Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 164
1.
Prev Med ; 184: 107987, 2024 May 05.
Article En | MEDLINE | ID: mdl-38714274

OBJECTIVE: The present study examined reports of changing eating to manage weight/shape over one year among adolescents. It also tested how changing eating for weight/shape was associated with physical activity (resistance training, moderate-to-vigorous physical activity; MVPA) and mental health (depressive symptoms, flourishing), and whether weight perceptions moderated these associations. METHODS: Participants were Canadian adolescents (N = 20,614, Mage ± SD = 14.4 ± 1.3, 52.9% girls) who completed self-report surveys in the 2020-2021 and 2021-2022 waves of the COMPASS study. Separate multilevel models were tested for each outcome. RESULTS: Approximately 30% of adolescents reported changing their eating to manage weight/shape at least once a week. More days of changing eating were associated with significantly higher depressive symptoms and lower flourishing cross-sectionally (b = 0.51, b = -0.27) and over time (b = 0.35, -0.20); the flourishing association over time was weaker for adolescents who perceived themselves as overweight relative to about right. More days of changing eating were also associated with more MVPA and resistance training cross-sectionally (b = 2.81, b = 0.19) and over time (b = 1.28, b = 10). The relationship between changing eating and MVPA over time was stronger for adolescents who perceived themselves as overweight relative to about right; whereas the cross-sectional relationship between changing eating and resistance training was weaker. CONCLUSIONS: Reports of changing eating to manage weight/shape were associated with divergent health outcomes; research into how and to what extreme adolescents are changing eating to manage weight/shape, and identity factors that may contribute to these differences, is warranted.

2.
Int J Biol Macromol ; 269(Pt 1): 132043, 2024 May 01.
Article En | MEDLINE | ID: mdl-38702005

Starch adhesive is a commonly used bonding glue that is sustainable, formaldehyde-free and biodegradable. However, there are obviously some problems related to its high viscosity, poor water and mildew resistance. Hence, exploring a starch-based adhesive with good properties that satisfies the requirements of wood processing presents the context of the current research. Thus, corn starch was used as raw material to form oxidized starch (OCS) via oxidation using sodium periodate, it was reacted with a synthesis polyurea compound that prepared from hexanediamine-urea (HU) obtained by deamination to yield a oxidized starch-hexanediamine-urea adhesive (denoted hereafter as OCSHU). The oxidation process was optimized in terms of oxidant concentration, reaction time and temperature. Furthermore, the impact of HU addition on the mechanical properties of the adhesive was explored. Results indicate adhesive exhibited outstanding shear strength, when 13 % of NaIO4 was used as an oxidant to treat starch at 55 °C for 24 h, and involved in a subsequent reaction with 40 % of HU. The dry shear strength, 24 h cold water strength, 3 h hot water strength and 3 h boiling water strength are 1.84, 1.50, 1.32, and 1.31 MPa. Meantime, OCSHU adhesive solution revealed good storage stability whereas cured resin exhibited mildew resistance. The developed adhesive is a simple and green biomass wood adhesive.

3.
Phytomedicine ; 129: 155657, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38692076

BACKGROUND: The pentose phosphate pathway (PPP) plays a crucial role in the material and energy metabolism in cancer cells. Targeting 6-phosphogluconate dehydrogenase (6PGD), the rate-limiting enzyme in the PPP metabolic process, to inhibit cellular metabolism is an effective anticancer strategy. In our previous study, we have preliminarily demonstrated that gambogic acid (GA) induced cancer cell death by inhibiting 6PGD and suppressing PPP at the cellular level. However, it is unclear whether GA could suppress cancer cell growth by inhibiting PPP pathway in mouse model. PURPOSE: This study aimed to confirm that GA as a covalent inhibitor of 6PGD protein and to validate that GA suppresses cancer cell growth by inhibiting the PPP pathway in a mouse model. METHODS: Cell viability was detected by CCK-8 assays as well as flow cytometry. The protein targets of GA were identified using a chemical probe and activity-based protein profiling (ABPP) technology. The target validation was performed by in-gel fluorescence assay, the Cellular Thermal Shift Assay (CETSA). A lung cancer mouse model was constructed to test the anticancer activity of GA. RNA sequencing was performed to analyze the global effect of GA on gene expression. RESULTS: The chemical probe of GA exhibited high biological activity in vitro. 6PGD was identified as one of the binding proteins of GA by ABPP. Our findings revealed a direct interaction between GA and 6PGD. We also found that the anti-cancer activity of GA depended on reactive oxygen species (ROS), as evidenced by experiments on cells with 6PGD knocked down. More importantly, GA could effectively reduce the production of the two major metabolites of the PPP in lung tissue and inhibit cancer cell growth in the mouse model. Finally, RNA sequencing data suggested that GA treatment significantly regulated apoptosis and hypoxia-related physiological processes. CONCLUSION: These results demonstrated that GA was a covalent inhibitor of 6PGD protein. GA effectively suppressed cancer cell growth by inhibiting the PPP pathway without causing significant side effects in the mouse model. Our study provides in vivo evidence that elucidates the anticancer mechanism of GA, which involves the inhibition of 6PGD and modulation of cellular metabolic processes.

4.
ACS Appl Mater Interfaces ; 16(15): 18971-18979, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38578663

The formation of a solid electrolyte interphase on carbon anodes causes irreversible loss of Na+ ions, significantly compromising the energy density of Na-ion full cells. Sodium compensation additives can effectively address the irreversible sodium loss but suffer from high decomposition voltage induced by low electrochemical activity. Herein, we propose a universal electrocatalytic sodium compensation strategy by introducing a carbon nanotube (CNT)/MnO2 catalyst to realize full utilization of sodium compensation additives at a much-reduced decomposition voltage. The well-organized CNT/MnO2 composite with high catalytic activity, good electronic conductivity, and abundant reaction sites enables sodium compensation additives to decompose at significantly reduced voltages (from 4.40 to 3.90 V vs Na+/Na for sodium oxalate, 3.88 V for sodium carbonate, and even 3.80 V for sodium citrate). As a result, sodium oxalate as the optimal additive achieves a specific capacity of 394 mAh g-1, almost reaching its theoretical capacity in the first charge, increasing the energy density of the Na-ion full cell from 111 to 158 Wh kg-1 with improved cycle stability and rate capability. This work offers a valuable approach to enhance sodium compensation efficiency, promising high-performance energy storage devices in the future.

5.
Neural Netw ; 175: 106293, 2024 Jul.
Article En | MEDLINE | ID: mdl-38626619

Existing methods for single image super-resolution (SISR) model the blur kernel as spatially invariant across the entire image, and are susceptible to the adverse effects of textureless patches. To achieve improved results, adaptive estimation of the degradation kernel is necessary. We explore the synergy of joint global and local degradation modeling for spatially adaptive blind SISR. Our model, named spatially adaptive network for blind super-resolution (SASR), employs a simple encoder to estimate global degradation representations and a decoder to extract local degradation. These two representations are fused with a cross-attention mechanism and applied using spatially adaptive filtering to enhance the local image detail. Specifically, SASR contains two novel features: (1) a non-local degradation modeling with contrastive learning to learn global and local degradation representations, and (2) a non-local spatially adaptive filtering module (SAFM) that incorporates the global degradation and spatial-detail factors to preserve and enhance local details. We demonstrate that SASR can efficiently estimate degradation representations and handle multiple types of degradation. The local representations avoid the detrimental effect of estimating the entire super-resolved image with only one kernel through locally adaptive adjustments. Extensive experiments are performed to quantitatively and qualitatively demonstrate that SASR not only performs favorably for degradation estimation but also leads to state-of-the-art blind SISR performance when compared to alternative approaches.


Image Processing, Computer-Assisted , Neural Networks, Computer , Image Processing, Computer-Assisted/methods , Algorithms , Humans
6.
Med Mycol ; 62(5)2024 May 03.
Article En | MEDLINE | ID: mdl-38471665

Pneumocystis pneumonia (PCP) is a common opportunistic infection that occurs in immunocompromised patients. Compared with HIV patients, PCP in non-HIV patients tends to follow up a more urgent course and poorer prognosis. Therefore, markers that could predict survival of PCP patients in non-HIV population are of great value. MiRNA-150 has been widely studied in many diseases since it has been identified as a vital regulator of immune cell differentiation and activation. We thus conduct this study aiming to evaluate the prognostic value of miR-150 level in non-HIV PCP. First, the expression levels of miR-150 were compared between PCP patients and healthy volunteers. The miR-150 levels in immune cells were also detected in PCP mouse models. Then the prognostic value of miR-150 was further assessed in another PCP population (n = 72). The expression levels of miR-150 were measured by reverse transcription real-time PCR (RT-PCR) technique. Our data demonstrated significantly decreased miR-150 expression levels in PCP patients and mouse models compared to controls. The miR-150 levels also decreased in various immune cells of PCP mouse models. With a cut-off value of 3.48, the area under the curve, sensitivity, specificity of miR-150 to predicate PCP mortality were 0.845, 68.2% and 96.0%, respectively. In conclusion, miR-150 expression value might serve as a potential biomarker to identify PCP patients at high risk of death.


Pneumocystis pneumonia (PCP) remains a fatal risk for immunosuppressed patients. MiR-150 takes part in immune regulation, and thus is involved in infection control. Our study indicated that the miR-150 expression may act as a potential biomarker for predicting mortality of PCP patients.


MicroRNAs , Pneumonia, Pneumocystis , MicroRNAs/genetics , Humans , Male , Pneumonia, Pneumocystis/mortality , Pneumonia, Pneumocystis/immunology , Pneumonia, Pneumocystis/microbiology , Female , Middle Aged , Animals , Mice , Adult , Prognosis , Hospital Mortality , Biomarkers , Aged , Disease Models, Animal
7.
Sci Data ; 11(1): 304, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38503792

Massive increases in the risks of depressive disorders and the ensuing suicide have become the overarching menace for children/adolescents. Despite global consensus to instigate psychological healthcare policy for these children/adolescents, their effects remain largely unclear neither from a small amount of official data nor from small-scale scientific studies. More importantly, in underprivileged children/adolescents in lower-middle-economic-status countries/areas, the data collection may not be as equally accessible as in developed countries/areas, thus resulting in underrepresented observations. To address these challenges, we released a large-scale and multi-center cohort dataset (n = 249,772) showing the effects of primary psychological healthcare on decreasing depression and suicidal ideation in these children/adolescents who were underrepresented in previous studies or current healthcare systems, including unattended children/adolescents, orphans, children/adolescents in especially difficult circumstances, and "left-behind" and "single-parenting" children/adolescents. We provided all individual data recording the depressive symptoms and suicide ideation that had been collected at baseline (Oct 2022) and half-year follow-up (May 2023) from practicing this psychological healthcare system.


Depression , Suicidal Ideation , Adolescent , Child , Humans , Depression/psychology , Depression/therapy , Socioeconomic Factors , Multicenter Studies as Topic
8.
Aging (Albany NY) ; 162024 Mar 14.
Article En | MEDLINE | ID: mdl-38484380

This paper was originally published in Aging Advance Online Publications on March 14, 2024. In compliance with Aging's withdrawal policy, the paper was withdrawn in its entirety. It will not appear in Aging internal or any external indexes or archives.

9.
Signal Transduct Target Ther ; 9(1): 40, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38355661

Emerging and recurrent infectious diseases caused by human coronaviruses (HCoVs) continue to pose a significant threat to global public health security. In light of this ongoing threat, the development of a broad-spectrum drug to combat HCoVs is an urgently priority. Herein, we report a series of anti-pan-coronavirus ssDNA aptamers screened using Systematic Evolution of Ligands by Exponential Enrichment (SELEX). These aptamers have nanomolar affinity with the nucleocapsid protein (NP) of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and also show excellent binding efficiency to the N proteins of both SARS, MERS, HCoV-OC43 and -NL63 with affinity KD values of 1.31 to 135.36 nM. Such aptamer-based therapeutics exhibited potent antiviral activity against both the authentic SARS-CoV-2 prototype strain and the Omicron variant (BA.5) with EC50 values at 2.00 nM and 41.08 nM, respectively. The protein docking analysis also evidenced that these aptamers exhibit strong affinities for N proteins of pan-coronavirus and other HCoVs (-229E and -HKU1). In conclusion, we have identified six aptamers with a high pan-coronavirus antiviral activity, which could potentially serve as an effective strategy for preventing infections by unknown coronaviruses and addressing the ongoing global health threat.


COVID-19 , SARS-CoV-2 , Humans , Nucleocapsid Proteins/genetics , Antiviral Agents/pharmacology
10.
Opt Express ; 32(2): 1501-1511, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38297700

In this study, we designed a self-focused ultrasonic transducer made of polyvinylidene fluoride (PVDF). This transducer involves a back-reflector, which is modeled after tapetum lucidum in the eyes of some nocturnal animals. The bionic structure reflects the ultrasound, which passes through the PVDF membrane, back to PVDF and provides a second chance for the PVDF to convert the ultrasound to electric signals. This design increases the amount of ultrasound absorbed by the PVDF, thereby improving the detection sensitivity. Both ultrasonic and photoacoustic (PA) experiments were conduct to characterize the performance of the transducer. The results show that the fabricated transducer has a center frequency of 13.07 MHz, and a bandwidth of 96% at -6 dB. With an acoustic numerical aperture (NA) of 0.64, the transducer provides a lateral resolution of 140µm. Importantly, the bionic design improves the detection sensitivity of the transducer about 30%. Finally, we apply the fabricated transducer to optical-resolution (OR) and acoustic-resolution photoacoustic microscopy (AR-PAM) to achieve multiscale-resolution PA imaging. Imaging of the bamboo leaf and the leaf skeleton demonstrates that the proposed transducer can provide high spatial resolution, better imaging intensity and contrast. Therefore, the proposed transducer design will be useful to enhance the performance of multiscale-resolution PAM.

11.
Respir Res ; 25(1): 45, 2024 Jan 19.
Article En | MEDLINE | ID: mdl-38243232

BACKGROUND: Severe community-acquired pneumonia (S-CAP) is a public health threat, making it essential to identify novel biomarkers and investigate the underlying mechanisms of disease severity. METHODS: Here, we profiled host responses to S-CAP through proteomics analysis of plasma samples from a cohort of S-CAP patients, non-severe (NS)-CAP patients, diseases controls (DCs), and healthy controls (HCs). Then, typical differentially expressed proteins were then validated by ELISA in an independent cohort. Metabolomics analysis was further performed on both the cohort 1 and cohort 2. Then, the proteomic and metabolomic signatures were compared between the adult and child cohorts to explore the characteristics of severe pneumonia patients. RESULTS: There were clear differences between CAP patients and controls, as well as substantial differences between the S-CAP and NS-CAP. Pathway analysis of changes revealed excessive inflammation, suppressed immunity, and lipid metabolic disorders in S-CAP cases. Interestingly, comparing these signatures between the adult and child cohorts confirmed that overactive inflammation and dysregulated lipid metabolism were common features of S-CAP patients, independent of age. The change proportion of glycerophospholipids, glycerolipids, and sphingolipids were obviously different in the adult and child S-CAP cases. CONCLUSION: The plasma multi-omics profiling revealed that excessive inflammation, suppressed humoral immunity, and disordered metabolism are involved in S-CAP pathogenesis.


Community-Acquired Infections , Pneumonia , Adult , Child , Humans , Multiomics , Proteomics , Pneumonia/diagnosis , Inflammation/diagnosis , Biomarkers , Community-Acquired Infections/diagnosis
12.
J Agric Food Chem ; 72(5): 2634-2647, 2024 Feb 07.
Article En | MEDLINE | ID: mdl-38267223

Chlorogenic acid (CA) is often combined with dietary fiber polysaccharides in plant foods, which may affect its digestive behavior and antioxidant activity. This study constructed a biomimetic dietary fiber (BDF) model by combining bacterial cellulose (BC) and pectin with CA and investigated the digestive behavior of CA in BDF. Additionally, the study examined the interaction and synergistic effects of polysaccharides and CA against oxidation. Results showed that BDF and natural dietary fiber had similar microstructures, group properties, and crystallization properties, and polysaccharides in BDF were bound to CA. After simulated gastrointestinal digestion, 41.03% of the CA existed in a conjugated form, and it was possibly influenced by the interaction between polysaccharides and CA. And the release of CA during simulated digestion potentially involved four mechanisms, including the disintegration of polysaccharide-CA complex, the dissolution of pectin, escape from BC-pectin (BCP) network structure, and diffusion release. And polysaccharides and CA may be combined through noncovalent interactions such as hydrogen bonding, van der Waals force, or electrostatic interaction force. Meanwhile, polysaccharides-CA combination had a synergistic antioxidant effect by the results of free-radical scavenging experiments, it was probably related to the interaction between polysaccharides and CA. The completion of this work has a positive significance for the development of dietary intervention strategies for oxidative damage.


Antioxidants , Chlorogenic Acid , Antioxidants/chemistry , Biomimetics , Polysaccharides/chemistry , Dietary Fiber/metabolism , Cellulose , Pectins/metabolism
13.
Circulation ; 149(2): 135-154, 2024 01 09.
Article En | MEDLINE | ID: mdl-38084582

BACKGROUND: Endothelial cell (EC) generation and turnover by self-proliferation contributes to vascular repair and regeneration. The ability to accurately measure the dynamics of EC generation would advance our understanding of cellular mechanisms of vascular homeostasis and diseases. However, it is currently challenging to evaluate the dynamics of EC generation in large vessels such as arteries because of their infrequent proliferation. METHODS: By using dual recombination systems based on Cre-loxP and Dre-rox, we developed a genetic system for temporally seamless recording of EC proliferation in vivo. We combined genetic recording of EC proliferation with single-cell RNA sequencing and gene knockout to uncover cellular and molecular mechanisms underlying EC generation in arteries during homeostasis and disease. RESULTS: Genetic proliferation tracing reveals that ≈3% of aortic ECs undergo proliferation per month in adult mice during homeostasis. The orientation of aortic EC division is generally parallel to blood flow in the aorta, which is regulated by the mechanosensing protein Piezo1. Single-cell RNA sequencing analysis reveals 4 heterogeneous aortic EC subpopulations with distinct proliferative activity. EC cluster 1 exhibits transit-amplifying cell features with preferential proliferative capacity and enriched expression of stem cell markers such as Sca1 and Sox18. EC proliferation increases in hypertension but decreases in type 2 diabetes, coinciding with changes in the extent of EC cluster 1 proliferation. Combined gene knockout and proliferation tracing reveals that Hippo/vascular endothelial growth factor receptor 2 signaling pathways regulate EC proliferation in large vessels. CONCLUSIONS: Genetic proliferation tracing quantitatively delineates the dynamics of EC generation and turnover, as well as EC division orientation, in large vessels during homeostasis and disease. An EC subpopulation in the aorta exhibits more robust cell proliferation during homeostasis and type 2 diabetes, identifying it as a potential therapeutic target for vascular repair and regeneration.


Diabetes Mellitus, Type 2 , Vascular Endothelial Growth Factor A , Animals , Mice , Vascular Endothelial Growth Factor A/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Aorta/metabolism , Endothelial Cells/metabolism , Homeostasis , Ion Channels/metabolism
14.
Small ; 20(5): e2306428, 2024 Feb.
Article En | MEDLINE | ID: mdl-37759404

Silicon (Si) is considered a promising commercial material for the next-generation of high-energy density lithium-ion battery (LIB) due to its high theoretical capacity. However, the severe volume changes and the poor conductivity hinder the practical application of Si anode. Herein, a novel core-shell heterostructure, Si as the core and V3 O4 @C as the shell (Si@V3 O4 @C), is proposed by a facile solvothermal reaction. Theoretical simulations have shown that the in-situ-formed V3 O4 layer facilitates the rapid Li+ diffusion and lowers the energy barrier of Li transport from the carbon shell to the inner core. The 3D network structure constructed by amorphous carbon can effectively improve electronic conductivity and structural stability. Benefiting from the rationally designed structure, the optimized Si@V3 O4 @C electrode exhibits an excellent cycling stability of 1061.1 mAh g-1 at 0.5 A g-1 over 700 cycles (capacity retention of 70.0%) with an average Coulombic efficiency of 99.3%. In addition, the Si@V3 O4 @C||LiFePO4 full cell shows a superior capacity retention of 78.7% after 130 cycles at 0.5 C. This study opens a novel way for designing high-performance silicon anode for advanced LIBs.

15.
Expert Opin Drug Deliv ; 21(1): 1-12, 2024.
Article En | MEDLINE | ID: mdl-38116624

INTRODUCTION: Due to the concerns raised by the extensive application of PEGylation, polypeptides have stood out as excellent candidates with adequate biocompatibility and biodegradability with tunable hydrophilicity. AREAS COVERED: In this review, polypeptides with the potential to replace PEGylation have been summarized and their application has been reviewed, including XTEN, PASylation, polysarcosine, zwitterion polypeptides, ELPylation, etc. Besides their strengths, the remaining challenges have also been discussed and the future perspectives have been provided. EXPERT OPINION: Polypeptides have been applied in the designing of peptide/protein drugs as well as nanomedicines, and some of the pharmaceutics have made it into the clinical trials and got approved. These polypeptides showed similar hydrophilic properties to PEGylation, which increased the hydrodynamic volumes of protein drugs, reduced kidney elimination, decreased protein-polymer interaction and potentially improved the drug delivery efficiency due to the extended circulation time in the system. Moreover, they demonstrated superior biodegradability and biocompatibility, compensating for the deficiencies for polymers such as PEG.


Peptides , Polyethylene Glycols , Polyethylene Glycols/chemistry , Peptides/chemistry , Proteins/therapeutic use , Proteins/chemistry , Polymers/chemistry , Pharmaceutical Preparations , Drug Delivery Systems
16.
Int J Biol Macromol ; 258(Pt 2): 128994, 2024 Feb.
Article En | MEDLINE | ID: mdl-38157632

Non-isocyanate polyurethane (NIPU) as a new type of polyurethane material has become a hot research topic in the polyurethane industry due to its no utilization of toxic isocyanates during the synthesis process. And the developing on recyclable biomass materials has also much attention in the industrial sector, hence the preparation and application of bio-based NIPU has also become a very meaningful study work. So, in this paper, tannin as a biomass material was used to synthesize tannin based non-isocyanate polyurethanes (TNIPU) resin, and then successfully prepared a self-blowing TNIPU foam at room temperature by using formic acid as initiator and glutaraldehyde as cross-linking agent. The compressive strength of this foam as high as 0.8 MPa, which is an excellent compressive performance. Meanwhile it will return to the state before compression when removing the pressure. This indicating that the foam has good toughness. In addition, formic acid can react with the amino groups in TNIPU to form amide substances, and generated enough heat to initiate the foaming process. Glutaraldehyde, as a crosslinking agent, reacts with the amino group in TNIPU to form a network structure system. By scanning electron microscope (SEM) observation of the cell shapes, it can be seen that the foam cells were uniform in size and shape, and the cell pores showed open and closed cells. The limiting oxygen index (LOI) tested value of this TNIPU foam is 24.45 % without any flame retardant added, but compared to the LOI value of polyurethane foam (17 %-19 %), TNIPU foam reveal a better fire resistance. It has a wider application prospect.


Formates , Isocyanates , Polyurethanes , Tannins , Glutaral
17.
Small ; : e2310225, 2023 Dec 29.
Article En | MEDLINE | ID: mdl-38158336

Room-temperature sodium-sulfur (RT Na-S) batteries hold immense promise as next-generation energy storage systems, owing to their exceptionally high theoretical capacity, abundant resources, eco-friendliness, and affordability. Nevertheless, their practical application is impeded by the shuttling effect of sodium polysulfides (NaPSs) and sluggish sulfur redox kinetics. In this study, an advanced strategy by designing 3D flower-like molybdenum telluride (MoTe2 ) as an efficient catalyst to promote sulfur redox for RT Na-S batteries is presented. The unique 3D flower-like MoTe2 effectively prevents NaPS shuttling and simultaneously offers abundant active catalytic sites facilitating polysulfide redox. Consequently, the obtained MoTe2 /S cathode delivers an outstanding initial reversible capacity of 1015 mAh g-1 at 0.1 C, along with robust cycling stability of retaining 498 mAh g-1 at 1 C after 500 cycles. In addition, pouch cells are fabricated with the MoTe2 additive to deliver an ultrahigh initial discharge capacity of 890 mAh g-1 and remain stable over 40 cycles under practically necessary conditions, demonstrating the potential application in the commercialization of RT Na-S batteries.

18.
Environ Sci Technol ; 57(51): 21570-21580, 2023 Dec 26.
Article En | MEDLINE | ID: mdl-37989488

The limited characterization and detection capacity of unknown compounds hinder our understanding of the molecular composition of toxic compounds in PM2.5. The present study applied Fourier transform ion cyclotron resonance mass spectrometry coupled with negative and positive electrospray ionization sources (ESI-/ESI+ FT-ICR-MS) to probe the molecular characteristics and dynamic formation processes of the effective proinflammatory components in organic aerosols (OAs) of PM2.5 in Guangzhou for one year. We detected abundant proinflammatory molecules in OAs, mainly classified as CHON compounds (compounds composed of C, H, O, and N atoms) in elemental and nitroaromatic compounds (NACs) in structures. From the perspective of the formation process, we discovered that these proinflammatory molecules, especially toxic NACs, were largely driven by secondary nitrate formation and biomass burning (in emission source), as well as SO2 (in atmospheric evolution). In addition, our results indicated that the secondary processes had replaced the primary emission as the main contributing source of the toxic proinflammatory compounds in OAs. This study highlights the importance of community measures to control the production of nitroaromatic compounds derived from secondary nitrate formation and biomass burning in urban areas.


Nitrates , Organic Chemicals , Nitrates/analysis , Biomass , Mass Spectrometry , Organic Chemicals/analysis , Particulate Matter/analysis , Aerosols/analysis , Biological Assay
19.
Mol Pharm ; 20(10): 5185-5194, 2023 Oct 02.
Article En | MEDLINE | ID: mdl-37711135

Ferroptosis, an iron-dependent regulated cell death, has been emerging as an early mechanism in anticancer drug-induced acute kidney injury (AKI) that may benefit therapeutic intervention. However, the lack of molecular imaging methods for in vivo detection of ferroptosis restricts the early diagnosis of anticancer drug-induced AKI. Herein, we developed a PET/19F MRI dual-modal imaging probe for the monitoring of ferroptosis in AKI by chemically conjugating the Fe(II)-sensitive artemisinin (Art) motif and macrocyclic ligand 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) to the CF3-modified polyhedral oligomeric silsesquioxane (POSS) clusters, denoted as the PAD probe. The PAD probe could be converted into PA*D in the presence of Fe(II) ions and subsequently be intercepted by biological macromolecules nearby, thereby enhancing the retention effect in ferroptotic cells and tissues. After labeling with 68Ga isotopes, the 68Ga-labeled PAD probe in cisplatin (CDDP)-induced AKI mice displayed a significantly higher renal uptake level than that in normal mice. Moreover, the PAD probe with a precise chemical structure, relatively high 19F content, and single 19F resonance frequency allowed for interference-free and high-performance19F MRI that could detect the onset of CDDP-induced AKI at least 24 h earlier than the typical clinical/preclinical assays. Our study provides a robust dual-modal molecular imaging tool for the early diagnosis and mechanistic investigation of various ferroptosis-related diseases.

20.
Int J Biol Macromol ; 251: 126254, 2023 Aug 09.
Article En | MEDLINE | ID: mdl-37567545

Starch is one of the important raw materials for the preparation of biomass adhesives for its good viscosity and low-cost properties. However, the drawbacks of poor water resistance and bonding performance seriously restrict its application in the wood industry. To resolve those problems, an environment-friendly renewable, and high water resistance starch-based adhesive (OSTH) was prepared with oxidized starch and hexanediamine by Schiff base reaction. In order to optimize the adhesive preparation process, the effect of different oxidation times and oxidant addition on the mechanical performance of plywood were investigated. In addition, the curing behavior characteristics, thermomechanical properties, and thermal stability of the OSTH adhesives were analyzed by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermogravimetric analysis (TG). Fourier-transform infrared (FTIR) spectrometry and Liquid Chromatography-Mass Spectrometry (LC-MS) were used to explain the reaction mechanisms involved. The results show this adhesive has an excellent bonding performance at the oxidation time of 12 h with 11 % (w/w, dry starch basis) NaIO4 as an oxidant. The dry shear strength, 24-hour cold water, and 3-hour hot water (63 °C) soaking shear strength of the plywood bonded with this resin were respectively 1.87 MPa, 0.96 MPa, and 0.91 MPa, which satisfied the standard requirement of GB/T 9846-2015 (≥0.7 MPa). Thus, this study provided a potential strategy to prepare starch-based wood adhesives with good bonding performance and water resistance.

...