Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Cell Mol Med ; 28(11): e18410, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38853457

RESUMEN

Troponin T1 (TNNT1) plays a crucial role in muscle contraction but its role in cancer, particularly in kidney renal clear cell carcinoma (KIRC), is not well-understood. This study explores the expression, clinical significance and biological functions of TNNT1 in various cancers, with an emphasis on its involvement in KIRC. We analysed TNNT1 expression in cancers using databases like TCGA and GTEx, assessing its prognostic value, mutation patterns, methylation status and functional implications. The study also examined TNNT1's effect on the tumour microenvironment and drug sensitivity in KIRC, complemented by in vitro TNNT1 knockdown experiments in KIRC cells. TNNT1 is overexpressed in several cancers and linked to adverse outcomes, showing frequent upregulation mutations and abnormal methylation. Functionally, TNNT1 connects to muscle and cancer pathways, affects immune infiltration and drug responses, and its overexpression in KIRC is associated with advanced disease and reduced survival. Knocking down TNNT1 curbed KIRC cell growth. TNNT1's aberrant expression plays a significant role in tumorigenesis and immune modulation, highlighting its value as a prognostic biomarker and a potential therapeutic target in KIRC and other cancers. Further studies are essential to understand TNNT1's oncogenic mechanisms in KIRC.


Asunto(s)
Carcinogénesis , Carcinoma de Células Renales , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales , Troponina T , Humanos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinogénesis/genética , Carcinogénesis/inmunología , Carcinogénesis/patología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Proliferación Celular , Metilación de ADN , Inmunomodulación/genética , Neoplasias Renales/genética , Neoplasias Renales/inmunología , Neoplasias Renales/patología , Neoplasias Renales/metabolismo , Mutación/genética , Pronóstico , Troponina T/metabolismo , Troponina T/genética , Microambiente Tumoral/inmunología
2.
Theor Appl Genet ; 137(6): 132, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750241

RESUMEN

KEY MESSAGE: The Dof22 gene encoding a deoxyribonucleic acid binding with one finger in maize, which is associated with its drought tolerance. The identification of drought stress regulatory genes is essential for the genetic improvement of maize yield. Deoxyribonucleic acid binding with one finger (Dof), a plant-specific transcription factor family, is involved in signal transduction, morphogenesis, and environmental stress responses. In present study, by weighted correlation network analysis (WGCNA) and gene co-expression network analysis, 15 putative Dof genes were identified from maize that respond to drought and rewatering. A real-time fluorescence quantitative PCR showed that these 15 genes were strongly induced by drought and ABA treatment, and among them ZmDof22 was highly induced by drought and ABA treatment. Its expression level increased by nearly 200 times after drought stress and more than 50 times after ABA treatment. After the normal conditions were restored, the expression levels were nearly 100 times and 40 times of those before treatment, respectively. The Gal4-LexA/UAS system and transcriptional activation analysis indicate that ZmDof22 is a transcriptional activator regulating drought tolerance and recovery ability in maize. Further, overexpressed transgenic and mutant plants of ZmDof22 by CRISPR/Cas9, indicates that the ZmDof22, improves maize drought tolerance by promoting stomatal closure, reduces water loss, and enhances antioxidant enzyme activity by participating in the ABA pathways. Taken together, our findings laid a foundation for further functional studies of the ZmDof gene family and provided insights into the role of the ZmDof22 regulatory network in controlling drought tolerance and recovery ability of maize.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Estomas de Plantas , Factores de Transcripción , Zea mays , Zea mays/genética , Zea mays/fisiología , Zea mays/enzimología , Estomas de Plantas/fisiología , Estomas de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estrés Fisiológico/genética , Antioxidantes/metabolismo , Plantas Modificadas Genéticamente/genética , Ácido Abscísico/metabolismo , Resistencia a la Sequía
3.
Gut Microbes ; 16(1): 2340487, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626129

RESUMEN

Obesity is becoming a major global health problem in children that can cause diseases such as type 2 diabetes and metabolic disorders, which are closely related to the gut microbiota. However, the underlying mechanism remains unclear. In this study, a significant positive correlation was observed between Prevotella copri (P. copri) and obesity in children (p = 0.003). Next, the effect of P. copri on obesity was explored by using fecal microbiota transplantation (FMT) experiment. Transplantation of P. copri. increased serum levels of fasting blood glucose (p < 0.01), insulin (p < 0.01) and interleukin-1ß (IL-1ß) (p < 0.05) in high-fat diet (HFD)-induced obese mice, but not in normal mice. Characterization of the gut microbiota indicated that P. copri reduced the relative abundance of the Akkermansia genus in mice (p < 0.01). Further analysis on bile acids (BAs) revealed that P. copri increased the primary BAs and ursodeoxycholic acid (UDCA) in HFD-induced mice (p < 0.05). This study demonstrated for the first time that P. copri has a significant positive correlation with obesity in children, and can increase fasting blood glucose and insulin levels in HFD-fed obese mice, which are related to the abundance of Akkermansia genus and bile acids.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Obesidad Infantil , Prevotella , Humanos , Niño , Animales , Ratones , Insulina , Ácidos y Sales Biliares/farmacología , Glucemia , Ratones Obesos , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL
4.
Food Funct ; 15(9): 4852-4861, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38573228

RESUMEN

This study elucidates the mechanism of obesity-related adverse pregnancy outcomes and further investigates the effect of resveratrol on reproductive performance in a short- or long-term HFD-induced obese mouse model. Results show that maternal weight had a significant positive correlation with litter mortality in mice. A long-term HFD increased body weight and litter mortality with decreased expression of uterine cytochrome oxidase 4 (COX4), which was recovered by resveratrol in mice. Moreover, HFD decreased the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factors-1 (Nrf-1), and phosphorylated adenosine 5'-monophosphate (AMP)-activated protein kinase (p-AMPK) and increased the expression of phosphorylated extracellular regulated protein kinases (p-ERK) in the uterus. Resveratrol, a polyphenol that can directly bind to the ERK protein, suppressed the phosphorylation of ERK, increased the expression of p-AMPK, PGC-1α and Nrf-1, and decreased litter mortality in mice.


Asunto(s)
Dieta Alta en Grasa , Mitocondrias , Resultado del Embarazo , Resveratrol , Útero , Animales , Resveratrol/farmacología , Femenino , Embarazo , Ratones , Dieta Alta en Grasa/efectos adversos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Útero/metabolismo , Útero/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Ratones Endogámicos C57BL , Obesidad/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo
5.
Mol Carcinog ; 63(6): 1106-1116, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38441297

RESUMEN

Bladder cancer (BC) is a common and malignant tumor of the urinary tract, and its treatment options are limited. Tectoridin (TEC) has antitumor activity against prostate and colon cancer, but its effects on BC are poorly understood. BC cells were treated with increasing concentrations of TEC, and its effects on cell proliferation, migration, invasiveness, and apoptosis were assessed. Xenograft mouse model was used to evaluate the influences of TEC on BC tumor growth. Western blot analysis was conducted to explore the downstream pathways affected by TEC. TEC treatment decreased BC cell viability in a dose-dependent manner (IC50 ≈ 25 µM), and inhibited cell proliferation, migration, and invasiveness while promoting apoptosis. Clinical analysis revealed high expression of RAB27B in BC tumor tissues, particularly in advanced stages, correlating with an unfavorable prognosis. In vitro experiments demonstrated that TEC suppressed the PI3K/MAPK pathway by targeting RAB27B, and overexpression of RAB27B counteracted the antitumor effects of TEC. In xenograft models, TEC administration suppressed tumor growth, reduced tumor volume, inhibited cell proliferation, and suppressed the PI3K/MAPK pathway, highlighting its potential as an inhibitor of tumor growth. TEC suppresses BC tumor growth by targeting RAB27B and inactivating the PI3K/MAPK signaling and may provide a promising therapeutic target for BC treatment.


Asunto(s)
Apoptosis , Proliferación Celular , Fosfatidilinositol 3-Quinasas , Neoplasias de la Vejiga Urinaria , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas de Unión al GTP rab , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Humanos , Animales , Proliferación Celular/efectos de los fármacos , Ratones , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasas/metabolismo , Masculino , Apoptosis/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Ratones Desnudos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones Endogámicos BALB C , Transducción de Señal/efectos de los fármacos
6.
Cell Signal ; 113: 110971, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37979898

RESUMEN

Bladder cancer, the most common malignant tumor in the urinary system, exhibits significantly up-regulated expression of P3H4, which is associated with pathological factors. The objective of this study was to elucidate the underlying mechanism of P3H4 in bladder cancer. Initially, we analyzed P3H4 gene expression using the TCGA database and evaluated P3H4 levels in clinical samples and various bladder cell lines. P3H4 was found to be markedly overexpressed in bladder cancer samples. Subsequently, bladder cancer cells were transfected with shRNA targeting P3H4 (sh-P3H4), sh-METTL3, and P3H4 overexpression vectors (P3H4 OE). Viability, migration, and invasion of bladder cancer cells were assessed using CCK-8, wound healing, and transwell assays. Western blot analysis was performed to determine the levels of EMT-associated proteins, while RNA stability assays determined the half-life of P3H4. Knockdown of P3H4 resulted in inhibition of bladder cancer cell proliferation, migration, invasion, and EMT progression. Mechanistically, METTL3 was found to regulate the mRNA stability of P3H4 in bladder cancer. Moreover, overexpression of P3H4 reversed the inhibitory effects of METTL3 knockdown on bladder cancer cell behaviors. Stable cell lines were established by infecting EJ cells with lentiviral vectors containing sh-METTL3 or P3H4 OE. These cells were then implanted into the skin of BALB/c nude mice, and IHC analysis was used to analyze the expression levels of EMT-associated proteins. In vivo studies demonstrated that inhibition of METTL3 suppressed bladder cancer growth and EMT through P3H4. In conclusion, our findings suggest that METTL3 regulates the proliferation, metastasis, and EMT progression of bladder cancer through P3H4, highlighting its potential as a therapeutic target.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Animales , Ratones , Línea Celular Tumoral , Ratones Desnudos , Proliferación Celular/genética , Neoplasias de la Vejiga Urinaria/patología , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica
7.
Cytokine ; 175: 156444, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38150791

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is the most common malignancy of the head and neck epidermis. Accumulating long non-coding RNAs (lncRNAs) have been proven to be involved in the occurrence and development of HNSCC. LncRNA long intergenic non-protein coding RNA 491 (LINC00491) has been confirmed to regulate the progression of some cancers. In our study, we aimed to explore the potential biological function of LINC00491 and expound the regulatory mechanism by which LINC00491 affects the progression of HNSCC. RT-qPCR was utilized to analyze the expression of LINC00491 in HNSCC cell lines and the normal cell line. Functionally, we carried out a series of assays to measure cell proliferation, apoptosis, migration and invasion, such as EdU assay, colony formation, wound healing and western blot assays. Also, mechanism assays including RNA pull down and RIP were also implemented to investigate the interaction of LINC00491 and RNAs. As a result, we discovered that LINC00491 was highly expressed in HNSCC cells. In addition, LINC00491 depletion suppressed cell proliferation, migration and EMT process. Furthermore, we discovered that LINC00491 could bind to miR-508-3p. MiR-508-3p overexpression can restrain HNSCC cell growth. Importantly, miR-508-3p can target SATB homeobox 1 (SATB1) in HNSCC cells. Further, Wnt signaling pathway was proved to be activated by LINC00491 through SATB1 in HNSCC cells. In a word, LINC00491 accelerated HNSCC progression through regulating miR-508-3p/SATB1 axis and activating Wnt signaling pathway.


Asunto(s)
Neoplasias de Cabeza y Cuello , Proteínas de Unión a la Región de Fijación a la Matriz , MicroARNs , ARN Largo no Codificante , Humanos , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Factores de Transcripción/metabolismo , Vía de Señalización Wnt/genética
8.
Anim Nutr ; 15: 341-349, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38053801

RESUMEN

Rosemary extracts have been widely used as feed additives in recent years. This study aimed to investigate the effects of rosmarinic acid (RA) and ursolic acid (UA), the main active components of rosemary, on growth performance, meat quality and lipid metabolism in finishing pigs. A total of 72 finishing pigs (Landrace; initial age of 150 d) were randomly divided into 3 treatments with 8 replicates of 3 pigs each, and fed a basal diet or diet containing 500 mg/kg of RA or UA. The results showed that dietary supplementation of RA or UA had no significant effect on the growth performance and carcass traits of finishing pigs (P > 0.05). However, both RA and UA significantly increased the triglyceride (TG) level in soleus muscle (P < 0.001). Supplementation of RA increased the expression of genes related to lipogenesis and transport including fatty acid synthase (FAS) (P < 0.001), sterol regulatory element binding protein-1c (SREBP1c) (P < 0.001) and peroxisome proliferator-activated receptor γ (PPARγ) (P < 0.05), while UA increased the expression of fatty acid transport protein 1 (FATP1), a gene related to lipid uptake (P < 0.05). However, RA reduced the expression of adipogenesis-related gene acetyl-coenzyme A carboxylase α (ACCα) (P < 0.01). Characterization of cecal microbiota indicated that RA increased the microbial richness (chao 1, P < 0.001) and diversity (observed species, P < 0.01). Further analysis of the genera revealed that RA increased the relative abundance of Bacteroides and g-UCG-005 (P < 0.05), and UA enriched Prevotella (P < 0.001). Correlation analysis showed that g-UCG-005 was positively correlated with the expression of FAS, carnitine palmitoyl transferase 1B (CPT1B), SREBP1c and PPARγ (P < 0.01). In conclusion, dietary supplementation of RA or UA may increase fat deposition in muscle of finishing pigs by regulating lipid metabolism and gut microbiota.

10.
Antioxidants (Basel) ; 12(2)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36829919

RESUMEN

The energy and metabolic state of sows will alter considerably over different phases of gestation. Maternal metabolism increases dramatically, particularly in late pregnancy. This is accompanied by the development of an increase in oxidative stress, which has a considerable negative effect on the maternal and the placenta. As the only link between the maternal and the fetus, the placenta is critical for the maternal to deliver nutrients to the fetus and for the fetus' survival and development. This review aimed to clarify the changes in energy and metabolism in sows during different pregnancy periods, as well as the impact of maternal oxidative stress on the placenta, which affects the fetus' survival and development.

11.
Cell Mol Gastroenterol Hepatol ; 15(3): 613-632, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36436756

RESUMEN

BACKGROUND & AIMS: Klebsiella pneumoniae (KLP), a Gram-negative bacterium belonging to the family of Enterobacteriaceae, is a common cause of antimicrobial-resistant opportunistic infections in hospitalized patients. KLP can colonize in the human gastrointestinal tract, especially in patients with inflammatory bowel diseases. However, effects of KLP on the onset and development of inflammatory bowel disease remain unclear. METHODS: We analyzed the relationship between Mayo indexes of ulcerative colitis and KLP using quantitative reverse-transcription polymerase chain reaction and endoscopy. Using caspase-1/11-/-, NLRP3-/-, NLRC4-/-, interleukin (IL)18-/-, and IL22-/- mice, we showed that KLP could induce colitis through caspase-11-mediated release of mature IL18. Through in vitro gut organoid culture, we determined the mechanism for KLP to induce colitis. RESULTS: We first found that there was a positive relationship between the Mayo indexes of ulcerative colitis and KLP. Then, we isolated a strain of KLP, named Klebsiella pneumoniae J (KLPJ), from the colon tissues of patients with colitis. This strain of bacteria could induce the production of mature IL18 in colon epithelial cells and gut organoids, and also induce colitis and promote dextran sodium sulfate-mediated colitis. Using caspase-1/11-/-, NLRP3-/-, NLRC4-/-, IL18-/-, and IL22-/- mice, we showed that KLPJ-mediated colitis occurred through activation of caspase-11, and was dependent on IL18 and partly on IL22. Our data also showed that lipopolysaccharide from KLPJ could bind with caspase-11 to induce mature IL18 in mouse and human colon organoids. CONCLUSIONS: KLPJ from the colon tissues of patients with ulcerative colitis can colonize the colon, activate caspase-11 inflammasomes, and contribute to intestinal inflammation.


Asunto(s)
Colitis Ulcerosa , Colitis , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Ratones , Colitis Ulcerosa/inducido químicamente , Interleucina-18 , Klebsiella pneumoniae , Caspasas , Proteína con Dominio Pirina 3 de la Familia NLR , Colitis/inducido químicamente , Colitis/metabolismo , Células Epiteliales/metabolismo , Caspasa 1
12.
Cir Cir ; 90(5): 588-595, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36327483

RESUMEN

OBJECTIVE: This work aimed to investigate the molecular mechanism of the activation of hypoxia-inducible factors under different low oxygen partial pressures. METHODS: Strictly follow in vitro aseptic culture of bladder cancer cell line UMUC3 and when the cells grow in the logarithmic phase, culture the cells under different low oxygen partial pressures. Among these groups, two groups of cells were transfected with small interfering-hypoxia inducible factor 1α (si-HIF-1α) liposome plasmids to silencing the HIF-1α expression. RESULTS: Cell cloning experiment showed that HIF-1α will increase cell adhesion and proliferation under hypoxia. Matrigel angiogenesis experiment showed that hypoxia has a negative impact on the angiogenesis of tumor cells. Cell scratch test indicated that hypoxia has a greater impact on the migration ability of cancer cells, and HIF-1α has a significant impact on the migration process. Cell invasion test proved that hypoxia has a greater impact on the invasion ability of cancer cells, and HIF-1α has a great impact on the invasion process. CONCLUSION: HIF-1α can target the regulatory gene vascular endothelial growth factor to promote tumor cell proliferation, migration, invasion, neovascularization and lymph node metastasis.


OBJETIVO: Por lo tanto, este trabajo investiga el mecanismo molecular de la activación de factores inducibles por hipoxia bajo diferentes presiones parciales de oxígeno bajas. MÉTODOS: Siga estrictamente el cultivo aséptico in vitro de la línea celular de cáncer de vejiga UMUC3 y cuando las células crezcan en la fase logarítmica, cultive las células bajo diferentes presiones parciales de oxígeno bajas. Entre estos grupos, se transfectaron dos grupos de células con plásmidos de liposomas si-HIF-1α para silenciar la expresión de HIF-1α. RESULTADOS: El experimento de clonación celular mostró que HIF-1α aumentará la adhesión y proliferación celular bajo hipoxia. El experimento de angiogénesis de Matrigel mostró que la hipoxia tiene un impacto negativo en la angiogénesis de las células tumorales. La prueba de raspado celular indicó que la hipoxia tiene un mayor impacto en la capacidad de migración de las células cancerosas, y HIF-1α tiene un impacto significativo en el proceso de migración. La prueba de invasión celular demostró que la hipoxia tiene un mayor impacto en la capacidad de invasión de las células cancerosas y HIF-1α tiene un gran impacto en el proceso de invasión. CONCLUSIÓN: HIF-1α puede dirigirse al gen regulador vascular endothelial growth factor para promover la proliferación, migración, invasión, neovascularización y metástasis en los ganglios linfáticos de las células tumorales.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/genética , Factor A de Crecimiento Endotelial Vascular/genética , Microambiente Tumoral , Hipoxia , Neovascularización Patológica/genética , Oxígeno
13.
Pharmaceutics ; 14(10)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36297587

RESUMEN

PURPOSE: Prolyl 3-hydroxylase family member 4 (P3H4) is a potent prognostic oncogene in bladder cancer (BC), and the inhibition of P3H4 suppresses BC tumor growth. This study aimed to evaluate the efficiency of P3H4 inhibition for BC tumor therapy via tumor-targeting nanoparticles. METHODS AND RESULTS: A linear polyarginine peptide (R9) was synthesized, azide-modified, and then assembled with cyclic pentapeptide cRGDfK. Chlorin e6 (ce6)-conjugated CH3-R9-RGD nanoparticles were prepared for the delivery of siP3H4 into T24 cells in vitro and BC tumors in vivo. Dynamic light scattering analysis identified that the optimum CH3-R9-RGD@siP3H4 molar ratio was 30/1. CH3-R9-RGD@ce6/siP3H4 nanocomposites decreased P3H4 expression and cell proliferation and promoted reactive oxygen species production, apoptosis, and calreticulin exposure in T24 cells in vitro. In vivo experiments showed that CH3-R9-RGD@ce6/siP3H4 nanocomposites caused pathological changes, suppressed BC tumor growth, promoted caspase 3 expression, and enhanced calreticulin exposure in tumor cells. CONCLUSIONS: The tumor-targeting CH3-R9-RGD nanocomposites encapsulating siP3H4 and ce6 might be an alternative therapeutic strategy or intravesical instillation chemotherapy for BC.

14.
Drug Dev Res ; 83(7): 1697-1706, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36048966

RESUMEN

The worldwide high prevalence of diabetic nephropathy is one of the common causes of renal failure in diabetic patients. Hyperglycemia-caused podocyte injury is considered as a major contributor to diabetic kidney disease, accompanied by a chronic inflammatory condition. Pyroptosis, a characterized inflammatory form of programmed cell death, is believed to be involved in the pathogenesis of diabetic nephropathy. Solasonine (SS) is a natural alkaloid and received attention as a potential anticancer agent. However, its protective effect against hyperglycemia-caused podocyte injury remains to be determined. Our study found that SS alleviates cell apoptosis, and reduces pyroptosis and oxidative damage in high glucose (HG)-treated MPC5 podocytes. Pro-inflammatory cytokines, including interleukin (IL)-1ß and IL-18, and caspase-1 activity were markedly suppressed by SS in HG-treated MPC5 podocytes. SS also reduced HG-induced oxidative damage in MPC5 podocytes. Nrf2 expression was activated by SS in vitro under a HG condition. In addition, Nrf2 silencing attenuated the protective effect of SS against apoptosis, pro-inflammatory cytokines release, caspase-1 activity, and oxidative damage in MPC5 podocytes under a HG condition. Taken together, our findings revealed for the first time that SS alleviated high glucose-induced podocyte apoptosis, pyroptosis, and oxidative damage via regulating the Nrf2/NLRP3 signaling pathway. Our results indicate that SS has the potential as a therapeutic agent for podocyte injury in diabetic nephropathy.


Asunto(s)
Nefropatías Diabéticas , Hiperglucemia , Podocitos , Humanos , Podocitos/metabolismo , Podocitos/patología , Factor 2 Relacionado con NF-E2/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Glucosa/metabolismo , Glucosa/farmacología , Apoptosis , Hiperglucemia/metabolismo , Hiperglucemia/patología , Caspasas/metabolismo
15.
Clin. transl. oncol. (Print) ; 24(8): 1524–1532, agosto 2022.
Artículo en Inglés | IBECS | ID: ibc-206241

RESUMEN

PurposeThe prolyl 3-hydroxylase family member 4 gene (P3H4) is involved in the development of human cancers. The association of P3H4 with bladder cancer (BC) prognosis is unclear. This study aimed to analyze the association of P3H4 with BC prognosis.MethodsRNA-Seq data were downloaded from The Cancer Genome Atlas project and BC microarray datasets (GSE13507, GSE31684, and GSE32548) were downloaded from the Gene Expression Omnibus database. We analyzed the differences in P3H4 expression levels between BC tumors and non-tumor tissues and between samples with different clinical information. The association of P3H4 and P3H4-related genes with BC prognosis and the possibility of using P3H4 expression as a prognostic biomarker in BC patients were also analyzed. RevMan was used to perform the meta-analysis.ResultsP3H4 was upregulated in BC tissues compared with the adjacent non-tumor tissues (p = 4.06e−08). Univariate Cox regression analysis and meta-analysis showed that high P3H4 expression level contributed to a poor BC prognosis (Hazard ratio, HR = 1.348, 95% CI 1.140–1.594, p = 4.89e−04; meta-analysis: HR = 1.45, 95% CI 1.10–1.91; p = 9.00e−03). Among the genes related to P3H4, the PLOD1 gene was closely associated with P3H4 expression (r = 0.620, p = 2.49e−44). Also, a meta-analysis showed that PLOD1 expression was associated with a poor prognosis in BC patients (HR = 1.77, 95% CI 1.31–2.38; p = 2.00e−04). (AU)


Asunto(s)
Humanos , Autoantígenos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Neoplasias de la Vejiga Urinaria/patología
16.
Environ Sci Technol ; 56(13): 9164-9181, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35700262

RESUMEN

The world is not on track to meet Sustainable Development Goal 6.1 to provide universal access to safely managed drinking water by 2030. Removal of priority microbial contaminants by disinfection is one aspect of ensuring water is safely managed. Passive chlorination (also called in-line chlorination) represents one approach to disinfecting drinking water before or at the point of collection (POC), without requiring daily user input or electricity. In contrast to manual household chlorination methods typically implemented at the point of use (POU), passive chlorinators can reduce the user burden for chlorine dosing and enable treatment at scales ranging from communities to small municipalities. In this review, we synthesized evidence from 27 evaluations of passive chlorinators (in 19 articles, 3 NGO reports, and 5 theses) conducted across 16 countries in communities, schools, health care facilities, and refugee camps. Of the 27 passive chlorinators we identified, the majority (22/27) were solid tablet or granular chlorine dosers, and the remaining devices were liquid chlorine dosers. We identified the following research priorities to address existing barriers to scaled deployment of passive chlorinators: (i) strengthening local chlorine supply chains through decentralized liquid chlorine production, (ii) validating context-specific business models and financial sustainability, (iii) leveraging remote monitoring and sensing tools to monitor real-time chlorine levels and potential system failures, and (iv) designing handpump-compatible passive chlorinators to serve the many communities reliant on handpumps as a primary drinking water source. We also propose a set of reporting indicators for future studies to facilitate standardized evaluations of the technical performance and financial sustainability of passive chlorinators. In addition, we discuss the limitations of chlorine-based disinfection and recognize the importance of addressing chemical contamination in drinking water supplies. Passive chlorinators deployed and managed at-scale have the potential to elevate the quality of existing accessible and available water services to meet "safely managed" requirements.


Asunto(s)
Agua Potable , Purificación del Agua , Cloro , Desinfección , Halogenación , Purificación del Agua/métodos , Abastecimiento de Agua
17.
BMC Urol ; 22(1): 79, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35610639

RESUMEN

BACKGROUND: To observe and explore the effect of metformin on the migration and proliferation of bladder cancer T24 and 5637 cells in vitro. METHODS: Bladder cancer T24 and 5637 cell lines were cultured in vitro, and were divided into group A (blank control group) and group B (metformin group: 5, 10, 15, and 20 mmol/L); both groups were plated on 6-well plates at the same time. Culture in 24-well plates was used for wound healing assays and in 96-well plates for Transwell migration and invasion, and Cell Counting Kit-8 proliferation experiments. We observed and detected the cell migration and proliferation ability of each group at 48 h, and calculated the cell migration area and survival rate. Flow cytometry was used to detect cell apoptosis in the groups. The apoptosis-related proteins, cleaved-caspase 3, cleaved-PARP, and the PI3K/AKT/mTOR signaling pathway member proteins PI3K, phosphorylated (p)-PI3K, AKT, p-AKT, mTOR, and p-mTOR were detected using western blotting. RESULTS: After 48 h of treatment with different concentrations of metformin, the cell migration and proliferation capabilities were significantly lower than those in the blank control group. The proliferation and migration abilities of T24 and 5637 cells decreased in a metformin concentration-dependent manner (P < 0.05). The apoptosis rate under different concentrations of metformin, as detected by flow cytometry, showed a significantly higher rate in the metformin group than in the control group (P < 0.05). Compared with that in the control group, the level of cleaved-caspase 3 and cleaved-PARP protein in the metformin group was increased in each treatment group, and the levels of p-mTOR, p-AKT, and p-PI3K decreased significantly compared with those in the control group (P < 0.05). CONCLUSION: Metformin inhibited bladder cancer T24 and 5637 cell migration and proliferation, and induced their apoptosis. The mechanism might involve inhibition of the activation of the PI3K/AKT/mTOR signaling pathway.


Asunto(s)
Metformina , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Neoplasias de la Vejiga Urinaria , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Metformina/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/metabolismo
18.
Exp Cell Res ; 417(1): 113210, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35597298

RESUMEN

Cancer cells acquire immunoediting ability to evade immune surveillance and thus escape eradication. It is widely known that mutant proteins encoded from tumor suppressor TP53 exhibit gain-of-function in cancer cells, thereby promoting progression; however, how mutant p53 contributes to the sheltering of cancer cells from host anticancer immunity remains unclear. Herein, we report that murine p53 missense mutation G242A (corresponding to human G245A) suppresses the activation of host natural killer (NK) cells, thereby enabling breast cancer cells to avoid immune assault. We found that serial injection of EMT6 breast cancer cells that carry wild-type (wt) Trp53, like normal fibroblasts, promoted NK activity in mice, while SVTneg2 cells carrying Trp53 G242A+/+ mutation decreased NK cell numbers and increased CD8+ T lymphocyte numbers in spleen. Innate immunity based on NK cells and CD8 T cells was reduced in p53 mutant-carrying transgenic mice (Trp53 R172H/+, corresponding to human R175H/+). Further, upon co-culture with isolated NK cells, EMT6 cells substantively activated NK cells and proliferation thereof, increasing interferon-gamma (IFN-γ) production; however, SVTneg2 cells suppressed NK cell activation. Further mechanistic study elucidated that p53 can modulate expression by cancer cells of Mult-1 and H60a, which are activating and inhibitory ligands for NKG2D receptors of NK cells, respectively, to enhance immune surveillance against cancer. Our findings demonstrate that wt p53 is requisite for NK cell-based immune recognition and elimination of cancerous cells, and perhaps more importantly, that p53 missense mutant presence in cancer cells impairs NK cell-attributable responses, thus veiling cancerous cells from host immunity and enabling cancer progression.


Asunto(s)
Neoplasias de la Mama , Células Asesinas Naturales , Proteína p53 Supresora de Tumor , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Femenino , Células Asesinas Naturales/metabolismo , Ratones , Ratones Transgénicos , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
19.
Transl Androl Urol ; 11(1): 91-103, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35242644

RESUMEN

BACKGROUND: Melatonin is a hormone naturally produced by the pineal gland in the brain. In addition to modulating circadian rhythms, it has pleiotropic biological effects including antioxidant, immunomodulatory, and anti-cancer effects. Herein, we report that melatonin has the ability to decrease the growth and metastasis of androgen-dependent prostate cancer. METHODS: To evaluate the anti-cancer effect of melatonin on androgen-sensitive prostate cancer in vitro or in vivo, the effects of cell proliferation, apoptosis, migration and invasion were analyzed by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation, flow cytometry, Transwell assay, and immunohistochemistry (IHC), respectively. Next, the interaction between androgen receptor (AR) and SUMO specific protease 1 (SENP1) was detected by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blotting, and confirmed by luciferase reporter assay. Furthermore, the Small Ubiquitin-like Modifier (SUMO) proteins are a group of small proteins that are covalently attached to and detached from other proteins in cells to modify their function. (SUMOylation) of histone deacetylases 1 (HDAC1) was measured by proximity ligation assay (PLA). RESULTS: The treatment of melatonin cripples the transcriptional activity of AR, which is essential for the growth of the androgen-dependent prostate cancer cell, LNCaP. The lower activity of AR was dependent on melatonin induced SUMOylation of HDAC1, which has been established as a key factor for the transcriptional activity of AR. Mechanistically, the effect of melatonin on AR was due to the decreased SENP1 protein level and the subsequent increased HDAC1 SUMOylation level. The overexpression of SENP1 abrogated the anti-cancer ability of melatonin on LNCaP cells. CONCLUSIONS: These findings indicate that melatonin is a suppressor of androgen-dependent prostate cancer tumorigenesis.

20.
Clin Transl Oncol ; 24(8): 1524-1532, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35149972

RESUMEN

PURPOSE: The prolyl 3-hydroxylase family member 4 gene (P3H4) is involved in the development of human cancers. The association of P3H4 with bladder cancer (BC) prognosis is unclear. This study aimed to analyze the association of P3H4 with BC prognosis. METHODS: RNA-Seq data were downloaded from The Cancer Genome Atlas project and BC microarray datasets (GSE13507, GSE31684, and GSE32548) were downloaded from the Gene Expression Omnibus database. We analyzed the differences in P3H4 expression levels between BC tumors and non-tumor tissues and between samples with different clinical information. The association of P3H4 and P3H4-related genes with BC prognosis and the possibility of using P3H4 expression as a prognostic biomarker in BC patients were also analyzed. RevMan was used to perform the meta-analysis. RESULTS: P3H4 was upregulated in BC tissues compared with the adjacent non-tumor tissues (p = 4.06e-08). Univariate Cox regression analysis and meta-analysis showed that high P3H4 expression level contributed to a poor BC prognosis (Hazard ratio, HR = 1.348, 95% CI 1.140-1.594, p = 4.89e-04; meta-analysis: HR = 1.45, 95% CI 1.10-1.91; p = 9.00e-03). Among the genes related to P3H4, the PLOD1 gene was closely associated with P3H4 expression (r = 0.620, p = 2.49e-44). Also, a meta-analysis showed that PLOD1 expression was associated with a poor prognosis in BC patients (HR = 1.77, 95% CI 1.31-2.38; p = 2.00e-04). CONCLUSIONS: The P3H4 and PLOD1 genes might be used as reliable prognostic biomarkers for BC.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Autoantígenos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Pronóstico , Neoplasias de la Vejiga Urinaria/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...