Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 383, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896301

RESUMEN

Herpes simplex virus type 1 (HSV-1) plays an important role in the field of gene therapy and viral vaccines, especially as an oncolytic virus. However, the mass production of HSV-1 viral vectors remains a challenge in the industry. In this study, a microcarrier-mediated serum-reduced medium culture was used to improve the bioprocess of HSV-1 production and increase HSV-1 yields. The composition of the culture media, which included a basal medium, serum concentration, and glutamine additive, was optimized. The process was successfully conducted in a 1 L bioreactor, and virus production was threefold greater than that of conventional processes with a 10% serum medium. The bead-to-bead transfer process was also developed to further increase scalability. In spinner flasks, the detachment rate increased from 49.4 to 80.6% when combined agitation was performed during digestion; the overall recovery proportion increased from 37.9 to 71.1% after the operational steps were optimized. Specifically, microcarrier loss was reduced during aspiration and transfer, and microcarriers and detached cells were separated with filters. Comparable cell growth was achieved with the baseline process using 2D culture as the inoculum by exchanging the subculture medium. To increase virus production after bead-to-bead transfer, critical parameters, including shear stress during digestion, TrypLE and EDTA concentrations in the subculture, and the CCI, were identified from 47 parameters via correlation analysis and principal component analysis. The optimized bead-to-bead transfer process achieved an average of 90.4% overall recovery and comparable virus production compared to that of the baseline process. This study is the first to report the optimization of HSV-1 production in Vero cells cultured on microcarriers in serum-reduced medium after bead-to-bead transfer. KEY POINTS: • An HSV-1 production process was developed that involves culturing in serum-reduced medium, and this process achieved threefold greater virus production than that of traditional processes. • An indirect bead-to-bead transfer process was developed with over 90% recovery yield in bioreactors. • HSV-1 production after bead-to-bead transfer was optimized and was comparable to that achieved with 2D culture as inoculum.


Asunto(s)
Reactores Biológicos , Medios de Cultivo , Herpesvirus Humano 1 , Cultivo de Virus , Herpesvirus Humano 1/crecimiento & desarrollo , Reactores Biológicos/virología , Medios de Cultivo/química , Chlorocebus aethiops , Cultivo de Virus/métodos , Células Vero , Animales
2.
Front Plant Sci ; 15: 1408602, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38867882

RESUMEN

Fruit length (FL) is an important economical trait that affects fruit yield and appearance. Pumpkin (Cucurbita moschata Duch) contains a wealth genetic variation in fruit length. However, the natural variation underlying differences in pumpkin fruit length remains unclear. In this study, we constructed a F2 segregate population using KG1 producing long fruit and MBF producing short fruit as parents to identify the candidate gene for fruit length. By bulked segregant analysis (BSA-seq) and Kompetitive Allele-Specific PCR (KASP) approach of fine mapping, we obtained a 50.77 kb candidate region on chromosome 14 associated with the fruit length. Then, based on sequence variation, gene expression and promoter activity analyses, we identified a candidate gene (CmoFL1) encoding E3 ubiquitin ligase in this region may account for the variation of fruit length. One SNP variation in promoter of CmoFL1 changed the GT1CONSENSUS, and DUAL-LUC assay revealed that this variation significantly affected the promoter activity of CmoFL1. RNA-seq analysis indicated that CmoFL1 might associated with the cell division process and negatively regulate fruit length. Collectively, our work identifies an important allelic affecting fruit length, and provides a target gene manipulating fruit length in future pumpkin breeding.

3.
Head Neck ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867407

RESUMEN

BACKGROUND: Ear and temporal bone squamous cell carcinoma (ETBSCC) is a rare and aggressive malignant tumor with minimal clinicopathological studies. The object of this study was to retrospectively evaluate the predictive effect of clinicopathological variables on the 5-year overall survival (OS) rate of ETBSCC patients in a single tertiary medical center in Tianjin, China. METHODS: A cohort of 44 patients with diagnosed ETBSCC from December 2012 to August 2022 were retrospectively studied. Univariate and multivariate analysis were, respectively, performed for the assessment of clinicopathological predictors, including sex, age, history of chronic suppurative otitis media (CSOM), lesion side, diameter, the choice of surgical approach, parotidectomy, neck dissection, adjuvant therapies, T stage, lymph node metastasis, tumor grade, margin, perineural invasion (PNI), and Ki-67 index. RESULTS: Seventeen females and 27 males were included, with the mean age of 65 years old, ranging from 36 to 89 years. The 5-year OS rate was 43% (mean 51 months, 95% confidence interval [CI] = 39-64). Significant prediction of a worse prognosis for 5-year OS rate was observed under univariate analysis for advanced T stage, positive margin, identified PNI, and higher Ki-67 index, respectively. Advanced T stage was confirmed to be an independent prognostic factor strongly affecting 5-year OS rate among this cohort of patients using a multivariate cox proportional hazard model. CONCLUSION: We found that clinicopathological parameters, especially postoperative pathological parameters, play a critical role in predicting the prognosis of ETBSCC patients.

4.
Hortic Res ; 11(4): uhae054, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38706581

RESUMEN

Lily bulbils, which serve as advantageous axillary organs for vegetative propagation, have not been extensively studied in terms of the mechanism of bulbil initiation. The functions of auxin and sucrose metabolism have been implicated in axillary organ development, but their relationship in regulating bulbil initiation remains unclear. In this study, exogenous indole-3-acetic acid (IAA) treatment increased the endogenous auxin levels at leaf axils and significantly decreased bulbil number, whereas treatment with the auxin polar transport inhibitor N-1-naphthylphthalamic acid (NPA), which resulted in a low auxin concentration at leaf axils, stimulated bulbil initiation and increased bulbil number. A low level of auxin caused by NPA spraying or silencing of auxin biosynthesis genes YUCCA FLAVIN MONOOXYGENASE-LIKE 6 (LlYUC6) and TRYPTOPHAN AMINOTRANSFERASERELATED 1 (LlTAR1) facilitated sucrose metabolism by activating the expression of SUCROSE SYNTHASES 1 (LlSusy1) and CELL WALL INVERTASE 2 (LlCWIN2), resulting in enhanced bulbil initiation. Silencing LlSusy1 or LlCWIN2 hindered bulbil initiation. Moreover, the transcription factor BASIC HELIX-LOOP-HELIX 35 (LlbHLH35) directly bound the promoter of LlSusy1, but not the promoter of LlCWIN2, and activated its transcription in response to the auxin content, bridging the gap between auxin and sucrose metabolism. In conclusion, our results reveal that an LlbHLH35-LlSusy1 module mediates auxin-regulated sucrose metabolism during bulbil initiation.

5.
BMC Plant Biol ; 24(1): 290, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627629

RESUMEN

BACKGROUND: Flesh firmness is a critical factor that influences fruit storability, shelf-life and consumer's preference as well. However, less is known about the key genetic factors that are associated with flesh firmness in fresh fruits like watermelon. RESULTS: In this study, through bulk segregant analysis (BSA-seq), we identified a quantitative trait locus (QTL) that influenced variations in flesh firmness among recombinant inbred lines (RIL) developed from cross between the Citrullus mucosospermus accession ZJU152 with hard-flesh and Citrullus lanatus accession ZJU163 with soft-flesh. Fine mapping and sequence variations analyses revealed that ethylene-responsive factor 1 (ClERF1) was the most likely candidate gene for watermelon flesh firmness. Furthermore, several variations existed in the promoter region between ClERF1 of two parents, and significantly higher expressions of ClERF1 were found in hard-flesh ZJU152 compared with soft-flesh ZJU163 at key developmental stages. DUAL-LUC and GUS assays suggested much stronger promoter activity in ZJU152 over ZJU163. In addition, the kompetitive allele-specific PCR (KASP) genotyping datasets of RIL populations and germplasm accessions further supported ClERF1 as a possible candidate gene for fruit flesh firmness variability and the hard-flesh genotype might only exist in wild species C. mucosospermus. Through yeast one-hybrid (Y1H) and dual luciferase assay, we found that ClERF1 could directly bind to the promoters of auxin-responsive protein (ClAux/IAA) and exostosin family protein (ClEXT) and positively regulated their expressions influencing fruit ripening and cell wall biosynthesis. CONCLUSIONS: Our results indicate that ClERF1 encoding an ethylene-responsive factor 1 is associated with flesh firmness in watermelon and provide mechanistic insight into the regulation of flesh firmness, and the ClERF1 gene is potentially applicable to the molecular improvement of fruit-flesh firmness by design breeding.


Asunto(s)
Citrullus , Citrullus/genética , Citrullus/metabolismo , Fitomejoramiento , Sitios de Carácter Cuantitativo/genética , Frutas/genética , Etilenos/metabolismo , Regiones Promotoras Genéticas/genética
6.
J Med Virol ; 96(4): e29612, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38639291

RESUMEN

To explore the association and impact between viral myocarditis and mortality in patients with severe fever with thrombocytopenia syndrome. A dynamic analysis was conducted between fatal group and nonfatal group regarding the daily epidemiology data, clinical symptoms, and electrocardiogram (ECG), echocardiogram, and laboratory findings. Outcomes of patients with and without viral myocarditis were compared. The association between viral myocarditis and mortality was analyzed. Among 183 severe fever with thrombocytopenia syndrome patients, 32 were in the fatal group and 151 in the nonfatal group; there were 26 (81.25%) with viral myocarditis in the fatal group, 66 (43.70%) with viral myocarditis in the nonfatal group (p < 0.001), 79.35% of patients had abnormal ECG results. The abnormal rate of ECG in the fatal group was 100%, and in the nonfatal group was 74.83%. Univariate analysis found that the number of risk factors gradually increased on Day 7 of the disease course and reached the peak on Day 10. Combined with the dynamic analysis of the disease course, alanine aminotransferase, aspartate aminotransferase, creatine kinase, creatine kinase fraction, lactate dehydrogenase, hydroxybutyrate dehydrogenase, neutrophil count, serum creatinine, Na, Ca, carbon dioxide combining power, amylase, lipase, activated partial thromboplastin time and thrombin time had statistically significant impact on prognosis. The incidence of fever with thrombocytopenia syndrome combined with viral myocarditis is high, especially in the fatal group of patients. Viral myocarditis is closely related to prognosis and is an early risk factor. The time point for changes in myocarditis is Day 7 of the course of the disease.


Asunto(s)
Miocarditis , Síndrome de Trombocitopenia Febril Grave , Virosis , Humanos , Miocarditis/complicaciones , Miocarditis/epidemiología , Prevalencia , Virosis/complicaciones , Virosis/epidemiología , Fiebre/epidemiología , Progresión de la Enfermedad
7.
Nat Genet ; 56(5): 992-1005, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38649710

RESUMEN

Cowpeas (tropical legumes) are important in ensuring food and nutritional security in developing countries, especially in sub-Saharan Africa. Herein, we report two high-quality genome assemblies of grain and vegetable cowpeas and we re-sequenced 344 accessions to characterize the genomic variations landscape. We identified 39 loci for ten important agronomic traits and more than 541 potential loci that underwent selection during cowpea domestication and improvement. In particular, the synchronous selections of the pod-shattering loci and their neighboring stress-relevant loci probably led to the enhancement of pod-shattering resistance and the compromise of stress resistance during the domestication from grain to vegetable cowpeas. Moreover, differential selections on multiple loci associated with pod length, grain number per pod, seed weight, pod and seed soluble sugars, and seed crude proteins shaped the yield and quality diversity in cowpeas. Our findings provide genomic insights into cowpea domestication and improvement footprints, enabling further genome-informed cultivar improvement of cowpeas.


Asunto(s)
Domesticación , Genoma de Planta , Sitios de Carácter Cuantitativo , Selección Genética , Vigna , Vigna/genética , Fitomejoramiento/métodos , Fenotipo , Genómica/métodos , Semillas/genética , Productos Agrícolas/genética , Polimorfismo de Nucleótido Simple , Variación Genética
8.
Theor Appl Genet ; 137(5): 98, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592431

RESUMEN

KEY MESSAGE: The ClLOG gene encoding a cytokinin riboside 5'-monophosphate phosphoribohydrolase determines trichome length in watermelon, which is associated with its promoter variations. Trichomes, which are differentiated from epidermal cells, are special accessory structures that cover the above-ground organs of plants and possibly contribute to biotic and abiotic stress resistance. Here, a bulked segregant analysis (BSA) of an F2 population with significant variations in trichome length was undertaken. A 1.84-Mb candidate region on chromosome 10 was associated with trichome length. Resequencing and fine-mapping analyses indicated that a 12-kb structural variation in the promoter of Cla97C10G203450 (ClLOG) led to a significant expression difference in this gene in watermelon lines with different trichome lengths. In addition, a virus-induced gene silencing analysis confirmed that ClLOG positively regulated trichome elongation. These findings provide new information and identify a potential target gene for controlling multicellular trichome elongation in watermelon.


Asunto(s)
Citocininas , Tricomas , Tricomas/genética , Glicósidos , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN
9.
Proc Natl Acad Sci U S A ; 121(11): e2315550121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437556

RESUMEN

TAX1BP1, a multifunctional autophagy adaptor, plays critical roles in different autophagy processes. As an autophagy receptor, TAX1BP1 can interact with RB1CC1, NAP1, and mammalian ATG8 family proteins to drive selective autophagy for relevant substrates. However, the mechanistic bases underpinning the specific interactions of TAX1BP1 with RB1CC1 and mammalian ATG8 family proteins remain elusive. Here, we find that there are two distinct binding sites between TAX1BP1 and RB1CC1. In addition to the previously reported TAX1BP1 SKICH (skeletal muscle and kidney enriched inositol phosphatase (SKIP) carboxyl homology)/RB1CC1 coiled-coil interaction, the first coiled-coil domain of TAX1BP1 can directly bind to the extreme C-terminal coiled-coil and Claw region of RB1CC1. We determine the crystal structure of the TAX1BP1 SKICH/RB1CC1 coiled-coil complex and unravel the detailed binding mechanism of TAX1BP1 SKICH with RB1CC1. Moreover, we demonstrate that RB1CC1 and NAP1 are competitive in binding to the TAX1BP1 SKICH domain, but the presence of NAP1's FIP200-interacting region (FIR) motif can stabilize the ternary TAX1BP1/NAP1/RB1CC1 complex formation. Finally, we elucidate the molecular mechanism governing the selective interactions of TAX1BP1 with ATG8 family members by solving the structure of GABARAP in complex with the non-canonical LIR (LC3-interacting region) motif of TAX1BP1, which unveils a unique binding mode between LIR and ATG8 family protein. Collectively, our findings provide mechanistic insights into the interactions of TAX1BP1 with RB1CC1 and mammalian ATG8 family proteins and are valuable for further understanding the working mode and function of TAX1BP1 in autophagy.


Asunto(s)
Autofagia , Proteínas de Ciclo Celular , Animales , Familia de las Proteínas 8 Relacionadas con la Autofagia , Sitios de Unión , Riñón , Mamíferos
10.
Plant Biotechnol J ; 22(5): 1325-1334, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38213067

RESUMEN

Cytoplasmic male sterility (CMS), encoded by the mitochondrial open reading frames (ORFs), has long been used to economically produce crop hybrids. However, the utilization of CMS also hinders the exploitation of sterility and fertility variation in the absence of a restorer line, which in turn narrows the genetic background and reduces biodiversity. Here, we used a mitochondrial targeted transcription activator-like effector nuclease (mitoTALENs) to knock out ORF138 from the Ogura CMS broccoli hybrid. The knockout was confirmed by the amplification and re-sequencing read mapping to the mitochondrial genome. As a result, knockout of ORF138 restored the fertility of the CMS hybrid, and simultaneously manifested a cold-sensitive male sterility. ORF138 depletion is stably inherited to the next generation, allowing for direct use in the breeding process. In addition, we proposed a highly reliable and cost-effective toolkit to accelerate the life cycle of fertile lines from CMS-derived broccoli hybrids. By applying the k-mean clustering and interaction network analysis, we identified the central gene networks involved in the fertility restoration and cold-sensitive male sterility. Our study enables mitochondrial genome editing via mitoTALENs in Brassicaceae vegetable crops and provides evidence that the sex production machinery and its temperature-responsive ability are regulated by the mitochondria.


Asunto(s)
Brassica , Infertilidad Masculina , Masculino , Humanos , Brassica/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción , Fitomejoramiento , Mitocondrias/genética , Fertilidad/genética , Infertilidad Vegetal/genética
11.
Sci Rep ; 14(1): 1545, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233457

RESUMEN

Dynamic miRNA detection using the qRT-PCR technique requires appropriate reference genes to ensure data reliability. Previous studies have screened internal reference genes in plants during embryonic development and various stress treatment, involving relatively few tissues and organs. There is no relevant miRNA study in Lilium henryi Baker and limited research on the optimal miRNA reference genes in lilies, such as 5S, 18S, U6 and Actin. Twelve genes were selected as candidate reference genes whose expression stability was analyzed in petals at different developmental stages and other tissues using various algorithms, such as geNorm, NormFinder, BestKeeper, and Delta CT. The results revealed that the optimal combination of reference genes for Lilium henryi Baker petals at different developmental stages was osa-miR166m and osa-miR166a-3p, while that for different tissues of Lilium henryi Baker was osa-miR166g-3p and osa-miR166a-3p.Four important genes related to growth and development regulation, namely, osa-miR156a, osa-miR395b, osa-miR396a-3p, and osa-miR396a-5p, were selected for validation. The findings of the present study could contribute to future investigations onmiRNA expression and the related functions in Lilium henryi Baker while providing important references for the normalization of the miRNA expression in other varieties of lily.


Asunto(s)
Lilium , MicroARNs , Femenino , Embarazo , Humanos , Lilium/genética , Reproducibilidad de los Resultados , Reacción en Cadena en Tiempo Real de la Polimerasa , MicroARNs/genética , Actinas/genética , Estándares de Referencia , Perfilación de la Expresión Génica
12.
aBIOTECH ; 4(3): 257-266, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37970471

RESUMEN

Tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus, was first reported to infect tomato and has recently spread rapidly as an emerging disease to Cucurbitaceae crops. To date, the virus has been reported to infect more than 11 cucurbit crops, in 16 countries and regions, causing severe yield losses. In autumn 2022, ToLCNDV was first isolated from cucurbit plants in Southeastern coastal areas of China. Phylogenetic analysis established that these isolates belong to the Asian ToLCNDV clade, and shared high nucleotide identity and closest genetic relationship with the DNA-A sequence from the Chinese tomato-infecting ToLCNDV isolate (Accession no. OP356207) and the tomato New Delhi ToLCNDV-Severe isolate (Accession no. HM159454). In this review, we summarize the occurrence and distribution, host range, detection and diagnosis, control strategies, and genetic resistance of ToLCNDV in the Cucurbitaceae. We then summarize pathways that could be undertaken to improve our understanding of this emerging disease, with the objective to develop ToLCNDV-resistant cucurbit cultivars. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-023-00118-4.

13.
Sci Adv ; 9(41): eadi4599, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37831767

RESUMEN

Heme-oxidized IRP2 ubiquitin ligase 1 (HOIL-1L) serves as a unique E3 ligase to catalyze the mono-ubiquitination of relevant protein or sugar substrates and plays vital roles in numerous cellular processes in mammals. However, the molecular mechanism underpinning the E3 activity of HOIL-1L and the related regulatory mechanism remain elusive. Here, we report the crystal structure of the catalytic core region of HOIL-1L and unveil the key catalytic triad residues of HOIL-1L. Moreover, we discover that HOIL-1L contains two distinct linear di-ubiquitin binding sites that can synergistically bind to linear tetra-ubiquitin, and the binding of HOIL-1L with linear tetra-ubiquitin can promote its E3 activity. The determined HOIL-1L/linear tetra-ubiquitin complex structure not only elucidates the detailed binding mechanism of HOIL-1L with linear tetra-ubiquitin but also uncovers a unique allosteric ubiquitin-binding site for the activation of HOIL-1L. In all, our findings provide mechanistic insights into the E3 activity of HOIL-1L and its regulation by the linear ubiquitin chain binding.


Asunto(s)
Ubiquitina-Proteína Ligasas , Ubiquitina , Animales , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Unión Proteica , Ubiquitina/metabolismo , Sitios de Unión , Mamíferos/metabolismo
14.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37894985

RESUMEN

Lily (Lilium spp.) is a popular ornamental plant. Traditional genetic transformation methods have low efficiency in lily, thus development of a high-efficiency genetic transformation system is important. In this study, a novel transient transformation method involving pollen magnetofection was established and optimized pollen viability, and exogenous gene expression in magnetofected pollen and that of different germplasm were assessed. The highest germination percentage of Lilium regale pollen was 85.73% in medium containing 100 g/L sucrose, 61.5 mg/L H3BO3, and 91.5 mg/L CaCl2. A 1:4 ratio of nanomagnetic beads to DNA plasmid and transformation time of 0.5 h realized the highest transformation efficiency (88.32%). The GFP activity in transformed pollen averaged 69.66%, while that of the control pollen was 0.00%. In contrast to the control, transgenic seedlings obtained by pollination with magnetofected pollen showed strong positive GUS activity with 56.34% transformation efficiency. Among the lily germplasm tested, 'Sweet Surrender' and L. leucanthum had the highest transformation efficiency (85.80% and 54.47%), whereas L. davidii var. willmottiae was not successfully transformed. Transformation efficiency was positively correlated with pollen equatorial diameter and negatively correlated with polar axis/equatorial diameter ratio. The results suggest that pollen magnetofection-mediated transformation can be applied in Lilium but might have species or cultivar specificity.


Asunto(s)
Lilium , Lilium/genética , Lilium/metabolismo , Polen/genética , Polen/metabolismo , Proteínas de Plantas/genética
15.
Chemphyschem ; 24(22): e202300376, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37584533

RESUMEN

The TiO2 /MAPbI3 (MA=CH3 NH3 ) interfaces have manifested correlation with current-voltage hysteresis in perovskite solar cells (PSCs) under light illumination conditions, but the relations between the photo-induced charge transfer and the collective polarization response of the dipolar MA cations are largely unexplored. In this work, we adopt density functional theory (DFT) and time-dependent DFT approach to study the light-triggered charge transfer across the TiO2 /MAPbI3 interfaces with MAI- and PbI-exposed terminations. It is found that regardless of the surface exposure of the MAPbI3 , the photo-induced charge transfer varies when going from the ground-state geometries to the excited-state configurations. Besides, thanks to the electrostatic interactions between the ends of MA cations and the photogenerated electrons, the photo-induced charge transfer across the interfaces is enhanced (weakened) by the negatively (positively) charged CH3 (NH3 ) moieties of the MA species. Resultantly, the positively charged iodine vacancies at the TiO2 /MAPbI3 interfaces tend to inhibit the charge transfer induced by light. Combining with the energy level alignment which is significantly modulated by the orientation of the MA species at the interfaces, the dipolar MA cations might be a double-edge sword for the hysteresis in PSCs with the TiO2 /MAPbI3 interfaces.

16.
Theor Appl Genet ; 136(9): 199, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37624448

RESUMEN

KEY MESSAGE: The ClACO gene encoding 1-aminocyclopropane-1-carboxylate oxidase enabled highly efficient 15N uptake in watermelon. Nitrogen is one of the most essential nutrient elements that play a pivotal role in regulating plant growth and development for crop productivity. Elucidating the genetic basis of high nitrogen uptake is the key to improve nitrogen use efficiency for sustainable agricultural productivity. Whereas previous researches on nitrogen absorption process are mainly focused on a few model plants or crops. To date, the causal genes that determine the efficient nitrogen uptake of watermelon have not been mapped and remains largely unknown. Here, we fine-mapped the 1-aminocyclopropane-1-carboxylate oxidase (ClACO) gene associated with nitrogen uptake efficiency in watermelon via bulked segregant analysis (BSA). The variations in the ClACO gene led to the changes of gene expression levels between two watermelon accessions with different nitrogen uptake efficiencies. Intriguingly, in terms of the transcript abundance of ClACO, it was concomitant with significant differences in ethylene evolutions in roots and root architectures between the two accessions and among the different genotypic offsprings of the recombinant BC2F1(ZJU132)-18. These findings suggest that ethylene as a negative regulator altered nitrogen uptake efficiency in watermelon by controlling root development. In conclusion, our current study will provide valuable target gene for precise breeding of 'green' watermelon varieties with high-nitrogen uptake efficiencies.


Asunto(s)
Etilenos , Fitomejoramiento , Alelos , Nitrógeno
17.
Plant Physiol ; 193(2): 1330-1348, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37477947

RESUMEN

Sweetness and appearance of fresh fruits are key palatable and preference attributes for consumers and are often controlled by multiple genes. However, fine-mapping the key loci or genes of interest by single genome-based genetic analysis is challenging. Herein, we present the chromosome-level genome assembly of 1 landrace melon accession (Cucumis melo ssp. agrestis) with wild morphologic features and thus construct a melon pan-genome atlas via integrating sequenced melon genome datasets. Our comparative genomic analysis reveals a total of 3.4 million genetic variations, of which the presence/absence variations (PAVs) are mainly involved in regulating the function of genes for sucrose metabolism during melon domestication and improvement. We further resolved several loci that are accountable for sucrose contents, flesh color, rind stripe, and suture using a structural variation (SV)-based genome-wide association study. Furthermore, via bulked segregation analysis (BSA)-seq and map-based cloning, we uncovered that a single gene, (CmPIRL6), determines the edible or inedible characteristics of melon fruit exocarp. These findings provide important melon pan-genome information and provide a powerful toolkit for future pan-genome-informed cultivar breeding of melon.


Asunto(s)
Cucumis melo , Cucurbitaceae , Mapeo Cromosómico , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Genes de Plantas , Cucumis melo/genética , Frutas/genética , Frutas/metabolismo
18.
Nano Lett ; 23(13): 5927-5933, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37345875

RESUMEN

Electrical control of magnetic properties is crucial for low-energy memory and logic spintronic devices. We find that the magnetic properties of ferrimagnetic CoGd can be altered through ionic liquid gating. Gate voltages manipulate the opposite magnetic moments in Co and Gd sublattices and induce a giant magnetic compensation temperature change of more than 200 K in Pt/CoGd/Pt heterostructures. The electrically controlled dominant magnetic sublattice allows voltage-induced magnetization switching. Both experiments and theoretical calculations demonstrate that the significant modulations of compensation temperature are relevant to the reduced Gd moments due to the presence of hydrogen ions at positive voltages as well as the enhanced Co moments and reduced Gd moments due to the injection of oxygen ions at negative voltages. These findings expand the possibilities for all-electric and reversible magnetization control in the field of spintronics.

19.
Nat Commun ; 14(1): 3436, 2023 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-37301868

RESUMEN

Oxepinone rings represent one of structurally unusual motifs of natural products and the biosynthesis of oxepinones is not fully understood. 1,5-Seco-vibralactone (3) features an oxepinone motif and is a stable metabolite isolated from mycelial cultures of the mushroom Boreostereum vibrans. Cyclization of 3 forms vibralactone (1) whose ß-lactone-fused bicyclic core originates from 4-hydroxybenzoate, yet it remains elusive how 4-hydroxybenzoate is converted to 3 especially for the oxepinone ring construction in the biosynthesis of 1. In this work, using activity-guided fractionation together with proteomic analyses, we identify an NADPH/FAD-dependent monooxygenase VibO as the key enzyme performing a crucial ring-expansive oxygenation on the phenol ring to generate the oxepin-2-one structure of 3. The crystal structure of VibO reveals that it forms a dimeric phenol hydroxylase-like architecture featured with a unique substrate-binding pocket adjacent to the bound FAD. Computational modeling and solution studies provide insight into the likely VibO active site geometry, and suggest possible involvement of a flavin-C4a-OO(H) intermediate.


Asunto(s)
Oxigenasas de Función Mixta , Proteómica , Lactonas/metabolismo , Flavinas , Flavina-Adenina Dinucleótido
20.
Sci Adv ; 9(9): eadf0824, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36857448

RESUMEN

Macroautophagy plays crucial roles in the regulation of cellular physiology and requires de novo synthesis of double-membrane autophagosomes, which relies on a specific interaction between autophagy-related 16L1 (ATG16L1) and WD repeat domain phosphoinositide-interacting protein 2b (WIPI2b). However, the molecular mechanism governing the interaction of ATG16L1 with WIPI2b remains elusive. Here, we find that ATG16L1 has two distinct binding sites for interacting with WIPI2b, the previously reported WIPI2b-binding site (WBS1) and the previously unidentified site (WBS2). We determine the crystal structures of WIPI2b with ATG16L1 WBS1 and WBS2, respectively, and elucidate the molecular mechanism underpinning the recruitment of ATG16L1 by WIPI2b. Moreover, we uncover that ATG16L1 WBS2 and its binding mode with WIPI2b is well conserved from yeast to mammals, unlike ATG16L1 WBS1. Last, our cell-based functional assays demonstrate that both ATG16L1 WBS1 and WBS2 are required for the effective autophagic flux. In conclusion, our findings provide mechanistic insights into the key ATG16L1/WIPI2b interaction in autophagy.


Asunto(s)
Autofagosomas , Autofagia , Animales , Sitios de Unión , Fosfatidilinositoles , Saccharomyces cerevisiae , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...