Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neuroreport ; 35(4): 250-257, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38305103

RESUMEN

Neuroinflammation is intimately associated with poor prognosis in patients with subarachnoid hemorrhage (SAH). Alpha-lipoic acid (ALA), a disulfide antioxidant, has been shown to be neuroprotective in an in vivo model of neurological injury; however, the role of ALA in SAH has never been evaluated. In this study, the Sprague-Dawley rats SAH model was induced by endovascular perforation method. ALA was transplanted intravenously into rats, and SR-717, a stimulator of interferon genes (STING) agonist, was injected intraperitoneally. The effects of ALA on early brain injury were assayed by neurological score, hematoxylin and eosin staining and Nissl staining. Immunohistochemistry staining and Western blotting were used to analyze various proteins. ALA significantly reduced STING- NLRP3 protein expression and decreased cell death, which in turn mitigated the neurobehavioral dysfunction following SAH. Furthermore, coadministration of ALA and SR-717 promoted STING-NLRP3 signaling pathway activation following SAH, which reversed the inhibitory effect of ALA on STING-NLRP3 protein activation and increased the neurological deficits. In conclusion, ALA may be a promising therapeutic strategy for alleviating early brain injury after SAH.


Asunto(s)
Lesiones Encefálicas , Hemorragia Subaracnoidea , Ácido Tióctico , Humanos , Ratas , Animales , Ratas Sprague-Dawley , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ácido Tióctico/farmacología , Ácido Tióctico/uso terapéutico , Ácido Tióctico/metabolismo , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/tratamiento farmacológico , Hemorragia Subaracnoidea/metabolismo , Transducción de Señal , Lesiones Encefálicas/metabolismo
2.
Mol Cells ; 40(2): 133-142, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28190323

RESUMEN

Previous studies have shown that bone marrow mesenchymal stromal cell (MSC) transplantation significantly improves the recovery of neurological function in a rat model of intracerebral hemorrhage. Potential repair mechanisms involve anti-inflammation, anti-apoptosis and angiogenesis. However, few studies have focused on the effects of MSCs on inducible nitric oxide synthase (iNOS) expression and subsequent peroxynitrite formation after hypertensive intracerebral hemorrhage (HICH). In this study, MSCs were transplanted intracerebrally into rats 6 hours after HICH. The modified neurological severity score and the modified limb placing test were used to measure behavioral outcomes. Blood-brain barrier disruption and neuronal loss were measured by zonula occludens-1 (ZO-1) and neuronal nucleus (NeuN) expression, respectively. Concomitant edema formation was evaluated by H&E staining and brain water content. The effect of MSCs treatment on neuroinflammation was analyzed by immunohistochemical analysis or polymerase chain reaction of CD68, Iba1, iNOS expression and subsequent peroxynitrite formation, and by an enzyme-linked immunosorbent assay of pro-inflammatory factors (IL-1ß and TNF-α). The MSCs-treated HICH group showed better performance on behavioral scores and lower brain water content compared to controls. Moreover, the MSC injection increased NeuN and ZO-1 expression measured by immunochemistry/immunofluorescence. Furthermore, MSCs reduced not only levels of CD68, Iba1 and pro-inflammatory factors, but it also inhibited iNOS expression and peroxynitrite formation in perihematomal regions. The results suggest that intracerebral administration of MSCs accelerates neurological function recovery in HICH rats. This may result from the ability of MSCs to suppress inflammation, at least in part, by inhibiting iNOS expression and subsequent peroxynitrite formation.


Asunto(s)
Hemorragia Intracraneal Hipertensiva/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/fisiología , Animales , Modelos Animales de Enfermedad , Hemoglobinas/metabolismo , Masculino , Distribución Aleatoria , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA