Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Leukoc Biol ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38193891

RESUMEN

T-helper 17 (Th17) cells play a dual role in immunological responses, serving as essential components in tissue homeostasis and host defense against microbial pathogens while also contributing to pro-inflammatory conditions and autoimmunity. While Transforming Growth Factor-beta 1 (TGFß1) is pivotal for the differentiation of non-pathogenic Th17 cells, the role of TGFß3 and Activin in steering Th17 cells toward a pathogenic phenotype has been acknowledged. However, the molecular mechanisms governing this dichotomy remain elusive. In this study, we demonstrate that the transcription factor Foxo1 is upregulated in a TGFß1 dose-dependent manner, serving as a critical regulator that specifically modulates the fate of pathogenic Th17 cells. Analyses in both uveitis patients and an Experimental Autoimmune Uveitis (EAU) mouse model reveal a strong correlation between disease severity and diminished Foxo1 expression levels. Ectopic expression of Foxo1 selectively attenuates IL-17A production under pathogenic Th17-inducing conditions. Moreover, enhanced Foxo1 expression, triggered by TGFß1 signaling, is implicated in fatty acid metabolism pathways that favor non-pathogenic Th17 differentiation. Our drug screening identifies several FDA-approved compounds can upregulate Foxo1. Collectively, our findings offer evidence that Foxo1 serves as a molecular switch to specifically control pathogenic versus non-pathogenic Th17 differentiation in a TGFß1-dependent manner. Suggest that targeting Foxo1 could be a promising therapeutic strategy for autoimmune diseases.

2.
Int Immunopharmacol ; 124(Pt B): 110969, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37774484

RESUMEN

Oncolytic viruses are a new class of therapeutic agents for the treatment of cancer that have shown promising results in clinical trials. Oncolytic virus-mediated tumor rejection is highly dependent on viral replication in tumor cells to induce cell death. However, the antiviral immune response of tumor cells limits the replication capacity of oncolytic viruses. We hypothesized that inhibition of the antiviral immune response in infected cells would enhance the antitumor effect. Here, we confirmed that ablation of the key adaptor protein of cellular immunity, STING, significantly suppressed the antiviral immune response and promoted oncolytic herpes simplex virus-1 (oHSV1) proliferation in tumor cells. In a murine pancreatic ductal adenocarcinoma (PDAC) model, oHSV1 enhanced tumor suppression and prolonged the survival of mice in the absence of STING. On this basis, we further found that the TBK1 inhibitor can also significantly enhance the tumor-control ability of oHSV1. Our studies provide a novel strategy for oncolytic virus therapy by inhibiting the intrinsic antiviral response in solid tumors to improve antitumor efficacy.


Asunto(s)
Carcinoma Ductal Pancreático , Viroterapia Oncolítica , Virus Oncolíticos , Neoplasias Pancreáticas , Animales , Ratones , Simplexvirus/genética , Línea Celular Tumoral , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Neoplasias Pancreáticas/terapia , Carcinoma Ductal Pancreático/terapia , Neoplasias Pancreáticas
3.
J Mol Cell Biol ; 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37442610

RESUMEN

Estrogen receptor α (ERα) is an important driver and therapeutic target in approximately 70% of breast cancers. How ERα drives breast carcinogenesis is not fully understood. In this study, we show that ERα is a negative regulator of type I interferon (IFN) response, which is critical for breast carcinogenesis. Activation of ERα by its natural ligand estradiol inhibits IFN-ß-induced transcription of downstream IFN-stimulated genes (ISGs), whereas deficiency of ERα or stimulation with its antagonist fulvestrant has opposite effects. Mechanistically, ERα inhibits type I IFN response by two distinct mechanisms. ERα induces expression of the histone 2A variant H2A.Z, which restricts engagement of the IFN-stimulated gene factor 3 (ISGF3) complex at the ISG promoters. ERα also interacts with STAT2, which leads to disruption of the ISGF3 complex. These two events mutually lead to transcriptional inhibition of ISGs induced by type I IFNs. In a xenograft mouse tumor model, fulvestrant enhances the ability of IFN-ß to suppress ERα+ breast tumor growth. Consistently, clinical data suggests that ERα+ breast cancer patients with higher levels of ISGs exhibit an increased survival rate. Our findings suggest that ERα inhibits type I IFN response via two distinct mechanisms to promote breast cancer.

4.
Virus Res ; 323: 198979, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36283533

RESUMEN

Oncolytic viruses are an emerging cancer treatment modality with promising results in clinical trials. The new generation of oncolytic viruses are genetically modified to enhance virus selectivity for tumor cells and allow local expression of therapeutic genes in tumors. The traditional technique for viral genome engineering based on homologous recombination using a bacterial artificial chromosome (BAC) system is laborious and time-consuming. With the advent of the CRISPR/Cas9 system, the efficiency of gene editing in human cells and other organisms has dramatically increased. In this report, we successfully applied the CRISPR/Cas9 technique to construct an HSV-based oncolytic virus, where the ICP34.5 coding region was replaced with the therapeutic genes murine interleukin 12 (IL12, p40-p35) and C-X-C motif chemokine ligand 11 (CXCL11), and ICP47 gene was deleted. The combination of IL12 and CXCL11 in oncolytic viruses showed considerable promise in colorectal cancer (CRC) treatment. Overall, our study describes genetic modification of the HSV-1 genome using the CRISPR/Cas9 system and provides evidence from principle studies for engineering of the HSV genome to express foreign genes.

5.
Mol Ther ; 29(2): 744-761, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33130310

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is the major type of pancreatic malignancy with very poor prognosis. Despite the promising results of immune checkpoint inhibitors (ICIs) in some solid tumors, immunotherapy is less effective for PDAC due to its immunosuppressive tumor microenvironment (TME). In this report, we established an immunocompetent syngeneic PDAC model and investigated the effect of oncolytic herpes simplex virus-1 (oHSV) on the composition of TME immune cells. The oHSV treatment significantly reduced tumor burden and prolonged the survival of tumor-bearing mice. Further, by single cell RNA sequencing (scRNA-seq) and multicolor fluorescence-activated cell sorting (FACS) analysis, we demonstrated that oHSV administration downregulated tumor-associated macrophages (TAMs), especially the anti-inflammatory macrophages, and increased the percentage of tumor-infiltrating lymphocytes, including activated cytotoxic CD8+ T cells and T helper (Th)1 cells. Besides, the combination of oHSV and immune checkpoint modulators extended the lifespan of the tumor-bearing mice. Overall, our data suggested that oHSV reshapes the TME of PDAC by boosting the immune activity and leads to improved responsiveness of PDAC to immunotherapy.


Asunto(s)
Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/terapia , Interacciones Microbiota-Huesped/inmunología , Viroterapia Oncolítica , Virus Oncolíticos/genética , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/terapia , Simplexvirus/genética , Microambiente Tumoral/inmunología , Animales , Biomarcadores , Citocinas/metabolismo , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Ratones , Viroterapia Oncolítica/métodos
6.
Biochem Biophys Res Commun ; 511(4): 787-793, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30833082

RESUMEN

Vav1 is a guanine nucleotide exchange factor (GEF) predominantly expressed in hematopoietic cells, and functions in the development and antigen-stimulated response of lymphocytes. Burkitt's lymphoma (BL) is characterized as transformed B cell lymphoma, and is highly associated with Epstein-Barr virus (EBV). EBV nuclear antigen 1 (EBNA1) is the only viral protein expressed across all three types of latency and essential for the persistence of EBV genome. It is not clear yet how EBNA1 contributes to the growth advantage of latently infected cells such as in EBV+ lymphoma B cells. Here, we reported that Vav1 interacts with EBNA1 via its C-terminal SH3 domain. This interaction suppresses the expression of a pro-apoptotic Bcl-2 family member, Bim, resulting in the resistance of the BL cells to apoptotic inductions. Our data uncovered Vav1 as a novel target for EBNA1, and suggested a pro-survival role of Vav1 in the pathogenesis of EBV associated BLs.


Asunto(s)
Proteína 11 Similar a Bcl2/genética , Linfoma de Burkitt/metabolismo , Infecciones por Virus de Epstein-Barr/complicaciones , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Proteínas Proto-Oncogénicas c-vav/metabolismo , Linfoma de Burkitt/genética , Linfoma de Burkitt/virología , Línea Celular Tumoral , Supervivencia Celular , Regulación hacia Abajo , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/metabolismo , Humanos , Mapas de Interacción de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...