorded. The Qilian Mountain Basin could be grouped into six systems, which match the six Basins (i.e. Heihe River Basin, HHR; Qaidam Basin, QDM; Qinghai Lake Basin, QHL; Shule River Basin, SLR; Shiyang River Basin, SYR; Yellow River Basin, YR), based on the fish distribution pattern. Additionally, the spatial pattern of species distribution showed the distance decay of taxonomic similarity. Our results demonstrate that riverine connectivity resulting from historical processes plays a vital role in shaping the freshwater ichthyofauna of High Central Asia. These findings will be valuable for future systematic conservation of fish in the Qilian Mountain Basin.

17.
Environ Res ; 194: 110667, 2021 03.
Article En | MEDLINE | ID: mdl-33400948

The discovery of cheap and eco-friendly functional materials for the removal of anionic heavy metal ions is still challenging in the treatment of heavy metal-contaminated water. Herein, a new poly(allyltrimethylammonium) grafted chitosan and biochar composite (PATMAC-CTS-BC) was introduced for the removal of selenate (SeO42-) in water. Results suggest that the PATMAC-CTS-BC showed a rapid removal of SeO42- with efficiency of >97% within 10 min and it followed a pseudo-second-order model. High capacity of SeO42- adsorption by the composite was achieved, with maximum value of 98.99 mg g-1 based on Langmuir model, considerably higher than most of reported adsorbents. The thermodynamic results reflected the spontaneous and exothermic nature of SeO42- adsorption onto the composite. The composite could be applied at a wide initial pH range (2-10) with high removal efficiency of SeO42- because of permanent positive charges of quaternary ammonium groups (=N+-). The removal mechanisms of SeO42- were mainly attributed to electrostatic interactions with =N+- and protonated -NH3+ groups, and redox-complexation interactions with -NH2, -NH-, and -OH groups. Besides SeO42-, the hexavalent chromium (Cr2O72-) was considered as example to further demonstrate the anion removal capability of cationic hydrogel-BC composite. The study outcomes open up new opportunities to efficiently remove anionic heavy metal ions (e.g., SeO42- and Cr2O72-) in water using these materials.


Chitosan , Water Pollutants, Chemical , Water Purification , Adsorption , Charcoal , Kinetics , Selenic Acid , Water , Water Pollutants, Chemical/analysis
18.
Chemosphere ; 263: 127988, 2021 Jan.
Article En | MEDLINE | ID: mdl-33297031

To the best of our knowledge, in few studies, biochar (BC)-based materials have been used as the photocatalyst for water purification, and their application is limited to a great extent due to catalyst agglomeration and inefficient electron migration. In this study, a novel Bi2WO6 loaded N, S co-doping corn straw biochar (Bi2WO6/NSBC) was successfully synthesized with a simple solvothermal method for the removal of ciprofloxacin (CIP) and Cr(VI) under visible light irradiation. The Bi2WO6/NSBC was featured with efficient and rapid catalytic removal toward CIP (5 mg/L) and Cr(VI) (10 mg/L), with efficiencies of ∼90.33% and ∼99.86% within 75 min, respectively. More attractively, this composite can be applied in a wide pH range (3.0-9.0) and with weak effects by coexisting ions (Cl-, CO32-, SO42-, and Ca2+). The facile synthesized porous graphitized structure demonstrates an outstanding performance of superior conductivity and promoted photoelectron transport. Meanwhile, it is found that N, S co-doping of the BC induces highly interconnected fibrous structures, high catalytic property, and favorable specific surface areas, which is considered to avoid agglomeration of Bi2WO6. The increased photocatalytic activity results from the synergistic effects of Bi2WO6 and NSBC by the optimized band gap and enhanced visible light response, due to higher migration and utilization efficiency of photoinduced carriers in photocatalytic reactions. In this approach, a cheap catalyst is provided, and at the same time, a synergistic effect of N, S co-doping is formed to rapidly remove contaminants in wastewater treatment.


Ciprofloxacin , Electrons , Charcoal , Chromium , Zea mays
19.
Environ Sci Pollut Res Int ; 28(9): 10889-10897, 2021 Mar.
Article En | MEDLINE | ID: mdl-33105007

Disinfection by-products (DBPs) discharged from sewage treatment plants (STPs) could harm downstream receiving waters and drinking water resources. In-stream attenuation of photo- and non-photodegradable DBPs during river transportation is currently not well understood. Here we sought to fill this knowledge gap by meta-data-analysis for modeling in-stream attenuation of DBPs. Data were collected along a treated-wastewater-dominated 1.6-km stretch of a river channel for 3 years and incorporated seasonal and diurnal patterns. Photo-irradiation and water temperature were the main factors responsible for in-stream attenuation of photodegradable N-nitrosodimethylamine (NDMA), and water temperature for that of non-photodegradable formaldehyde (FAH). The factors were incorporated into photo-dependent and -independent models to account for temporal variations in NDMA and FAH, respectively. Estimated mass recoveries of NDMA and FAH agreed well with observed values along the stretch. The models developed here offer a novel and useful tool for estimating levels of NDMA and FAH during river transportation.


Water Pollutants, Chemical , Water Purification , Dimethylnitrosamine , Formaldehyde , Rivers , Seasons , Water Pollutants, Chemical/analysis
20.
Bioorg Med Chem Lett ; 30(23): 127525, 2020 12 01.
Article En | MEDLINE | ID: mdl-32898697

As a class III receptor tyrosine kinase (RTK), FMS-like tyrosine kinase 3 (FLT3) is always overexpressed in many cases of acute leukemia. This paper studies the structure-based synthesis and biological evaluation of diaryl urea derivatives as FLT3 inhibitors. Encouragingly, compounds 15b, 16b, 24a, and 24c showed excellent biological activities in a low nanomolar range. In particular, compound 16b demonstrated significant inhibitory potency against FLT3-ITD (IC50 = 5.60 nM) and better antiproliferative activity than quizartinib against MV4-11 cell line (IC50 = 0.176 nM). It is indicated that compound 16b for the treatment of acute myeloid leukemia could be very promising.


Antineoplastic Agents/pharmacology , Phenylurea Compounds/pharmacology , Protein Kinase Inhibitors/pharmacology , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Phenylurea Compounds/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Structure-Activity Relationship
...