Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(20)2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34681624

RESUMEN

SARS-CoV-2 exploits the respiratory tract epithelium including lungs as the primary entry point and reaches other organs through hematogenous expansion, consequently causing multiorgan injury. Viral E protein interacts with cell junction-associated proteins PALS1 or ZO-1 to gain massive penetration by disrupting the inter-epithelial barrier. Conversely, receptor-mediated viral invasion ensures limited but targeted infections in multiple organs. The ACE2 receptor represents the major virion loading site by virtue of its wide tissue distribution as demonstrated in highly susceptible lung, intestine, and kidney. In brain, NRP1 mediates viral endocytosis in a similar manner to ACE2. Prominently, PDZ interaction involves the entire viral loading process either outside or inside the host cells, whereas E, ACE2, and NRP1 provide the PDZ binding motif required for interacting with PDZ domain-containing proteins PALS1, ZO-1, and NHERF1, respectively. Hijacking NHERF1 and ß-arrestin by virion loading may impair specific sensory GPCR signalosome assembling and cause disordered cellular responses such as loss of smell and taste. PDZ interaction enhances SARS-CoV-2 invasion by supporting viral receptor membrane residence, implying that the disruption of these interactions could diminish SARS-CoV-2 infections and be another therapeutic strategy against COVID-19 along with antibody therapy. GPCR-targeted drugs are likely to alleviate pathogenic symptoms-associated with SARS-CoV-2 infection.


Asunto(s)
COVID-19/patología , Receptores Acoplados a Proteínas G/metabolismo , Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19/metabolismo , COVID-19/virología , Humanos , Dominios PDZ , Receptores Acoplados a Proteínas G/química , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Transducción de Señal , Internalización del Virus/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
2.
iScience ; 24(7): 102770, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34189428

RESUMEN

SARS-CoV-2 is responsible for the global COVID-19 pandemic. Angiotensin converting enzyme 2 (ACE2) is the membrane-delimited receptor for SARS-CoV-2. Lung, intestine, and kidney, major sites of viral infection, express ACE2 that harbors an intracellular, carboxy-terminal PDZ-recognition motif. These organs prominently express the PDZ protein Na+/H+ exchanger regulatory factor-1 (NHERF1). Here, we report NHERF1 tethers ACE2 and augments SARS-CoV-2 cell entry. ACE2 directly binds both NHERF1 PDZ domains. Disruption of either NHERF1 PDZ core-binding motif or the ACE2 PDZ recognition sequence eliminates interaction. Proximity ligation assays establish that ACE2 and NHERF1 interact at constitutive expression levels in human lung and intestine cells. Ablating ACE2 interaction with NHERF1 accelerated SARS-CoV-2 cell entry. Conversely, elimination of the ACE2 C-terminal PDZ-binding motif decreased ACE2 membrane residence and reduced pseudotyped virus entry. We conclude that the PDZ interaction of ACE2 with NHERF1 facilitates SARS-CoV-2 internalization. ß-Arrestin is likely indispensable, as with G protein-coupled receptors.

3.
Anal Chem ; 91(11): 6976-6980, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31082219

RESUMEN

Hydrogen-deuterium exchange-mass spectrometry (HDXMS) is a powerful technology to characterize conformations and conformational dynamics of proteins and protein complexes. HDXMS has been widely used in the field of therapeutics for the development of protein drugs. Although sufficient sequence coverage is critical to the success of HDXMS, it is sometimes difficult to achieve. In this study, we developed a HDXMS data analysis strategy that includes parallel post-translational modification (PTM) scanning in HDXMS analysis. Using a membrane-delimited G protein-coupled receptor (vasopressin type 2 receptor; V2R) and a cytosolic protein (Na+/H+ exchanger regulatory factor-1; NHERF1) as examples, we demonstrate that this strategy substantially improves protein sequence coverage, especially in key structural regions likely including PTMs themselves that play important roles in protein conformational dynamics and function.


Asunto(s)
Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio/métodos , Procesamiento Proteico-Postraduccional , Proteínas/química , Proteínas/metabolismo , Glicosilación , Humanos , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Receptores de Vasopresinas/química , Receptores de Vasopresinas/metabolismo , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/metabolismo
4.
J Biol Chem ; 294(12): 4546-4571, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30696771

RESUMEN

Na+-H+ exchanger regulatory factor-1 (NHERF1) is a PDZ protein that scaffolds membrane proteins, including sodium-phosphate co-transport protein 2A (NPT2A) at the plasma membrane. NHERF1 is a phosphoprotein with 40 Ser and Thr residues. Here, using tandem MS analysis, we characterized the sites of parathyroid hormone (PTH)-induced NHERF1 phosphorylation and identified 10 high-confidence phosphorylation sites. Ala replacement at Ser46, Ser162, Ser181, Ser269, Ser280, Ser291, Thr293, Ser299, and Ser302 did not affect phosphate uptake, but S290A substitution abolished PTH-dependent phosphate transport. Unexpectedly, Ser290 was rapidly dephosphorylated and rephosphorylated after PTH stimulation, and we found that protein phosphatase 1α (PP1α), which binds NHERF1 through a conserved VxF/W PP1 motif, dephosphorylates Ser290 Mutating 257VPF259 eliminated PP1 binding and blunted dephosphorylation. Tautomycetin blocked PP1 activity and abrogated PTH-sensitive phosphate transport. Using fluorescence lifetime imaging (FLIM), we observed that PTH paradoxically and transiently elevates intracellular phosphate. Added phosphate blocked PP1α-mediated Ser290 dephosphorylation of recombinant NHERF1. Hydrogen-deuterium exchange MS revealed that ß-sheets in NHERF1's PDZ2 domain display lower deuterium uptake than those in the structurally similar PDZ1, implying that PDZ1 is more cloistered. Dephosphorylated NHERF1 exhibited faster exchange at C-terminal residues suggesting that NHERF1 dephosphorylation precedes Ser290 rephosphorylation. Our results show that PP1α and NHERF1 form a holoenzyme and that a multiprotein kinase cascade involving G protein-coupled receptor kinase 6A controls the Ser290 phosphorylation status of NHERF1 and regulates PTH-sensitive, NPT2A-mediated phosphate uptake. These findings reveal how reversible phosphorylation modifies protein conformation and function and the biochemical mechanisms underlying PTH control of phosphate transport.


Asunto(s)
Hormona Paratiroidea/fisiología , Fosfatos/metabolismo , Fosfoproteínas/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/fisiología , Secuencia de Aminoácidos , Cristalografía por Rayos X , Furanos/farmacología , Células HEK293 , Humanos , Transporte Iónico/fisiología , Lípidos/farmacología , Fosfoproteínas/química , Fosforilación , Conformación Proteica , Receptores de Neuropéptido Y/antagonistas & inhibidores , Receptores de Neuropéptido Y/metabolismo , Serina/metabolismo , Intercambiadores de Sodio-Hidrógeno/química
5.
J Biol Chem ; 293(15): 5556-5571, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29444827

RESUMEN

G protein-coupled receptor (GPCR) signaling and trafficking are essential for cellular function and regulated by phosphorylation, ß-arrestin, and ubiquitination. The GPCR parathyroid hormone receptor (PTHR) exhibits time-dependent reversible ubiquitination. The exact ubiquitination sites in PTHR are unknown, but they extend upstream of its intracellular tail. Here, using tandem MS, we identified Lys388 in the third loop and Lys484 in the C-terminal tail as primary ubiquitination sites in PTHR. We found that PTHR ubiquitination requires ß-arrestin and does not display a preference for ß-arrestin1 or -2. PTH stimulated PTHR phosphorylation at Thr387/Thr392 and within the Ser489-Ser493 region. Such phosphorylation events may recruit ß-arrestin, and we observed that chemically or genetically blocking PTHR phosphorylation inhibits its ubiquitination. Specifically, Ala replacement at Thr387/Thr392 suppressed ß-arrestin binding and inhibited PTHR ubiquitination, suggesting that PTHR phosphorylation and ubiquitination are interdependent. Of note, Lys-deficient PTHR mutants promoted normal cAMP formation, but exhibited differential mitogen-activated protein kinase (MAPK) signaling. Lys-deficient PTHR triggered early onset and delayed ERK1/2 signaling compared with wildtype PTHR. Moreover, ubiquitination of Lys388 and Lys484 in wildtype PTHR strongly decreased p38 signaling, whereas Lys-deficient PTHR retained signaling comparable to unstimulated wildtype PTHR. Lys-deficient, ubiquitination-refractory PTHR reduced cell proliferation and increased apoptosis. However, elimination of all 11 Lys residues in PTHR did not affect its internalization and recycling. These results pinpoint the ubiquitinated Lys residues in PTHR controlling MAPK signaling and cell proliferation and survival. Our findings suggest new opportunities for targeting PTHR ubiquitination to regulate MAPK signaling or manage PTHR-related disorders.


Asunto(s)
Proliferación Celular , Sistema de Señalización de MAP Quinasas , Mutación Missense , Receptor de Hormona Paratiroídea Tipo 1/metabolismo , Ubiquitinación , Sustitución de Aminoácidos , Animales , Supervivencia Celular/genética , Células HEK293 , Humanos , Ratones , Receptor de Hormona Paratiroídea Tipo 1/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
6.
Biochemistry ; 56(20): 2584-2593, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28376304

RESUMEN

Na+/H+ exchanger regulatory factor-1 (NHERF1) is a scaffolding protein containing two PSD95/discs large protein/ZO1 (PDZ) domains that modifies the signaling, trafficking, and function of the parathyroid hormone receptor (PTHR), a family B G-protein-coupled receptor. PTHR and NHERF1 bind through a PDZ-ligand-recognition mechanism. We show that PTH elicits phosphorylation of Thr591 in the canonical -ETVM binding motif of PTHR. Conservative substitution of Thr591 with Cys does not affect PTH(1-34)-induced cAMP production or binding of PTHR to NHERF1. The findings suggested the presence of additional sites upstream of the PDZ-ligand motif through which the two proteins interact. Structural determinants outside the canonical NHERF1 PDZ-PTHR interface that influence binding have not been characterized. We used molecular dynamics (MD) simulation to predict residues involved in these interactions. Simulation data demonstrate that the negatively charged Glu side chains at positions -3, -5, and -6 upstream of the PDZ binding motif are involved in PDZ-PTHR recognition. Engineered mutant peptides representing the PTHR C-terminal region were used to measure the binding affinity with NHERF1 PDZ domains. Comparable micromolar affinities for peptides of different length were confirmed by fluorescence polarization, isothermal titration calorimetry, and surface plasmon resonance. Binding affinities measured for Ala variants validate MD simulations. The linear relation between the change in enthalpy and entropy following Ala substitutions at upstream positions -3, -5, and -6 of the PTHR peptide provides a clear example of the thermodynamic compensation rule. Overall, our data highlight sequences in PTHR that contribute to NHERF1 interaction and can be altered to prevent phosphorylation-mediated inhibition.


Asunto(s)
Biología Computacional , Dominios PDZ , Fosfoproteínas/metabolismo , Receptor de Hormona Paratiroídea Tipo 1/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Secuencia de Aminoácidos , Calorimetría , AMP Cíclico/biosíntesis , Polarización de Fluorescencia , Células HEK293 , Humanos , Simulación de Dinámica Molecular , Fosfoproteínas/química , Fosforilación , Intercambiadores de Sodio-Hidrógeno/química , Espectrometría de Masa por Ionización de Electrospray , Resonancia por Plasmón de Superficie
7.
Proc Natl Acad Sci U S A ; 113(48): 13869-13874, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27834729

RESUMEN

The anchorless fibronectin-binding proteins (FnBPs) are a group of important virulence factors for which the structures are not available and the functions are not well defined. In this study we performed comprehensive studies on a prototypic member of this group: the fibronectin-/fibrinogen-binding protein from Streptococcus suis (FBPS). The structures of the N- and C-terminal halves (FBPS-N and FBPS-C), which together cover the full-length protein in sequence, were solved at a resolution of 2.1 and 2.6 Å, respectively, and each was found to be composed of two domains with unique folds. Furthermore, we have elucidated the organization of these domains by small-angle X-ray scattering. We further showed that the fibronectin-binding site is located in FBPS-C and that FBPS promotes the adherence of S suis to host cells by attaching the bacteria via FBPS-N. Finally, we demonstrated that FBPS functions both as an adhesin, promoting S suis attachment to host cells, and as a bacterial factor, activating signaling pathways via ß1 integrin receptors to induce chemokine production.


Asunto(s)
Adhesinas Bacterianas/química , Infecciones Estreptocócicas/genética , Streptococcus suis/química , Factores de Virulencia/química , Adhesinas Bacterianas/genética , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Fibronectinas/genética , Fibronectinas/metabolismo , Humanos , Infecciones Estreptocócicas/microbiología , Streptococcus suis/genética , Streptococcus suis/patogenicidad , Factores de Virulencia/genética
8.
Proc Natl Acad Sci U S A ; 113(36): E5308-17, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27540115

RESUMEN

Despite numerous reports implicating NADPH oxidases (Nox) in the pathogenesis of many diseases, precise regulation of this family of professional reactive oxygen species (ROS) producers remains unclear. A unique member of this family, Nox1 oxidase, functions as either a canonical or hybrid system using Nox organizing subunit 1 (NoxO1) or p47(phox), respectively, the latter of which is functional in vascular smooth muscle cells (VSMC). In this manuscript, we identify critical requirement of ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50; aka NHERF1) for Nox1 activation and downstream responses. Superoxide (O2 (•-)) production induced by angiotensin II (AngII) was absent in mouse EBP50 KO VSMC vs. WT. Moreover, ex vivo incubation of aortas with AngII showed a significant increase in O2 (•-) in WT but not EBP50 or Nox1 nulls. Similarly, lipopolysaccharide (LPS)-induced oxidative stress was attenuated in femoral arteries from EBP50 KO vs. WT. In silico analyses confirmed by confocal microscopy, immunoprecipitation, proximity ligation assay, FRET, and gain-/loss-of-function mutagenesis revealed binding of EBP50, via its PDZ domains, to a specific motif in p47(phox) Functional studies revealed AngII-induced hypertrophy was absent in EBP50 KOs, and in VSMC overexpressing EBP50, Nox1 gene silencing abolished VSMC hypertrophy. Finally, ex vivo measurement of lumen diameter in mouse resistance arteries exhibited attenuated AngII-induced vasoconstriction in EBP50 KO vs. WT. Taken together, our data identify EBP50 as a previously unidentified regulator of Nox1 and support that it promotes Nox1 activity by binding p47(phox) This interaction is pivotal for agonist-induced smooth muscle ROS, hypertrophy, and vasoconstriction and has implications for ROS-mediated physiological and pathophysiological processes.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ADN Helicasas/metabolismo , Hipertrofia/metabolismo , NADPH Oxidasa 1/genética , Fosfoproteínas/metabolismo , Proteínas/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Proteínas Adaptadoras Transductoras de Señales , Angiotensina II/administración & dosificación , Angiotensina II/efectos adversos , Animales , ADN Helicasas/genética , Arteria Femoral/efectos de los fármacos , Arteria Femoral/metabolismo , Arteria Femoral/patología , Humanos , Hipertrofia/inducido químicamente , Hipertrofia/patología , Lipopolisacáridos/toxicidad , Ratones , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , NADPH Oxidasa 1/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosfoproteínas/genética , Proteínas/genética , Especies Reactivas de Oxígeno/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Superóxidos/metabolismo , Vasoconstricción/efectos de los fármacos , Vasoconstricción/genética
9.
J Biol Chem ; 291(36): 18632-42, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27432882

RESUMEN

Parathyroid hormone (PTH) and FGF23 are the primary hormones regulating acute phosphate homeostasis. Human renal proximal tubule cells (RPTECs) were used to characterize the mechanism and signaling pathways of PTH and FGF23 on phosphate transport and the role of the PDZ protein NHERF1 in mediating PTH and FGF23 effects. RPTECs express the NPT2A phosphate transporter, αKlotho, FGFR1, FGFR3, FGFR4, and the PTH receptor. FGFR1 isoforms are formed from alternate splicing of exon 3 and of exon 8 or 9 in Ir-like loop 3. Exon 3 was absent, but mRNA containing both exons 8 and 9 is present in cytoplasm. Using an FGFR1c-specific antibody together with mass spectrometry analysis, we show that RPTECs express FGFR-ß1C. The data are consistent with regulated FGFR1 splicing involving a novel cytoplasmic mechanism. PTH and FGF23 inhibited phosphate transport in a concentration-dependent manner. At maximally effective concentrations, PTH and FGF23 equivalently decreased phosphate uptake and were not additive, suggesting a shared mechanism of action. Protein kinase A or C blockade prevented PTH but not FGF23 actions. Conversely, inhibiting SGK1, blocking FGFR dimerization, or knocking down Klotho expression disrupted FGF23 actions but did not interfere with PTH effects. C-terminal FGF23(180-251) competitively and selectively blocked FGF23 action without disrupting PTH effects. However, both PTH and FGF23-sensitive phosphate transport were abolished by NHERF1 shRNA knockdown. Extended treatment with PTH or FGF23 down-regulated NPT2A without affecting NHERF1. We conclude that FGFR1c and PTHR signaling pathways converge on NHERF1 to inhibit PTH- and FGF23-sensitive phosphate transport and down-regulate NPT2A.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Hormona Paratiroidea/metabolismo , Fosfatos/metabolismo , Transducción de Señal/fisiología , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/metabolismo , Línea Celular Transformada , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/genética , Glucuronidasa/biosíntesis , Glucuronidasa/genética , Humanos , Proteínas Klotho , Hormona Paratiroidea/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/biosíntesis , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/biosíntesis , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/genética , Receptor de Hormona Paratiroídea Tipo 1/genética , Receptor de Hormona Paratiroídea Tipo 1/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/genética
10.
J Biol Chem ; 291(21): 10986-1002, 2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-27008860

RESUMEN

The G protein-coupled parathyroid hormone receptor (PTHR) regulates mineral-ion homeostasis and bone remodeling. Upon parathyroid hormone (PTH) stimulation, the PTHR internalizes into early endosomes and subsequently traffics to the retromer complex, a sorting platform on early endosomes that promotes recycling of surface receptors. The C terminus of the PTHR contains a type I PDZ ligand that binds PDZ domain-containing proteins. Mass spectrometry identified sorting nexin 27 (SNX27) in isolated endosomes as a PTHR binding partner. PTH treatment enriched endosomal PTHR. SNX27 contains a PDZ domain and serves as a cargo selector for the retromer complex. VPS26, VPS29, and VPS35 retromer subunits were isolated with PTHR in endosomes from cells stimulated with PTH. Molecular dynamics and protein binding studies establish that PTHR and SNX27 interactions depend on the PDZ recognition motif in PTHR and the PDZ domain of SNX27. Depletion of either SNX27 or VPS35 or actin depolymerization decreased the rate of PTHR recycling following agonist stimulation. Mutating the PDZ ligand of PTHR abolished the interaction with SNX27 but did not affect the overall rate of recycling, suggesting that PTHR may directly engage the retromer complex. Coimmunoprecipitation and overlay experiments show that both intact and mutated PTHR bind retromer through the VPS26 protomer and sequentially assemble a ternary complex with PTHR and SNX27. SNX27-independent recycling may involve N-ethylmaleimide-sensitive factor, which binds both PDZ intact and mutant PTHRs. We conclude that PTHR recycles rapidly through at least two pathways, one involving the ASRT complex of actin, SNX27, and retromer and another possibly involving N-ethylmaleimide-sensitive factor.


Asunto(s)
Actinas/metabolismo , Receptor de Hormona Paratiroídea Tipo 1/metabolismo , Nexinas de Clasificación/metabolismo , Actinas/química , Animales , Células CHO , Cricetulus , Endosomas/metabolismo , Células HEK293 , Humanos , Redes y Vías Metabólicas , Simulación de Dinámica Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Dominios PDZ , Unión Proteica , Subunidades de Proteína , Transporte de Proteínas , Proteolisis , Receptor de Hormona Paratiroídea Tipo 1/química , Receptor de Hormona Paratiroídea Tipo 1/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Nexinas de Clasificación/química , Nexinas de Clasificación/genética
11.
Mol Cell ; 59(2): 258-69, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26186291

RESUMEN

Notwithstanding numerous published structures of RNA Polymerase II (Pol II), structural details of Pol II engaging a complete nucleic acid scaffold have been lacking. Here, we report the structures of TFIIF-stabilized transcribing Pol II complexes, revealing the upstream duplex and full transcription bubble. The upstream duplex lies over a wedge-shaped loop from Rpb2 that engages its minor groove, providing part of the structural framework for DNA tracking during elongation. At the upstream transcription bubble fork, rudder and fork loop 1 residues spatially coordinate strand annealing and the nascent RNA transcript. At the downstream fork, a network of Pol II interactions with the non-template strand forms a rigid domain with the trigger loop (TL), allowing visualization of its open state. Overall, our observations suggest that "open/closed" conformational transitions of the TL may be linked to interactions with the non-template strand, possibly in a synchronized ratcheting manner conducive to polymerase translocation.


Asunto(s)
ARN Polimerasa II/química , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Bases , Cristalografía por Rayos X , ADN de Hongos/química , ADN de Hongos/genética , ADN de Hongos/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Subunidades de Proteína , ARN Polimerasa II/metabolismo , ARN de Hongos/química , ARN de Hongos/genética , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Electricidad Estática , Transcripción Genética
12.
PLoS One ; 10(6): e0129554, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26070212

RESUMEN

Na+/H+ Exchanger Regulatory Factor-1 (NHERF1) is a scaffolding protein containing 2 PDZ domains that coordinates the assembly and trafficking of transmembrane receptors and ion channels. Most target proteins harboring a C-terminus recognition motif bind more-or-less equivalently to the either PDZ domain, which contain identical core-binding motifs. However some substrates such as the type II sodium-dependent phosphate co-transporter (NPT2A), uniquely bind only one PDZ domain. We sought to define the structural determinants responsible for the specificity of interaction between NHERF1 PDZ domains and NPT2A. By performing all-atom/explicit-solvent molecular dynamics (MD) simulations in combination with biological mutagenesis, fluorescent polarization (FP) binding assays, and isothermal titration calorimetry (ITC), we found that in addition to canonical interactions of residues at 0 and -2 positions, Arg at the -1 position of NPT2A plays a critical role in association with Glu43 and His27 of PDZ1 that are absent in PDZ2. Experimentally introduced mutation in PDZ1 (Glu43Asp and His27Asn) decreased binding to NPT2A. Conversely, introduction of Asp183Glu and Asn167His mutations in PDZ2 promoted the formation of favorable interactions yielding micromolar KDs. The results describe novel determinants within both the PDZ domain and outside the canonical PDZ-recognition motif that are responsible for discrimination of NPT2A between two PDZ domains. The results challenge general paradigms for PDZ recognition and suggest new targets for drug development.


Asunto(s)
Sitios de Unión , Dominios PDZ , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/química , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/metabolismo , Humanos , Cinética , Modelos Moleculares , Mutación , Dominios PDZ/genética , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
13.
Protein Expr Purif ; 87(2): 111-9, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23137940

RESUMEN

Expression of recombinant proteins in bacterial or eukaryotic systems often results in aggregation rendering them unavailable for biochemical or structural studies. Protein aggregation is a costly problem for biomedical research. It forces research laboratories and the biomedical industry to search for alternative, more soluble, non-human proteins and limits the number of potential "druggable" targets. In this study we present a highly reproducible protocol that introduces the systematic use of an extensive number of detergents to solubilize aggregated proteins expressed in bacterial and eukaryotic systems. We validate the usefulness of this protocol by solubilizing traditionally difficult human protein targets to milligram quantities and confirm their biological activity. We use this method to solubilize monomeric or multimeric components of multi-protein complexes and demonstrate its efficacy to reconstitute large cellular machines. This protocol works equally well on cytosolic, nuclear and membrane proteins and can be easily adapted to a high throughput format.


Asunto(s)
Biotecnología/métodos , Detergentes/química , Proteínas de la Membrana/aislamiento & purificación , Complejos Multiproteicos/aislamiento & purificación , Proteínas Recombinantes/aislamiento & purificación , Electroforesis en Gel de Poliacrilamida , Escherichia coli , Proteínas de la Membrana/química , Complejos Multiproteicos/química , Proteínas Recombinantes/química , Saccharomyces cerevisiae , Células Sf9 , Solubilidad
14.
PLoS One ; 6(5): e19510, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21611125

RESUMEN

BACKGROUND: The scavenging ability of sufficient divalent metal ions is pivotal for pathogenic bacteria to survive in the host. ATP-binding cassette (ABC)-type metal transporters provide a considerable amount of different transition metals for bacterial growth. TroA is a substrate binding protein for uptake of multiple metal ions. However, the function and structure of the TroA homologue from the epidemic Streptococcus suis isolates (SsTroA) have not been characterized. METHODOLOGY/PRINCIPAL FINDINGS: Here we determined the crystal structure of SsTroA from a highly pathogenic streptococcal toxic shock syndrome (STSS)-causing Streptococcus suis in complex with zinc. Inductively coupled plasma mass spectrometry (ICP-MS) analysis revealed that apo-SsTroA binds Zn(2+) and Mn(2+). Both metals bind to SsTroA with nanomolar affinity and stabilize the protein against thermal unfolding. Zn(2+) and Mn(2+) induce distinct conformational changes in SsTroA compared with the apo form as confirmed by both circular dichroism (CD) and nuclear magnetic resonance (NMR) spectra. NMR data also revealed that Zn(2+)/Mn(2+) bind to SsTroA in either the same site or an adjacent region. Finally, we found that the folding of the metal-bound protein is more compact than the corresponding apoprotein. CONCLUSIONS/SIGNIFICANCE: Our findings reveal a mechanism for uptake of metal ions in S. suis and this mechanism provides a reasonable explanation as to how SsTroA operates in metal transport.


Asunto(s)
Proteínas Bacterianas/metabolismo , Metales/metabolismo , Streptococcus suis/metabolismo , Secuencia de Aminoácidos , Naftalenosulfonatos de Anilina/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Sitios de Unión , Calorimetría , Dicroismo Circular , Clonación Molecular , Biología Computacional , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Fluorescencia , Iones , Espectroscopía de Resonancia Magnética , Manganeso/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Alineación de Secuencia , Temperatura , Zinc/metabolismo
15.
J Bacteriol ; 191(18): 5832-7, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19617363

RESUMEN

Mannonate dehydratase (ManD) is found only in certain bacterial species, where it participates in the dissimilation of glucuronate. ManD catalyzes the dehydration of d-mannonate to yield 2-keto-3-deoxygluconate (2-KDG), the carbon and energy source for growth. Selective inactivation of ManD by drug targeting is of therapeutic interest in the treatment of human Streptococcus suis infections. Here, we report the overexpression, purification, functional characterization, and crystallographic structure of ManD from S. suis. Importantly, by Fourier transform mass spectrometry, we show that 2-KDG is formed when the chemically synthesized substrate (d-mannonate) is incubated with ManD. Inductively coupled plasma-mass spectrometry revealed the presence of Mn(2+) in the purified protein, and in the solution state catalytically active ManD exists as a homodimer of two 41-kDa subunits. The crystal structures of S. suis ManD in native form and in complex with its substrate and Mn(2+) ion have been solved at a resolution of 2.9 A. The core structure of S. suis ManD is a TIM barrel similar to that of other members of the xylose isomerase-like superfamily. Structural analyses and comparative amino acid sequence alignments provide evidence for the importance of His311 and Tyr325 in ManD activity. The results of site-directed mutagenesis confirmed the functional role(s) of these residues in the dehydration reaction and a plausible mechanism for the ManD-catalyzed reaction is proposed.


Asunto(s)
Hidroliasas , Streptococcus suis/enzimología , Catálisis , Cristalización , Cristalografía por Rayos X , Hidroliasas/química , Hidroliasas/genética , Hidroliasas/metabolismo , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Streptococcus suis/genética , Azúcares Ácidos/metabolismo
16.
Protein Sci ; 18(2): 294-303, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19177572

RESUMEN

Gluconate 5-dehydrogenase (Ga5DH) is an NADP(H)-dependent enzyme that catalyzes a reversible oxidoreduction reaction between D-gluconate and 5-keto-D-gluconate, thereby regulating the flux of this important carbon and energy source in bacteria. Despite the considerable amount of physiological and biochemical knowledge of Ga5DH, there is little physical or structural information available for this enzyme. To this end, we herein report the crystal structures of Ga5DH from pathogenic Streptococcus suis serotype 2 in both substrate-free and liganded (NADP(+)/D-gluconate/metal ion) quaternary complex forms at 2.0 A resolution. Structural analysis reveals that Ga5DH adopts a protein fold similar to that found in members of the short chain dehydrogenase/reductase (SDR) family, while the enzyme itself represents a previously uncharacterized member of this family. In solution, Ga5DH exists as a tetramer that comprised four identical approximately 29 kDa subunits. The catalytic site of Ga5DH shows considerable architectural similarity to that found in other enzymes of the SDR family, but the S. suis protein contains an additional residue (Arg104) that plays an important role in the binding and orientation of substrate. The quaternary complex structure provides the first clear crystallographic evidence for the role of a catalytically important serine residue and also reveals an amino acid tetrad RSYK that differs from the SYK triad found in the majority of SDR enzymes. Detailed analysis of the crystal structures reveals important contributions of Ca(2+) ions to active site formation and of specific residues at the C-termini of subunits to tetramer assembly. Because Ga5DH is a potential target for therapy, our findings provide insight not only of catalytic mechanism, but also suggest a target of structure-based drug design.


Asunto(s)
Proteínas Bacterianas/química , Oxidorreductasas/química , Estructura Cuaternaria de Proteína , Streptococcus suis/enzimología , Secuencia de Aminoácidos , Arginina/metabolismo , Proteínas Bacterianas/metabolismo , Calcio/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Gluconatos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , NADP/metabolismo , Oxidorreductasas/metabolismo , Alineación de Secuencia , Serina/metabolismo
17.
Artículo en Inglés | MEDLINE | ID: mdl-18997324

RESUMEN

2-Keto-3-deoxy-6-phosphogluconate (KDPG) adolase from pathogenic Streptococcus suis serotype 2 was crystallized using the hanging-drop vapour-diffusion method at 291 K. X-ray diffraction data were collected to 2.8 A resolution. The crystal belonged to space group R32, with unit-cell parameters a = b = 126.4, c = 415.9 A, alpha = beta = 90, gamma = 120 degrees . Assuming the presence of six molecules in the asymmetric unit gave a V(M) value of 2.32 A(3) Da(-1) and a solvent content of 47.12%.


Asunto(s)
Aldehído-Liasas/química , Aldehído-Liasas/aislamiento & purificación , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Streptococcus suis/enzimología , Aldehído-Liasas/genética , Animales , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Humanos , Datos de Secuencia Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Porcinos , Difracción de Rayos X
18.
Biochem Biophys Res Commun ; 345(3): 1108-15, 2006 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-16714001

RESUMEN

Human coronavirus 229E (HCoV-229E), a member of group I coronaviruses, has been identified as one of the major viral agents causing respiratory tract diseases in humans for nearly 40 years. However, the detailed molecular mechanism of the membrane fusion mediated by the spike (S) protein of HCoV-229E remains elusive. Here, we report, for the first time, a rationally designed fusion core of HCoV-229E (HR1-SGGRGG-HR2), which was in vitro produced in GST prokaryotic expression system. Multiple lines of experimental data including gel-filtration, chemical cross-linking, and circular diagram (CD) demonstrated that the HCoV-229E fusion core possesses the typical properties of the trimer of coiled-coil heterodimer (six alpha-helix bundle). 3D structure modeling presents its most-likely structure, similar to those of coronaviruses that have been well-documented. Collectively, HCoV-229E S protein belongs to the type I fusion protein, which is characterized by the existence of two heptad-repeat regions (HR1 and HR2), furthermore, the available knowledge concerning HCoV-229E fusion core may make it possible to design small molecule or polypeptide drugs targeting the membrane fusion, a crucial step of HCoV-229E infection.


Asunto(s)
Coronavirus Humano 229E/metabolismo , Fusión de Membrana , Proteínas del Núcleo Viral/química , Proteínas Virales de Fusión/metabolismo , Secuencia de Aminoácidos , Reactivos de Enlaces Cruzados/farmacología , Dimerización , Glutatión Transferasa/metabolismo , Humanos , Datos de Secuencia Molecular , Filogenia , Conformación Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/química , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA