Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 136
1.
Front Vet Sci ; 11: 1388227, 2024.
Article En | MEDLINE | ID: mdl-38711536

Diarrhea is a common gastrointestinal disorder in horses, with diet-induced diarrhea being an emerging challenge. This study aimed to investigate the gut microbiota differences in healthy and diet-induced diarrheic horses and evaluate the effectiveness of fecal microbiota transplantation (FMT) and carbonate buffer mixture (CBM) as potential therapeutic approaches. Twenty healthy horses were included in the study, with four groups: Control, Diarrhea, CBM, and FMT. Diarrhea was induced using oligofructose, and fecal samples were collected for microbiota analysis. FMT and CBM treatments were administered orally using donor fecal matter, and formula mixture, respectively. Clinical parameters, serum levels, intestinal tissue histopathology, and fecal microbiota profiles were evaluated. The results showed that diarrhea induction disbalanced the gut microbiota with decreased diversity and richness, affected clinical parameters including elevated body temperature and diarrhea score, and decreased fecal pH, increased inflammatory responses such as increased serum LPS, IL-17A, lactic acid and total protein, and caused damage in the colon tissue. CBM and FMT treatments altered the gut microbiota composition, restoring it towards a healthier profile compared to diarrheic, restored the gut microbiota composition to healthier states, improved clinical symptoms including decreased body temperature and diarrhea score, and increased fecal pH, decreased inflammatory responses such as increased serum LPS, IL-17A, lactic acid and total protein, and repaired tissue damage. CBM and FMT Spearman correlation analysis identified specific bacterial taxa associated with host parameters and inflammation. FMT and CBM treatments showed promising therapeutic effects in managing oligofructose-induced diarrhea in horses. The findings provide valuable insights into the management and treatment of diarrhea in horses and suggest the potential of combined CBM and FMT approaches for optimal therapeutic outcomes.

2.
Microb Pathog ; 187: 106509, 2024 Feb.
Article En | MEDLINE | ID: mdl-38185451

BACKGROUND: Mastitis is a serious disease which affects animal husbandry, particularly in cow breeding. The etiology of mastitis is complex and its pathological mechanism is not yet fully understood. Our previous research in clinical investigation has revealed that subclinical ketosis can increase the number of somatic cell counts (SCC) in milk, although the underlying mechanism remains unclear. Recent studies have further confirmed the significant role of mastitis. RESULTS: In this study, we aimed to examine the SCC, rumen microbiota, and metabolites in the milkmen of cows with subclinical ketosis. Additionally, we conducted a rumen microbiota transplant into mice to investigate the potential association between rumen microbiota disturbance and mastitis induced by subclinical ketosis in dairy cows. The study has found that cows with subclinical ketosis have a higher SCC in their milk compared to healthy cows. Additionally, there were significant differences in the rumen microbiota and the level of volatile fatty acid (VFA) between cows with subclinical ketosis and healthy cows. Moreover, transplanting the rumen microbiota from subclinical ketosis and mastitis cows into mice can induce mammary inflammation and liver function damage than transplanting the rumen flora from healthy dairy cows. CONCLUSIONS: In addition to the infection of mammary gland by pathogenic microorganisms, there is also an endogenous therapeutic pathway mediated by rumen microbiota. Targeted rumen microbiota modulation may be an effective way to prevent and control mastitis in dairy cows.


Ketosis , Mastitis, Bovine , Microbiota , Female , Animals , Cattle , Mice , Humans , Mastitis, Bovine/pathology , Rumen/metabolism , Ketosis/metabolism , Ketosis/veterinary , Milk , Lactation
3.
FASEB J ; 38(2): e23383, 2024 01 31.
Article En | MEDLINE | ID: mdl-38197892

Mastitis is the most frequent disease of cows and has well-recognized detrimental effects on animal wellbeing and dairy farm profitability. With the advent of the postantibiotic era, alternative antibiotic agents, especially probiotics, have received increasing attention in the treatment of mastitis. Based on research showing that Lactobacillus reuteri (L. reuteri) has anti-inflammatory effects, this study explored the protective effects and mechanisms of L. reuteri against mastitis induced by Staphylococcus aureus (S. aureus) in mice. First, mice with S. aureus-induced mastitis were orally administered L. reuteri, and the inflammatory response in the mammary gland was observed. The results showed that L. reuteri significantly inhibited S. aureus-induced mastitis. Moreover, the concentration of oxytocin (OT) and protein expression of oxytocin receptor (OTR) were measured, and inhibition of OTR or vagotomy reversed the protective effect of L. reuteri or its culture supernatant (LCS) on S. aureus-induced mastitis. In addition, in mouse mammary epithelial cells (MMECs), OT inhibited the inflammation induced by S. aureus by inhibiting the protein expression of OTR. It was suggested that L. reuteri protected against S. aureus-induced mastitis by releasing OT. Furthermore, microbiological analysis showed that the composition of the microbiota was altered, and the relative abundance of Lactobacillus was significantly increased in gut and mammary gland after treatment with L. reuteri or LCS. In conclusion, our study found the L. reuteri inhibited the mastitis-induced by S. aureus via promoting the release of OT, and treatment with L. reuteri increased the abundance of Lactobacillus in both gut and mammary gland.


Gastrointestinal Microbiome , Limosilactobacillus reuteri , Mastitis , Staphylococcal Infections , Female , Humans , Animals , Cattle , Mice , Oxytocin/pharmacology , Oxytocin/therapeutic use , Staphylococcus aureus , Mastitis/therapy , Receptors, Oxytocin , Lactobacillus
4.
J Adv Res ; 55: 159-171, 2024 Jan.
Article En | MEDLINE | ID: mdl-36822391

BACKGROUND: Mastitis is an inflammatory response in the mammary gland that results in huge economic losses in the breeding industry. The aetiology of mastitis is complex, and the pathogenesis has not been fully elucidated. It is commonly believed that mastitis is induced by pathogen infection of the mammary gland and induces a local inflammatory response. However, in the clinic, mastitis is often comorbid or secondary to gastric disease, and local control effects targeting the mammary gland are limited. In addition, recent studies have found that the gut/rumen microbiota contributes to the development of mastitis and proposed the gut/rumen-mammary gland axis. Combined with studies indicating that gut/rumen microbiota disturbance can damage the gut mucosa barrier, gut/rumen bacteria and their metabolites can migrate to distal extraintestinal organs. It is believed that the occurrence of mastitis is related not only to the infection of the mammary gland by external pathogenic microorganisms but also to a gastroenterogennic pathogenic pathway. AIM OF REVIEW: We propose the pathological concept of "gastroenterogennic mastitis" and believe that the gut/rumen-mammary gland axis-mediated pathway is the pathological mechanism of "gastroenterogennic mastitis". KEY SCIENTIFIC CONCEPTS OF REVIEW: To clarify the concept of "gastroenterogennic mastitis" by summarizing reports on the effect of the gut/rumen microbiota on mastitis and the gut/rumen-mammary gland axis-mediated pathway to provide a research basis and direction for further understanding and solving the pathogenesis and difficulties encountered in the prevention of mastitis.


Gastrointestinal Microbiome , Mastitis , Animals , Female , Humans , Rumen , Bacteria
5.
J Anim Sci Biotechnol ; 14(1): 157, 2023 Dec 20.
Article En | MEDLINE | ID: mdl-38124149

BACKGROUND: Mastitis is an inflammatory disease of the mammary gland that has serious economic impacts on the dairy industry and endangers food safety. Our previous study found that the body has a gut/rumen-mammary gland axis and that disturbance of the gut/rumen microbiota could result in 'gastroenterogenic mastitis'. However, the mechanism has not been fully clarified. Recently, we found that long-term feeding of a high-concentrate diet induced mastitis in dairy cows, and the abundance of Stenotrophomonas maltophilia (S. maltophilia) was significantly increased in both the rumen and milk microbiota. Accordingly, we hypothesized that 'gastroenterogenic mastitis' can be induced by the migration of endogenous gut bacteria to the mammary gland. Therefore, this study investigated the mechanism by which enterogenic S. maltophilia induces mastitis. RESULTS: First, S. maltophilia was labelled with superfolder GFP and administered to mice via gavage. The results showed that treatment with S. maltophilia promoted the occurrence of mastitis and increased the permeability of the blood-milk barrier, leading to intestinal inflammation and intestinal leakage. Furthermore, tracking of ingested S. maltophilia revealed that S. maltophilia could migrate from the gut to the mammary gland and induce mastitis. Subsequently, mammary gland transcriptome analysis showed that the calcium and AMPK signalling pathways were significantly upregulated in mice treated with S. maltophilia. Then, using mouse mammary epithelial cells (MMECs), we verified that S. maltophilia induces mastitis through activation of the calcium-ROS-AMPK-mTOR-autophagy pathway. CONCLUSIONS: In conclusion, the results showed that enterogenic S. maltophilia could migrate from the gut to the mammary gland via the gut-mammary axis and activate the calcium-ROS-AMPK-mTOR-autophagy pathway to induce mastitis. Targeting the gut-mammary gland axis may also be an effective method to treat mastitis.

6.
PLoS Pathog ; 19(11): e1011764, 2023 Nov.
Article En | MEDLINE | ID: mdl-37948460

Subacute ruminal acidosis (SARA) has been demonstrated to promote the development of mastitis, one of the most serious diseases in dairy farming worldwide, but the underlying mechanism is unclear. Using untargeted metabolomics, we found hexadecanamide (HEX) was significantly reduced in rumen fluid and milk from cows with SARA-associated mastitis. Herein, we aimed to assess the protective role of HEX in Staphylococcus aureus (S. aureus)- and SARA-induced mastitis and the underlying mechanism. We showed that HEX ameliorated S. aureus-induced mastitis in mice, which was related to the suppression of mammary inflammatory responses and repair of the blood-milk barrier. In vitro, HEX depressed S. aureus-induced activation of the NF-κB pathway and improved barrier integrity in mouse mammary epithelial cells (MMECs). In detail, HEX activated PPARα, which upregulated SIRT1 and subsequently inhibited NF-κB activation and inflammatory responses. In addition, ruminal microbiota transplantation from SARA cows (S-RMT) caused mastitis and aggravated S. aureus-induced mastitis, while these changes were reversed by HEX. Our findings indicate that HEX effectively attenuates S. aureus- and SARA-induced mastitis by limiting inflammation and repairing barrier integrity, ultimately highlighting the important role of host or microbiota metabolism in the pathogenesis of mastitis and providing a potential strategy for mastitis prevention.


Mastitis , Staphylococcus aureus , Humans , Female , Animals , Mice , Cattle , Staphylococcus aureus/metabolism , NF-kappa B/metabolism , Milk , Mastitis/metabolism
7.
Front Microbiol ; 14: 1173856, 2023.
Article En | MEDLINE | ID: mdl-37455728

Introduction: Hyperuricemia is widespread in humans and birds which is a necessary physiological factor leading to gout. Studies have shown an inextricable relationship between gut microbiota and hyperuricemia. This study explored the association between intestinal flora and hyperuricemia in Goslings. Methods and results: The hyperuricemia model was established in gosling by a high protein diet (HPD). 16S rDNA sequencing showed that the cecal microbiota differed significantly between the HPD and control groups (fed with the normal protein). The abundance of Firmicutes was higher in the HPD group, while the Bacteroidetes were lower than in controls. To investigate the role of intestinal flora in hyperuricemia, the cecum microbiotas from the HPD group and the control group were transplanted to the newly born goslings by gavage. The serum uric acid levels of the goslings that transplanted the cecal microbiota of the HPD group were significantly higher than the goslings that transplanted the cecal microbiota of the controls. Furthermore, the transplantation of cecal microbiota also affects the production and excretion of uric acid in goslings. Then we identify the gut bacterium Bacteroides xylanisolvens as an effective anti-hyperuricemia in the Goslings. B. xylanisolvens reduces serum uric acid concentrations in hyperuricemia in the Goslings' model, and it can up-regulation ABCG2 mRNA expression in the kidney and down-regulation XDH mRNA expression in the liver. Discussion: The intestinal flora acts as a novel target for the therapeutic approach to hyperuricemia and gout, suggest Bacteroides xylanisolvens is a possible route to therapy for hyperuricemia and gout in goslings.

8.
Food Funct ; 14(16): 7506-7519, 2023 Aug 14.
Article En | MEDLINE | ID: mdl-37504971

Dysbiosis causes continuous progress of inflammatory bowel disease (IBD). Herein, we aim to explore whether Salidroside (Sal), which is a major glycoside extracted from Rhodiola rosea L., could ameliorate dextran sulfate sodium (DSS)-induced colitis by modulating the microbiota. Results showed that oral treatment with 15 mg kg-1 of Sal inhibited DSS-induced colitis in mice as evidenced by colon length, histological analysis, disease activity index (DAI) score, and the proportion and number of macrophages in the intestine. The gut microbiota of colitic mice was also partly restored by Sal. A fecal microbiota transplantation (FMT) study was designed to verify the causality. Compared with DSS-treated mice, FM from the Sal-treated donor mice significantly mitigated the symptoms of colitic mice, including reducing the DAI score, alleviating tissue damage, boosting the expression of mucin protein (mucin-2) and tight junction (TJ) proteins (occludin and zonula occludens-1 (ZO-1), and decreasing M1 macrophages in the gut. It was found that both Sal and FMT affected the structure and abundance of the gut microbiota as reflected by the decreased relative abundance of Turicibacter, Alistipes, Romboutsia and the increased relative abundance of Lactobacillus at the genus level. Moreover, the anti-inflammatory effect of Sal disappeared when the gut microbiota was depleted by antibiotics, demonstrating that Sal alleviated the intestinal inflammation in a gut microbiota-dependent manner. Thus, Sal could be a remarkable candidate as a functional food for colitis.

9.
Microorganisms ; 11(6)2023 May 29.
Article En | MEDLINE | ID: mdl-37374929

Microbial communities inhabiting the human body play a crucial role in protecting the host against pathogens and inflammation. Disruptions to the microbial composition can lead to various health issues. Microbial transfer therapy (MTT) has emerged as a potential treatment option to address such issues. Fecal microbiota transplantation (FMT) is the most widely used form of MTT and has been successful in treating several diseases. Another form of MTT is vaginal microbiota transplantation (VMT), which involves transferring vaginal microbiota from a healthy female donor to a diseased patient's vaginal cavity with the goal of restoring normal vaginal microbial composition. However, VMT has not been extensively studied due to safety concerns and a lack of research. This paper explores the therapeutic mechanisms of VMT and discusses future perspectives. Further research is necessary to advance the clinical applications and techniques of VMT.

10.
Int Immunopharmacol ; 120: 110278, 2023 Jul.
Article En | MEDLINE | ID: mdl-37192552

Obesity is a systemic disease with multisystem inflammation associated with gut dysbiosis. Salidroside (SAL) which is a major glycoside extracted from Rhodiola rosea L. has a wide range of pharmacological effects, but the role of gut microbiota in the protective effects of SAL on obesity has not been studied. Herein, we aim to explore whether SAL could ameliorate high-fat diet (HFD)-induced obesity in mice by modulating microbiota. Results showed that oral treatment with SAL alleviated HFD-induced obesity in mice as evidenced by body weight and fat weight. SAL supplementation effectively attenuated fat accumulation, lipid synthesis genes expression, liver inflammation, and metabolic endotoxemia. In addition, SAL treatment alleviated intestinal damage and increased the expression of mucin protein (Mucin-2) and tight junction (TJ) proteins (Occludin and Zonula Occludens-1). 16S rRNA sequencing analysis revealed that the gut microbiota of obese mice was also partly improved by SAL via restoring the microbial community structure and diversity. A fecal microbiota transplantation (FMT) study was designed to verify the causality. Compared with fecal transplantation (FM) from the HFD-treated mice, FM from the SAL-treated mice significantly mitigate the symptoms of obese mice, including decreasing body weight, fat accumulation, and attenuating pathological damage in the gut. Thus, SAL could be a remarkable candidate to prevent obesity.


Diet, High-Fat , Gastrointestinal Microbiome , Animals , Mice , Diet, High-Fat/adverse effects , Mice, Obese , RNA, Ribosomal, 16S , Obesity/metabolism , Inflammation/complications , Mice, Inbred C57BL
11.
Vet Sci ; 10(4)2023 Apr 13.
Article En | MEDLINE | ID: mdl-37104445

Fecal microbiota transplantation (FMT) is a technique involving transferring fecal matter from a healthy donor to a recipient, with the goal of reinstating a healthy microbiome in the recipient's gut. FMT has been used in horses to manage various gastrointestinal disorders, such as colitis and diarrhea. To evaluate the current literature on the use of FMT in horses, including its efficacy, safety, and potential applications, the authors conducted an extensive search of several databases, including PubMed, MEDLINE, Web of Science, and Google Scholar, published up to 11 January 2023. The authors identified seven studies that met their inclusion criteria, all of which investigated the FMT application as a treatment for gastrointestinal disorders such as colitis and diarrhea. The authors demonstrated that FMT was generally effective in treating these conditions. However, the authors noted that the quality of the studies was generally suboptimal and characterized by small sample sizes and a lack of control groups. The authors concluded that FMT is a promising treatment option for certain gastrointestinal disorders in horses. Nevertheless, more research is required to determine the optimal donor selection, dosing, and administration protocols, as well as the long-term safety and efficacy of FMT in horses.

12.
Microbiome ; 11(1): 78, 2023 04 17.
Article En | MEDLINE | ID: mdl-37069691

BACKGROUND: Mastitis is one of the most severe diseases in humans and animals, especially on dairy farms. Mounting evidence indicates that gastrointestinal dysbiosis caused by induction of subacute ruminal acidosis (SARA) by high-grain diet consumption and low in dietary fiber is associated with mastitis initiation and development, however, the underlying mechanism remains unknown. RESULTS: In the present study, we found that cows with SARA-associated mastitis have altered metabolic profiles in the rumen, with increased sialic acids level in particular. Consumption of sialic acid (SA) in antibiotic-treated mice, but not healthy mice, induced marked mastitis. SA treatment of antibiotic-treated mice also induced mucosal and systemic inflammatory responses, as evidenced by increased colon and liver injuries and several inflammatory markers. In addition, gut dysbiosis caused by antibiotic impaired gut barrier integrity, which was aggravated by SA treatment. SA potentiated serum LPS level caused by antibiotic treatment, leading to increased activation of the TLR4-NF-κB/NLRP3 pathways in the mammary gland and colon. Moreover, SA facilitated gut dysbiosis caused by antibiotic, and especially enhanced Enterobacteriaceae and Akkermansiaceae, which correlated with mastitis parameters. Fecal microbiota transplantation from SA-antibiotic-treated mice mimicked mastitis in recipient mice. In vitro experiments showed that SA prompted Escherichia coli growth and virulence gene expression, leading to higher proinflammatory cytokine production in macrophages. Targeting the inhibition of Enterobacteriaceae by sodium tungstate or treating with the commensal Lactobacillus reuteri alleviated SA-facilitated mastitis. In addition, SARA cows had distinct ruminal microbial structure by the enrichment of SA-utilizing opportunistic pathogenic Moraxellaceae and the depletion of SA-utilizing commensal Prevotellaceae. Treating mice with the specific sialidase inhibitor zanamivir reduced SA production and Moraxellaceae abundance, and improved mastitis in mice caused by ruminal microbiota transplantation from cows with SARA-associated mastitis. CONCLUSIONS: This study, for the first time, indicates that SA aggravates gut dysbiosis-induced mastitis by promoting gut microbiota disturbance and is regulated by commensal bacteria, indicating the important role of the microbiota-gut-mammary axis in mastitis pathogenesis and suggesting a potential strategy for mastitis intervention based on gut metabolism regulation. Video Abstract.


Gastrointestinal Microbiome , Mastitis , Microbiota , Humans , Female , Animals , Cattle , Mice , Gastrointestinal Microbiome/physiology , N-Acetylneuraminic Acid , Dysbiosis/chemically induced , Enterobacteriaceae , Escherichia coli
13.
NPJ Biofilms Microbiomes ; 9(1): 8, 2023 02 08.
Article En | MEDLINE | ID: mdl-36755021

Although emerging evidence shows that gut microbiota-mediated metabolic changes regulate intestinal pathogen invasions, little is known about whether and how gut microbiota-mediated metabolites affect pathogen infection in the distal organs. In this study, untargeted metabolomics was performed to identify the metabolic changes in a subacute ruminal acidosis (SARA)-associated mastitis model, a mastitis model with increased susceptibility to Staphylococcus aureus (S. aureus). The results showed that cows with SARA had reduced cholic acid (CA) and deoxycholic acid (DCA) levels compared to healthy cows. Treatment of mice with DCA, but not CA, alleviated S. aureus-induced mastitis by improving inflammation and the blood-milk barrier integrity in mice. DCA inhibited the activation of NF-κB and NLRP3 signatures caused by S. aureus in the mouse mammary epithelial cells, which was involved in the activation of TGR5. DCA-mediated TGR5 activation inhibited the NF-κB and NLRP3 pathways and mastitis caused by S. aureus via activating cAMP and PKA. Moreover, gut-dysbiotic mice had impaired TGR5 activation and aggravated S. aureus-induced mastitis, while restoring TGR5 activation by spore-forming bacteria reversed these changes. Furthermore, supplementation of mice with secondary bile acids producer Clostridium scindens also activated TGR5 and alleviated S. aureus-induced mastitis in mice. These results suggest that impaired secondary bile acid production by gut dysbiosis facilitates the development of S. aureus-induced mastitis and highlight a potential strategy for the intervention of distal infection by regulating gut microbial metabolism.


Gastrointestinal Microbiome , Mastitis , Animals , Cattle , Female , Mice , Bile Acids and Salts , Mastitis/metabolism , Mastitis/microbiology , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Staphylococcus aureus/physiology
14.
PLoS Pathog ; 19(1): e1011108, 2023 01.
Article En | MEDLINE | ID: mdl-36656870

Mounting evidence suggests that the gut microbiota plays an important role in the pathogenesis of mastitis, an important disease affecting the health of lactating women and the development of the dairy industry. However, the effect of the regulation of the gut microbiota by dietary components on mastitis development remains unknown. In this study, we found that a fiber-enriched diet alleviated Staphylococcus aureus (S. au)-induced mastitis in mice, which was dependent on the gut microbiota as depletion of the gut microbiota by antibiotics abolished this protective effect. Likewise, fecal microbiota transplantation (FMT) from high-inulin (HI)-treated mice (HIF) to recipient mice improved S. au-induced mastitis in mice. Consumption of an HI diet and HIF increased fecal short-chain fatty acid (SCFA) levels compared with the control group. Moreover, treatment with SCFAs, especially butyrate, alleviated S. au-induced mastitis in mice. Mechanistically, consumption of an HI diet enhanced the host antimicrobial program in macrophages through inhibiting histone deacetylase 3 by the production of butyrate. Collectively, our results suggest that modulation of the gut microbiota and its metabolism by dietary components is a potential strategy for mastitis intervention and serve as a basis for other infectious diseases.


Butyrates , Mastitis , Animals , Female , Mice , Anti-Bacterial Agents/pharmacology , Diet , Lactation , Macrophages , Mastitis/therapy , Staphylococcus aureus , Dietary Fiber
15.
Probiotics Antimicrob Proteins ; 15(1): 74-81, 2023 02.
Article En | MEDLINE | ID: mdl-34676501

Mastitis, common inflammation of the mammary gland, caused by various factors, is a challenge for the dairy industry. Escherichia coli (E. coli), a Gram-negative opportunistic pathogen, is one of the major pathogens causing clinical mastitis which is characterized by reduced milk production and recognizable clinical symptoms. Bacillus subtilis (B. subtilis) has been reported to have the ability to limit the colonization of pathogens and has immune-stimulatory effects on epithelial cells. The purpose of this study was to explore the preventive role of B. subtilis H28 on E. coli-induced mastitis in mice. The mastitis model was established by nipple duct injection of E. coli into mice, while B. subtilis H28 was utilized 2 h before E. coli injection. Furthermore, pathological changes in the mammary gland were evaluated by hematoxylin-eosin (H&E) staining. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of proinflammatory cytokines (TNF-α, IL-1ß, and IL-6). We also observed changes in Toll-like receptor 4 (TLR4), nuclear transcription factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) expression by using western blotting. The results revealed that B. subtilis H28 pretreatment reduced neutrophil infiltration in the mammary gland tissues, significantly decreased the secretion of TNF-α, IL-1ß, and IL-6, and downregulated the activation of TLR4 and the phosphorylation of p65 NF-κB, IκB, p38, and ERK. In conclusion, our results indicated that B. subtilis H28 can ameliorate E. coli-induced mastitis and suggest a new method for the prevention of mastitis.


Mastitis , NF-kappa B , Humans , Female , Mice , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Bacillus subtilis/metabolism , Toll-Like Receptor 4/metabolism , Escherichia coli/metabolism , Tumor Necrosis Factor-alpha , Interleukin-6/metabolism , MAP Kinase Signaling System , Lipopolysaccharides/pharmacology
16.
Microbiome ; 10(1): 205, 2022 12 01.
Article En | MEDLINE | ID: mdl-36451232

BACKGROUND: Mounting experimental evidence has shown that the gut microbiota plays a significant role in the pathogenesis of mastitis, and clinical investigations have found that the occurrence of mastitis is correlated with ruminal dysbiosis. However, the underlying mechanism by which the ruminal microbiota participates in the development of mastitis remains unknown. RESULTS: In the present study, we found that cows with clinical mastitis had marked systemic inflammation, which was associated with significant ruminal dysbiosis, especially enriched Proteobacteria in the rumen. Ruminal microbiota transplantation from mastitis cows (M-RMT) to mice induced mastitis symptoms in recipient mice along with increased mammary proinflammatory signature activation of the TLR4-cGAS-STING-NF-κB/NLRP3 pathways. M-RMT also induced mucosal inflammation and impaired intestinal barrier integrity, leading to increased endotoxemia and systemic inflammation. Moreover, we showed that M-RMT mirrored ruminal microbiota disruption in the gut of recipient mice, as evidenced by enriched Proteobacteria and similar bacterial functions, which were correlated with most proinflammatory parameters and serum lipopolysaccharide (LPS) levels in mice. Recurrent low-grade LPS treatment mirrored gut dysbiosis-induced endotoxemia and caused severe mastitis in mice. Furthermore, we found that gut dysbiosis-derived LPS reduced host alkaline phosphatase activity by activating neuraminidase (Neu), which facilitates low-grade LPS exposure and E. coli-induced mastitis in mice. Conversely, treatment with calf intestinal alkaline phosphatase or the Neu inhibitor zanamivir alleviated low-grade LPS exposure and E. coli-induced mastitis in mice. CONCLUSIONS: Our results suggest that ruminal dysbiosis-derived low-grade endotoxemia can cause mastitis and aggravate pathogen-induced mastitis by impairing host anti-inflammatory enzymes, which implies that regulating the ruminal or gut microbiota to prevent low-grade systemic inflammation is a potential strategy for mastitis intervention. Video Abstract.


Endotoxemia , Mastitis , Female , Humans , Animals , Cattle , Mice , Dysbiosis , Lipopolysaccharides , Alkaline Phosphatase , Escherichia coli , Anti-Inflammatory Agents , Inflammation , Proteobacteria
17.
Cell Rep ; 41(8): 111681, 2022 11 22.
Article En | MEDLINE | ID: mdl-36417859

The precise mechanism by which gut dysbiosis contributes to the pathogenesis of extraintestinal diseases and how commensal microbes mediate these processes remain unclear. Here, we show that cows with mastitis had marked gut dysbiosis, characterized by the enrichment of opportunistic pathogenic Escherichia_Shigella and the depletion of commensal Roseburia. Fecal microbiota transplantation from donor cows with mastitis (M-FMT) to recipient mice significantly caused mastitis and changed the gut and mammary microbiota in mice. Notably, M-FMT facilitated the translocation of pathobiont from the gut into the mammary gland, and the depletion of Enterobacteriaceae alleviated M-FMT-induced mastitis in mice. In contrast, commensal Roseburia intestinalis improved M-FMT-induced mastitis and microbial dysbiosis in the gut and mammary gland and limited bacterial translocation by producing butyrate, which was associated with inflammatory signaling inhibition and barrier repair. Our research suggests that commensal Roseburia alleviates gut-dysbiosis-induced mastitis, although further studies in dairy cows and humans are needed.


Gastrointestinal Microbiome , Mastitis , Female , Cattle , Mice , Animals , Humans , Dysbiosis/complications , Bacterial Translocation , Butyrates/pharmacology , Gastrointestinal Microbiome/physiology , Mastitis/complications
18.
Animals (Basel) ; 12(19)2022 Oct 10.
Article En | MEDLINE | ID: mdl-36230459

Endometritis is a disease with a high incidence in dairy cows and causes great economic loss to milk production. This study examined the therapeutic effects of Clostridium butyricum and its culture supernatant on Escherichia coli-induced endometritis in mice. The results showed that Clostridium butyricum and its culture supernatant effectively suppressed inflammatory responses of uterine tissues, such as uterine morphological changes, pathological damage, and the production of inflammatory cytokines. Clostridium butyricum and its culture supernatant significantly decreased uterine microbial loads. In addition, Clostridium butyricum and its culture supernatant restored reproduction outcomes in Escherichia coli-induced endometritis mice. Western blot analysis showed that Clostridium butyricum and its culture supernatant suppressed the NF-κB signaling pathway. Therefore, the anti-inflammatory mechanism of Clostridium butyricum and its culture supernatant may occur through the anti-bacterial activity and regulation of the expression of NF-κB in the uterus. The anti-inflammatory effect of the culture supernatant of C. butyricum was slightly better than that of viable C. butyricum. Therefore, our experimental results showed that Clostridium butyricum culture supernatant may be an effective drug for treating endometritis.

19.
Ecotoxicol Environ Saf ; 245: 114123, 2022 Oct 15.
Article En | MEDLINE | ID: mdl-36183427

Cadmium (Cd) is a type of high-risk heavy metal that can damage organs such as the liver, but its mechanism is not yet clear. Ferroptosis is a newly discovered mode of regulatory cell death. We explored whether ferroptosis is involved in Cd-induced liver damage and the underlying mechanism. Our research showed that Cd induced liver damage by inducing ferroptosis, and the use of ferroptosis inhibitors reduced the degree of liver damage. Moreover, the occurrence of ferroptosis was accompanied by the activation of the PERK-eIF2α-ATF4-CHOP signaling pathway, and inhibiting endoplasmic reticulum (ER) stress reduced ferroptosis demonstrating that ferroptosis induced by Cd is dependent on ER stress. In addition, chloroquine, a common autophagy inhibitor, mitigated ferroptosis caused by Cd exposure. Then, the iron chelator deferoxamine reduced Cd-induced lipid peroxidation and cell death, demonstrating that the iron regulation disorder caused by ferritin phagocytosis contributes to the Cd-induced ferroptosis. In conclusion, our results show that Cd-induced liver toxicity is accompanied by ferroptosis, which contributes to Cd inducing oxidative stress to trigger autophagy and ER stress to promote the process of ferroptosis.


Ferroptosis , Liver Diseases , Autophagy , Cadmium/metabolism , Cadmium/toxicity , Chloroquine , Deferoxamine , Endoplasmic Reticulum Stress , Ferritins , Humans , Iron/metabolism , Iron Chelating Agents
20.
Vet Sci ; 9(8)2022 Jul 30.
Article En | MEDLINE | ID: mdl-36006314

Fecal microbiota transplantation (FMT) is an emerging therapeutic option for a variety of diseases, and is characterized as the transfer of fecal microorganisms from a healthy donor into the intestinal tract of a diseased recipient. In human clinics, FMT has been used for treating diseases for decades, with promising results. In recent years, veterinary specialists adapted FMT in canine patients; however, compared to humans, canine FMT is more inclined towards research purposes than practical applications in most cases, due to safety concerns. Therefore, in order to facilitate the application of fecal transplant therapy in dogs, in this paper, we review recent applications of FMT in canine clinical treatments, as well as possible mechanisms that are involved in the process of the therapeutic effect of FMT. More research is needed to explore more effective and safer approaches for conducting FMT in dogs.

...