Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 59
1.
Cell Death Discov ; 10(1): 169, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589350

Corneal diseases are among the primary causes of blindness and vision loss worldwide. However, the pathogenesis of corneal diseases remains elusive, and diagnostic and therapeutic tools are limited. Thus, identifying new targets for the diagnosis and treatment of corneal diseases has gained great interest. Methylation, a type of epigenetic modification, modulates various cellular processes at both nucleic acid and protein levels. Growing evidence shows that methylation is a key regulator in the pathogenesis of corneal diseases, including inflammation, fibrosis, and neovascularization, making it an attractive potential therapeutic target. In this review, we discuss the major alterations of methylation and demethylation at the DNA, RNA, and protein levels in corneal diseases and how these dynamics contribute to the pathogenesis of corneal diseases. Also, we provide insights into identifying potential biomarkers of methylation that may improve the diagnosis and treatment of corneal diseases.

2.
World J Gastrointest Surg ; 16(2): 276-283, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38463349

In this editorial we comment on an article published in a recent issue of the World J Gastrointest Surg. A common gene mutation in gastric cancer (GC) is the TP53 mutation. As a tumor suppressor gene, TP53 is implicated in more than half of all tumor occurrences. TP53 gene mutations in GC tissue may be related with clinical pathological aspects. The TP53 mutation arose late in the progression of GC and aided in the final switch to malignancy. CDH1 encodes E-cadherin, which is involved in cell-to-cell adhesion, epithelial structure maintenance, cell polarity, differentiation, and intracellular signaling pathway modulation. CDH1 mutations and functional loss can result in diffuse GC, and CDH1 mutations can serve as independent prognostic indicators for poor prognosis. GC patients can benefit from genetic counseling and testing for CDH1 mutations. Demethylation therapy may assist to postpone the onset and progression of GC. The investigation of TP53 and CDH1 gene mutations in GC allows for the investigation of the relationship between these two gene mutations, as well as providing some basis for evaluating the prognosis of GC patients.

3.
Exp Eye Res ; 241: 109829, 2024 Apr.
Article En | MEDLINE | ID: mdl-38354943

The mechanism of myopia and the associated retinopathy remains unclear, and dysregulated microRNAs (miRNAs) are implicated in this disease. In this research, we purposed to find out the regulatory function that miRNAs play in myopia and the associated retinopathy. We first performed miRNA microarray analysis in a lens-induced myopia mouse model and found that miR-9-5p, miR-96-5p, miR-182-5p, miR-183-5p, and miR-181a-5p were elevated in the myopic retina. Then, we examined the functions and regulatory mechanisms of miR-181a-5p utilizing the human retinal pigment epithelium (RPE) cell line ARPE-19 by overexpressing miR-181a-5p. RNA sequencing (RNA-Seq) and qRT-PCR analysis were employed to identify differentially expressed genes after transfection. The qRT‒PCR outcomes, immunoblotting, and immunofluorescence indicated that the SGSH expression was significantly hindered through miR-181a-5p overexpression. MiR-181a-5p overexpression has the ability to elevate RPE cell proliferation and induce autophagy by targeting SGSH. We validated the negative influence of miR-181a-5p on the SGSH expression through luciferase reporter assays, which demonstrated its ability to target the 3' untranslated region of SGSH. The reversal of implications of miR-181a-5p overexpression was achieved through SGSH upregulation. We provided novel perspectives into the miR-181a-5p function in regulating myopia development and may serve as a target for therapy and molecular biomarker for myopia.


MicroRNAs , Retinal Diseases , Mice , Animals , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Up-Regulation , Cell Proliferation , Autophagy/genetics
4.
Exp Eye Res ; 241: 109827, 2024 Apr.
Article En | MEDLINE | ID: mdl-38354945

Myopia is a global health and economic issue. Circular RNAs (circRNAs) have been shown to play an important role in the pathogenesis of many ocular diseases. We first evaluated the circRNA profiles and possible roles in vitreous humor samples of individuals with high myopia by a competitive endogenous RNA (ceRNA) array. Vitreous humor samples were collected from 15 high myopic (5 for ceRNA array, and 10 for qPCR) and 15 control eyes (5 for ceRNA array, and 10 for qPCR) with idiopathic epiretinal membrane (ERM) and macular hole (MH). 486 circRNAs (339 upregulated and 147 downregulated) and 264 mRNAs (202 upregulated and 62 downregulated) were differentially expressed between the high myopia and control groups. The expression of hsa_circ_0033079 (hsa-circDicer1), hsa_circ_0029989 (hsa-circNbea), hsa_circ_0019072 (hsa-circPank1) and hsa_circ_0089716 (hsa-circEhmt1) were validated by qPCR. Pearson analysis and multivariate regression analysis showed positive and significant correlations for axial length with hsa-circNbea and hsa-circPank1. KEGG analysis showed that the target genes of circRNAs were enriched in the mTOR, insulin, cAMP, and VEGF signaling pathways. GO analysis indicated that circRNAs mainly targeted transcription, cytoplasm, and protein binding. CircRNA-associated ceRNA network analysis and PPI network analysis identified several critical genes for myopia. The expression of circNbea, circPank1, miR-145-5p, miR-204-5p, Nras, Itpr1 were validated by qPCR in the sclera of form-deprivation myopia (FDM) mice model. CircPank1/miR-145-5p/NRAS and circNbea/miR-204-5p/ITPR1 were identified and may be important in the progression of myopia. Our findings suggest that circRNAs may contribute to the pathogenesis of myopia and may serve as potential biomarkers.


MicroRNAs , Myopia , Humans , Animals , Mice , RNA, Circular/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Vitreous Body/metabolism , RNA, Messenger/metabolism , RNA, Competitive Endogenous , Myopia/genetics
5.
Opt Express ; 32(2): 1123-1134, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38297671

In real-world complex systems, heterogeneous components often interact in complex connection patterns and could be schematized by a formalism of multilayer network. In this work, the synchronization characteristics of multilayer network composed of semiconductor lasers (SLs) are investigated systematically. It is demonstrated that the interplay between different layers plays an important role on the synchronization patterns. We elucidate that the performance of cluster synchronization could be facilitated effectively with the introduction of disjoint layer symmetry into network topology. Intertwined stability of clusters from different layers could be decoupled into independent, and the parameter spaces for stable synchronization are extended significantly. The robustness of our proposed regulation scheme on operation parameters is numerically evaluated. Furthermore, the generality of presented theoretical results is validated in networks with more complex topology and multiple layers.

6.
Int J Biol Macromol ; 259(Pt 2): 129299, 2024 Feb.
Article En | MEDLINE | ID: mdl-38211915

Linear α-glucan (LG), a linear polymer linked by α-1,4 bonds, has received increasing attention for its potential applications in synthetic polymer production. Notably, the functionality of LG is strongly influenced by its degree of polymerization (DP). In this study, SP and GP were successfully constructed and expressed. The reaction of enzymatic co-polymerization into LG was investigated. The preferred reaction was carried out at 37 °C and pH 7.4 for 72 h, with a maximum conversion rate of 25 %. Afterwards, two approaches were used to modulate the molecular structures of LGs. Firstly, LGs with distinct molecular weights ranging from 1062.33 ± 16.04 g/mol to 5679 ± 80.29 g/mol were obtained by adjusting the substrate/primer ratio during the LG synthesis process. Secondly, two distinct products could be produced by altering the enzyme addition method: short-chain LG with a DP < 10 (64.34 ± 0.54 %) or long-chain LG with a DP > 45 (45.57 ± 2.18 %). Additionally, theoretical synthesis model was constructed which subdivided the reaction into three stages to evaluate this dual-enzyme cooperative system. These findings have significant implications in promoting the application of LG in the fields of biomedicine and material science.


Glucans
7.
J Diabetes ; 16(1): e13471, 2024 Jan.
Article En | MEDLINE | ID: mdl-37735821

BACKGROUND: Diabetic cardiomyopathy (DCM) is one of the serious complications of the accumulated cardiovascular system in the long course of diabetes. To date, there is no effective treatment available for DCM. Circular RNA (circRNA) is a novel r2egulatory RNA that participates in a variety of cardiac pathological processes. However, the regulatory role of circular RNA MAP3K5 (circMAP3K5) in DCM is largely unclear. METHODS AND RESULTS: Microarray analysis of DCM rats' heart circular RNAs was performed and the highly species-conserved circRNA mitogen-activated protein kinase kinase kinase 5 (circMAP3K5) was identified, which participates in DCM processes. High glucose-provoked cardiotoxicity leads to the up-regulation of circMAP3K5, which mechanistically contributes to cardiomyocyte cell death. Also, in high glucose-induced H9c2 cardiomyocytes, the level of apoptosis was significantly increased, as well as the expression of circMAP3K5. In contrast, the depletion of circMAP3K5 could reduce high glucose-induced apoptosis in cardiomyocytes. In terms of mechanism, circMAP3K5 acts as a miR-22-3p sponge and miR-22-3p directly target death-associated protein kinase 2 (DAPK2) in H9c2 cardiomyocytes, where in circMAP3K5 upregulates DAPK2 expression by targeting miR-22-3p. Moreover, we also found that miR-22-3p inhibitor and pcDNA DAPK2 could antagonize the protective effects brought by the depletion of circMAP3K5. CONCLUSION: CircMAP3K5 is a highly conserved noncoding RNA that is upregulated during DCM process. We concluded that circMAP3K5 promotes high glucose-induced cardiomyocyte apoptosis by regulating the miR-22-3p/DAPK2 axis. The results of this study highlight a novel and translationally important circMAP3K5-based therapeutic approach for DCM.


Diabetes Mellitus , Diabetic Cardiomyopathies , MicroRNAs , Animals , Rats , Apoptosis/genetics , Death-Associated Protein Kinases/genetics , Death-Associated Protein Kinases/metabolism , Diabetes Mellitus/pathology , Diabetic Cardiomyopathies/genetics , Glucose/pharmacology , Glucose/metabolism , MicroRNAs/genetics , Myocytes, Cardiac/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Circular/pharmacology , MAP Kinase Kinase Kinase 5/metabolism
8.
Cell Death Discov ; 9(1): 418, 2023 Nov 17.
Article En | MEDLINE | ID: mdl-37978169

In the early stages of diabetic retinopathy (DR), diabetes-related hyperglycemia directly inhibits the AKT signaling pathway by increasing oxidative stress or inhibiting growth factor expression, which leads to retinal cell apoptosis, nerve proliferation and fundus microvascular disease. However, due to compensatory vascular hyperplasia in the late stage of DR, the vascular endothelial growth factor (VEGF)/phosphatidylinositol 3 kinase (PI3K)/AKT cascade is activated, resulting in opposite levels of AKT regulation compared with the early stage. Studies have shown that many factors, including insulin, insulin-like growth factor-1 (IGF-1), VEGF and others, can regulate the AKT pathway. Disruption of the insulin pathway decreases AKT activation. IGF-1 downregulation decreases the activation of AKT in DR, which abrogates the neuroprotective effect, upregulates VEGF expression and thus induces neovascularization. Although inhibiting VEGF is the main treatment for neovascularization in DR, excessive inhibition may lead to apoptosis in inner retinal neurons. AKT pathway substrates, including mammalian target of rapamycin (mTOR), forkhead box O (FOXO), glycogen synthase kinase-3 (GSK-3)/nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor kappa-B (NF-κB), are a research focus. mTOR inhibitors can delay or prevent retinal microangiopathy, whereas low mTOR activity can decrease retinal protein synthesis. Inactivated AKT fails to inhibit FOXO and thus causes apoptosis. The GSK-3/Nrf2 cascade regulates oxidation and inflammation in DR. NF-κB is activated in diabetic retinas and is involved in inflammation and apoptosis. Many pathways or vital activities, such as the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) and mitogen-activated protein kinase (MAPK) signaling pathways, interact with the AKT pathway to influence DR development. Numerous regulatory methods can simultaneously impact the AKT pathway and other pathways, and it is essential to consider both the connections and interactions between these pathways. In this review, we summarize changes in the AKT signaling pathway in DR and targeted drugs based on these potential sites.

9.
iScience ; 26(12): 108448, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-38034364

This study aimed to investigate the effects of long-term pollution from different wavelengths of light on the corneal epithelium (CE) and identify potential biomarkers. Rabbits were exposed to red, green, blue, white, and environmental light for 6 weeks. The CE was assessed using various techniques such as fluorescein sodium staining, transcriptome sequencing, electron microscopy, and molecular assays. In human corneal epithelial cells (hCECs), the downregulation of vascular cell adhesion molecule 1 (VCAM1) in response to blue light (BL) pollution was observed. This downregulation of VCAM1 inhibited migration, increased reactive oxygen species (ROS) levels, and apoptosis, and inhibited the AKT/p70 S6 kinase cascade in hCECs. Animal experiments confirmed that BL pollution caused similar effects on the rabbit cornea, including increased ROS production, apoptosis, delayed wound healing, and decreased VCAM1 expression. Overall, BL-induced VCAM1 downregulation may impair CE and wound healing and promote ROS and apoptosis in vitro and in vivo.

10.
Polymers (Basel) ; 15(18)2023 Sep 18.
Article En | MEDLINE | ID: mdl-37765655

A multi-functional modifier, which could improve the mechanical and thermal performance simultaneously, is significant in composites production. Herein, inspired by the chemistry of mussel, an interfacial modifier named FPD was designed and synthesized through one simple step, which was attached by three functional groups (including catechol, N-H bond, and DOPO). Due to the innate properties of each functional group, FPD played multiple roles: adhere to the ramie fibers from catechol and cure with the epoxy resin from -NH-, an antiflaming property from DOPO, and the compatibilizer between ramie fibers and epoxy resin was also improved by changing the polarity of ramie fiber. All of the above functions can be proved by means of water contact angle (WCA), atomic force microscope (AFM), and scanning electron microscopy (SEM), etc. After solidification, the ramie fiber/epoxy composites demonstrated superior performances in terms of good mechanical properties and excellent flame retardant property. With the addition of 30 wt.% FPD, the tensile strength and modulus of the ramie/epoxy composite showed an improvement of 37.1% and 60.9%, and flexural strength and modulus of the composite were improved by 8.9% and 19.3% comparing with no addition composite. Moreover, the composite could achieve the goal for V-0 rating in the UL-94 test and LOI value was 34.6% when the addition of FPD reached 30 wt.%. This work provided us with an efficient method for fabricating nature fiber/epoxy composites with good properties.

11.
Nutr Metab Cardiovasc Dis ; 33(8): 1529-1538, 2023 Aug.
Article En | MEDLINE | ID: mdl-37263914

BACKGROUND AND AIMS: Elevated LDL-C, lipoprotein(a) [Lp(a)], and inflammation are associated with greater risk for atherosclerotic cardiovascular events. Consumption of individual nut types decreases these risk factors but knowledge about the effect of mixed nuts on Lp(a) is limited. The objective of this study was to determine the effects of consuming 42.5 g/day of mixed nuts on LDL-C, Lp(a), and inflammatory markers in individuals with overweight or obesity. METHODS AND RESULTS: In a 16-week randomized control trial, 29 participants with overweight or obesity (BMI 25-40 kg/m2) consumed either 42.5 g/day of mixed nuts (cashews, almonds, macadamia nuts, Brazil nuts, pecans, pistachios, walnuts, and peanuts) or 69 g/day isocaloric pretzels. Blood samples were collected at baseline, week 8, and week 16 for analysis on total cholesterol (TC), LDL-C, Lp(a), inflammation markers, glucose, insulin, adiponectin and liver function enzymes. No significant differences were seen in TC, LDL-C, HDL-C, Lp(a), or liver function enzymes between the two groups. Participants consuming mixed nuts had significantly lower body fat percentage and diastolic blood pressure, and higher adiponectin (all P ≤ 0.05). C-reactive protein (CRP) and 8-oxo-deoxyguanosis (8-oxodG) showed non-significant decreasing trends and total antioxidant capacity (TAC) had a non-significant increasing trend in the mixed nut group. CONCLUSION: Consumption of mixed nuts had no evidence of an effect on LDL-C or Lp(a) throughout the intervention. Notably, mixed nut consumption lowered body fat percentage without significant changes in body weight or BMI. Future studies with larger sample sizes investigating the changing trends of CRP, 8-oxodG, and TAC are warranted. CLINICAL TRIAL REGISTER: NCT03375866.


Nuts , Overweight , Humans , Adult , Cholesterol, LDL , Overweight/diagnosis , Cardiometabolic Risk Factors , Lipoprotein(a) , Adiponectin , 8-Hydroxy-2'-Deoxyguanosine/metabolism , Obesity/diagnosis , Obesity/metabolism , Risk Factors , Inflammation/diagnosis , Inflammation/prevention & control , Inflammation/metabolism
12.
Opt Express ; 31(8): 13073-13083, 2023 Apr 10.
Article En | MEDLINE | ID: mdl-37157453

Chaos generation from a novel single-loop dispersive optoelectronic oscillator (OEO) with a broadband chirped fiber Bragg grating (CFBG) is numerically and experimentally investigated. The CFBG has much broader bandwidth than the chaotic dynamics such that its dispersion effect rather than filtering effect dominates the reflection. The proposed dispersive OEO exhibits chaotic dynamics when sufficient feedback strength is guaranteed. Suppression of chaotic time-delay signature (TDS) is observed as the feedback strength increases. The TDS can be further suppressed as the amount of grating dispersion increases. Without compromising bandwidth performance, our proposed system extends the parameter space of chaos, enhances the robustness to modulator bias variation, and improves TDS suppression by at least five times comparing to the classical OEO. Experimental results qualitatively agree well with numerical simulations. In addition, the advantage of dispersive OEO is further verified by experimentally demonstrating random bit generation with tunable rate up to 160 Gbps.

13.
Pediatr Obes ; 18(8): e13038, 2023 08.
Article En | MEDLINE | ID: mdl-37070327

OBJECTIVES: Childhood obesity increases risk factors related to metabolic diseases. Watermelon's bioactive components can help reduce these risk factors. However, no study has investigated the effects of whole watermelon including both the flesh and rind or have assessed the impacts of any form of watermelon on children with overweight or obesity. The goal of this study was to examine the effects of whole-blenderized watermelon (BWM) consumption on cardiometabolic risk factors. METHODS: A randomized, cross-over clinical design was implemented. Boys and girls ages 10-17 years with overweight or obesity (BMI ≥ 85th percentile) consumed one cup of BWM or an isocaloric sugar-sweetened beverage (control) every day for 8 weeks with a 4-week washout between trials. Anthropometrics, dietary, biochemical and clinical measures were obtained before and at the end of each trial. RESULTS: A total of 17 participants completed the study. Eight weeks of BWM intake significantly decreased BMI (p = 0.032), BMI percentile (BMIP) (p = 0.038), body fat percentage (p = 0.036), and haemoglobin A1c (HbA1c) (p = 0.012) compared to the sugar-sweetened beverage. Sugar-sweetened beverage consumption increased BMIP (p = 0.014) compared to baseline. No significant differences were observed for inflammation, blood glucose, insulin, lipids, liver function enzymes, and satiety hormones. CONCLUSIONS: The results support that BWM consumption improved some cardiometabolic risk factors including BMI, BMIP, body fat, and HbA1c. Watermelon is a potential alternative to unhealthful snacks for improving anthropometry and some risk factors related to obesity in children.


Citrullus , Pediatric Obesity , Male , Female , Child , Humans , Overweight/etiology , Body Mass Index , Glycated Hemoglobin , Pediatric Obesity/epidemiology , Pediatric Obesity/prevention & control , Pediatric Obesity/complications , Adipose Tissue
14.
Opt Lett ; 48(8): 2006-2009, 2023 Apr 15.
Article En | MEDLINE | ID: mdl-37058628

Photonic time-delay reservoir computing (TDRC) using a self-injection locked semiconductor laser under optical feedback from a narrowband apodized fiber Bragg grating (AFBG) is proposed and numerically demonstrated. The narrowband AFBG suppresses the laser's relaxation oscillation and provides self-injection locking in both the weak and strong feedback regimes. By contrast, conventional optical feedback provides locking only in the weak feedback regime. The TDRC based on self-injection locking is first evaluated by the computational ability and memory capacity, then benchmarked by the time series prediction and channel equalization. Good computing performances can be achieved using both the weak and strong feedback regimes. Interestingly, the strong feedback regime broadens the usable feedback strength range and improves robustness to feedback phase variations in the benchmark tests.

15.
J Photochem Photobiol B ; 240: 112654, 2023 Mar.
Article En | MEDLINE | ID: mdl-36724628

Long-term light exposure, especially in the spectrum of blue light, frequently causes excessive oxidative stress in dry age-related macular degeneration (AMD). Here, to gain insight into the underlying mechanism, we focused on mitochondrial dynamics alterations under long-term exposure to blue light in mouse and retinal cells. Six-month-old C57BL/6 mice were exposed to blue light (450 nm, 800 lx) for 2 weeks. The phenotypic changes in the retina were assayed using haematoxylin-eosin staining and transmission electron microscopy. Long-term blue light exposure significantly thinned each retinal layer in mice, induced retinal apoptosis and impaired retinal mitochondria. A retinal pigment epithelial cell line (ARPE-19) was used to verify the phototoxicity of blue light. Flow cytometry, immunofluorescence and MitoSox Red probe experiments confirmed that more total and mitochondria-specific ROS were generated in the blue light group than in the control group. Mito-Tracker Green probe showed fragmented mitochondrial morphology. The western blotting results indicated a significant increase in DRP1, OMA1, and BAX and a decrease in OPA1 and Bcl-2. In conclusion, long-term exposure to blue light damaged the retinas of mice, especially the ONL and RPE cells. There was destruction and dysfunction of mitochondria in RPE cells in vivo and in vitro. Mitochondrial dynamics were disrupted with characteristics of fusion-related obstruction after blue-light irradiation.


Retinal Degeneration , Mice , Animals , Retinal Degeneration/etiology , Reactive Oxygen Species/metabolism , Mitochondrial Dynamics , Mice, Inbred C57BL , Retina/metabolism , Oxidative Stress/radiation effects , Light , Retinal Pigment Epithelium
16.
Polymers (Basel) ; 15(2)2023 Jan 14.
Article En | MEDLINE | ID: mdl-36679329

To overcome the high flammability and brittleness of epoxy resins without sacrificing their glass transition temperature (Tg) and mechanical properties, three epoxy-terminated hyperbranched flame retardants (EHBFRs) with a rigid central core and different branches, named EHBFR-HB, EHBFR-HCM, and EHBFR-HBM, were synthesized. After chemical structure characterization, the synthesized EHBFRs were introduced into the diglycidyl ether of bisphenol A (DGEBA) and cured with 4, 4-diaminodiphenylmethane (DDM). The compatibility, thermal stability, mechanical properties, and flame retardancy of the resultant resins were evaluated. Results showed that all three EHBFRs could significantly improve the fire safety of cured resins, and 30 wt. % of EHBFRs (less than 1.0 wt. % phosphorus content) endowed cured DGEBA with a UL-94 V-0 rating. In addition, the increased rigidity of branches in EHBFRs could increase the flexural strength and modulus of cured resins, and the branches with appropriate rigidity were also beneficial for improving their room temperature impact strength and Tg.

17.
Gastroenterology ; 164(4): 593-609.e13, 2023 04.
Article En | MEDLINE | ID: mdl-36634827

BACKGROUND & AIMS: Colorectal cancer is a leading cause of cancer death, and a major risk factor is chronic inflammation. Despite the link between colitis and cancer, the mechanism by which inflammation leads to colorectal cancer is not well understood. METHODS: To investigate whether different forms of inflammation pose the same risk of cancer, we compared several murine models of colitis (dextran sodium sulfate [DSS], 2,4,6-trinitrobenzene sulfonic acid, 4-ethoxylmethylene-2-phenyloxazol-5-one, Citrobacter rodentium, Fusobacterium nucleatum, and doxorubicin) with respect to their ability to lead to colonic tumorigenesis. We attempted to correlate the severity of colitis and inflammatory profile with the risk of tumorigenesis in both azoxymethane-dependent and Dclk1/APCfl/fl murine models of colitis-associated cancer. RESULTS: DSS colitis reproducibly led to colonic tumors in both mouse models of colitis-associated cancer. In contrast, all other forms of colitis did not lead to cancer. When compared with the colitis not associated with tumorigenesis, DSS colitis was characterized by significantly increased CD11b+F4/80+Ly6Chigh macrophages and CD11b+Ly6G+ neutrophils. Interestingly, depletion of the CD11b+F4/80+Ly6Chigh macrophages inhibited tumorigenesis, whereas depletion of CD11b+Ly6G+ neutrophils had no effect on tumorigenesis. Furthermore, the macrophage-derived cytokines interleukin-1ß, tumor necrosis factor-α, and interleukin-6 were significantly increased in DSS colitis and promoted stemness of Dclk1+ tuft cells that serve as the cellular origin of cancer. CONCLUSIONS: We have identified CD11b+F4/80+Ly6Chigh macrophages as key mediators of cancer initiation in colitis-associated cancer. Development of new therapies that target these cells may provide an effective preventative strategy for colitis-associated cancer.


Colitis-Associated Neoplasms , Colitis , Animals , Mice , Azoxymethane , Carcinogenesis/metabolism , Cell Plasticity , Colitis/chemically induced , Colitis/complications , Colitis/metabolism , Colitis-Associated Neoplasms/metabolism , Dextran Sulfate/toxicity , Disease Models, Animal , Inflammation/metabolism , Macrophages/metabolism , Mice, Inbred C57BL
18.
J Am Chem Soc ; 144(45): 20931-20938, 2022 Nov 16.
Article En | MEDLINE | ID: mdl-36382467

A hybrid catalyst with integrated single-atom Ni and nanoscale Cu catalytic components is reported to enhance the C-C coupling and ethylene (C2H4) production efficiency in the electrocatalytic CO2 reduction reaction (eCO2RR). The single-atom Ni anchored on high-surface-area ordered mesoporous carbon enables high-rate and selective conversion of CO2 to CO in a wide potential range, which complements the subsequent CO enrichment on Cu nanowires (NWs) for the C-C coupling to C2H4. In situ surface-enhanced infrared absorption spectroscopy (SEIRAS) confirms the substantially improved CO enrichment on Cu, once the incorporation of single-atom Ni occurs. Also, in situ X-ray absorption near-edge structure (XANES) demonstrates the structural stability of the hybrid catalyst during eCO2RR. By modulating hybrid compositions, the optimized catalyst shows 66% Faradaic efficiency (FE) in an alkaline flow cell with over 100 mA·cm-2 at -0.5 V versus reversible hydrogen electrode, leading to a five-order enhancement in C2H4 selectivity compared with single-component Cu NWs.

19.
BMC Ophthalmol ; 22(1): 456, 2022 Nov 28.
Article En | MEDLINE | ID: mdl-36443719

BACKGROUND: Pathogenesis of posterior capsular opacification (PCO) was related to pathological epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs). It has been reported that blue light could have an effect on EMT. This study aims to elucidate the role and potential mechanism of autophagy in EMT after blue light exposure in LECs. METHODS: HLE-B3 cells were treated with TGF-ß2 with different concentration and time to induce EMT as a model of PCO in vitro. Cells were exposed to blue light with or without TGF-ß2. The expression levels of EMT-associated markers were analyzed by qRT-PCR, western blotting and cell migration ability was determined by transwell migration assay and wound healing assay. The expressions of autophagy-related proteins were analyzed by western blotting, immunofluorescence and transmission electron microscopy. Rapamycin and chloroquine were utilized in cells for autophagy activation and inhibition. RESULTS: TGF-ß2 induced autophagy activation during EMT progression in HLE-B3 cells in a dose- and time-dependent manner. Blue light exposure inhibited TGF-ß2-induced EMT characterized by inhibited expression of EMT related markers and reduced migration capacity. Meanwhile, blue light exposure impaired autophagy activated by TGF-ß2. Furthermore, Autophagy activation with rapamycin rescued EMT attenuated by blue light. Autophagy inhibition with chloroquine reduced TGF-ß2-induced EMT in HLE-B3 cells. CONCLUSION: Blue light exposure had inhibited effects on TGF-ß2-induced EMT in LECs through autophagy impairment, which provides a new insight on prevention and treatment of PCO.


Epithelial-Mesenchymal Transition , Transforming Growth Factor beta2 , Humans , Autophagy , Chloroquine , Epithelial Cells , Sirolimus , Transforming Growth Factor beta2/pharmacology , Light
20.
BMC Ophthalmol ; 22(1): 451, 2022 Nov 24.
Article En | MEDLINE | ID: mdl-36418970

BACKGROUND: Changes in the retina and choroid blood vessels are regularly observed in myopia. However, if the retinal glial cells, which directly contact blood vessels, play a role in mammalian myopia is unknown. We aimed to explore the potential role and mechanism of retinal glial cells in form deprived myopia. METHODS: We adapted the mice form-deprivation myopia model by covering the right eye and left the left eye open for control, measured the ocular structure with anterior segment optical coherence tomography, evaluated changes in the morphology and distribution of retinal glial cells by fluorescence staining and western blotting; we also searched the online GEO databases to obtain relative gene lists and confirmed them in the form-deprivation myopia mouse retina at mRNA and protein level. RESULTS: Compared with the open eye, the ocular axial length (3.54 ± 0.006 mm v.s. 3.48 ± 0.004 mm, p = 0.027) and vitreous chamber depth (3.07 ± 0.005 mm v.s. 2.98 ± 0.006 mm, p = 0.007) in the covered eye became longer. Both glial fibrillary acidic protein and excitatory amino acid transporters 4 elevated. There were 12 common pathways in human myopia and anoxic astrocytes. The key proteins were also highly relevant to atropine target proteins. In mice, two common pathways were found in myopia and anoxic Müller cells. Seven main genes and four key proteins were significantly changed in the mice form-deprivation myopia retinas. CONCLUSION: Retinal astrocytes and Müller cells were activated in myopia. They may response to stimuli and secretory acting factors, and might be a valid target for atropine.


Ependymoglial Cells , Myopia , Humans , Mice , Animals , Astrocytes , Neuroglia , Atropine , Retina , Disease Models, Animal , Hypoxia , Mammals
...