Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 319
Filtrar
2.
Biosens Bioelectron ; 263: 116625, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39116630

RESUMEN

Tactile and pain perception are essential for biological skin to interact with the external environment. This complex interplay of sensations allows for the detection of potential threats and appropriate responses to stimuli. However, the challenge is to enable flexible electronics to respond to mechanical stimuli such as biological skin, and researchers have not clearly reported the successful integration of somatic mechanical perception and sensation management functions into neuro-like electronics. In this work, an afferent nerve-like device with a pressure sensor and a perception management module is proposed. The pressure sensor comprises two conductive fabric layers and an ionic hydrogel, forming a capacitor structure that emulates the swift transition from tactile to pain perception under mechanical stimulation. Drawing inspiration from the neuronal "gate control" mechanism, the sensation management module adjusts signals in response to rubbing, accelerating the discharge process and reducing the perception duration, thereby replicating the inhibitory effect of biological neurons on pain following tactile interference. This integrated device, encompassing somatic mechanical perception and sensation management, holds promise for applications in soft robotics, prosthetics, and human-machine interaction.


Asunto(s)
Técnicas Biosensibles , Diseño de Equipo , Humanos , Técnicas Biosensibles/instrumentación , Tacto/fisiología , Dispositivos Electrónicos Vestibles , Piel , Neuronas Aferentes/fisiología , Hidrogeles/química , Percepción del Tacto/fisiología , Percepción del Dolor/fisiología
3.
J Colloid Interface Sci ; 676: 937-946, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39068838

RESUMEN

Electrochemical water splitting stands out as a promising avenue for green hydrogen production, yet its efficiency is fundamentally governed by the oxygen evolution reaction (OER). In this work, we investigated the growth mechanism of CoFe hydroxide formed by in situ self-corrosion of iron foam for the first time and the significant influence of dissolved oxygen in the immersion solution on this process. Based on this, the CoP2-FeP4/IF heterostructure catalytic electrode demonstrates exceptional OER activity in a 1 M KOH electrolyte, with an overpotential of only 253 ± 4 mV (@10 mA cm-2), along with durability exceeding 1000 h. Density functional theory calculations indicate that constructing heterojunction interfaces promotes the redistribution of interface electrons, optimizing the free energy of adsorbed intermediate during the water oxidation process. This research highlights the importance of integrating self-corroding in-situ growth with interface engineering techniques to develop efficient water splitting materials.

4.
Nat Commun ; 15(1): 6034, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39019882

RESUMEN

El Niño Southern Oscillation (ENSO) has been shown to relate to the epidemiology of childhood infectious diseases, but evidence for whether they increase child deaths is limited. Here, we investigate the impact of mothers' ENSO exposure during and prior to delivery on child mortality by constructing a retrospective cohort study in 38 low- and middle-income countries. We find that high levels of ENSO indices cumulated over 0-12 lagged months before delivery are associated with significant increases in risks of under-five mortality; with the hazard ratio ranging from 1.33 (95% confidence interval [CI], 1.26, 1.40) to 1.89 (95% CI, 1.78, 2.00). Child mortality risks are particularly related to maternal exposure to El Niño-like conditions in the 0th-1st and 6th-12th lagged months. The El Niño effects are larger in rural populations and those with unsafe sources of drinking water and less education. Thus, preventive interventions are particularly warranted for the socio-economically disadvantaged.


Asunto(s)
Mortalidad del Niño , El Niño Oscilación del Sur , Exposición Materna , Efectos Tardíos de la Exposición Prenatal , Humanos , Femenino , Embarazo , Estudios Retrospectivos , Efectos Tardíos de la Exposición Prenatal/epidemiología , Lactante , Preescolar , Exposición Materna/efectos adversos , Masculino , Adulto , Población Rural/estadística & datos numéricos , Recién Nacido , Niño
5.
ACS Sens ; 9(6): 3413-3422, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38887933

RESUMEN

In recent years, wearable devices have been widely used for human health monitoring. Such monitoring predominantly relies on the principles of optics and electronics. However, electronic detection is susceptible to electromagnetic interference, and traditional optical fiber detection is limited in functionality and unable to simultaneously detect both physical and chemical signals. Hence, a wearable, embedded asymmetric color-blocked optical fiber sensor based on a hydrogel has been developed. Its sensing principle is grounded in the total internal reflection within the optical fiber. The method for posture sensing involves changes in the light path due to fiber bending with color blocks providing wavelength-selective modulation by absorption changes. Sweat pH sensing is facilitated by variations in fluorescence intensity triggered by sweat-induced conformational changes in Rhodamine B. With just one fiber, it achieves both physical and chemical signal detection. Fabricated using a molding technique, this fiber boasts excellent biocompatibility and can accurately discern single and multiple bending points, with a recognition range of 0-90° for a single segment, a detection limit of 0.02 mm-1 and a sweat pH sensing linear regression R2 of 0.993, alongside great light propagation properties (-0.6 dB·cm-1). With its extensive capabilities, it holds promise for applications in medical monitoring.


Asunto(s)
Hidrogeles , Fibras Ópticas , Postura , Sudor , Dispositivos Electrónicos Vestibles , Concentración de Iones de Hidrógeno , Sudor/química , Humanos , Hidrogeles/química , Postura/fisiología , Rodaminas/química , Técnicas Biosensibles/métodos , Monitoreo Fisiológico/métodos , Monitoreo Fisiológico/instrumentación
6.
Inorg Chem ; 63(27): 12651-12657, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38922623

RESUMEN

Three coordination polymers were successfully constructed in this work by applying biligands and were distinctly characterized through single crystal X-ray diffraction. The compounds crystallized in acentric and centric space groups under the direction of coordination bonds and adopted 1-dimensional link and 2-dimensional layer structures, as well as different coordination geometries for metal atoms. All compounds exhibited good thermal stability and luminescence properties, and compound 2 exhibited a good second harmonic generation (SHG) response. The method used in this work offers a feasible approach to using biligand and changing metal salt to obtain the microstructures of coordination materials with specific properties.

7.
Curr Med Sci ; 44(3): 603-610, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38802649

RESUMEN

OBJECTIVE: This study aimed to analyze the clinical efficacy of the Jianpi Shengxue tablet for treating renal anemia. METHODS: A total of 200 patients with renal anemia from December 2020 to December 2022 were enrolled and randomly divided into two groups. Patients in the control group were treated with polysaccharide-iron complex, and those in the experimental group were administered Jianpi Shengxue tablet. After 8 weeks of continuous treatment, the therapeutic outcomes regarding anemia were compared between the two groups. RESULTS: After treatment, the red blood cell (RBC) count, hematocrit (HCT), reticulocyte percentage (RET), ferritin (SF), serum iron (SI), transferrin saturation (TSAT), and serum albumin (ALB) all increased (P<0.01), and the clinical symptom score and total iron binding capacity decreased (P<0.01) in the experimental group. Moreover, the improvements in RBC, HCT, RET, SF, SI, TAST, ALB, and clinical symptoms (fatigue, anorexia, dull skin complexion, numbness of hands and feet) in the experimental group were significantly greater than those in the control group (P<0.05). The total effective rate for treating renal anemia was significantly higher in the experimental group than in the control group (P<0.01). CONCLUSION: The Jianpi Shengxue tablet demonstrates efficacy in treating renal anemia, leading to significant improvements in the laboratory examination results and clinical symptoms of patients with renal anemia.


Asunto(s)
Medicamentos Herbarios Chinos , Hierro , Estado Nutricional , Humanos , Masculino , Femenino , Hierro/metabolismo , Hierro/sangre , Persona de Mediana Edad , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Estudios Prospectivos , Estado Nutricional/efectos de los fármacos , Comprimidos , Adulto , Anemia/tratamiento farmacológico , Anemia/metabolismo , Anemia/sangre , Anciano , Resultado del Tratamiento , Hematócrito , Ferritinas/sangre , Recuento de Eritrocitos
8.
ACS Appl Mater Interfaces ; 16(22): 28560-28569, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38768309

RESUMEN

The commercialization process of perovskite solar cells (PSCs) is markedly restricted by the power conversion efficiency (PCE) and long-term stability. During fabrication and operation, the bottom interface of the organic-inorganic hybrid perovskite layer frequently exhibits voids and residual PbI2, while these defects inevitably act as recombination centers and degradation sites, affecting the efficiency and stability of the devices. Therefore, the degradation and nonradiative recombination originating from the buried interface should be thoroughly resolved. Here, we report a multifunctional passivator by introducing malonic dihydrazide as an interfacial chemical bridge between the electron transport layer and the perovskite (PVK) layer. MADH with hydrazine groups improves the surface affinity of SnO2 and provides nucleation sites for the growth of PVK, leading to the reduced residual PbI2 and the voids resulting from the inhomogeneous solvent volatilization at the bottom interface. Meanwhile, the hydrazine group and carbonyl group synergistically coordinate with Pb2+ to improve the crystal growth environment, reducing the number of Pb-related defects. Eventually, the PCE of the PSCs is significantly enhanced benefiting from the reduced interfacial defects and the increased carrier transport. Moreover, the reductive nature of hydrazide further inhibits I2 generation during long-term operation, and the device retains 90% of the initial PCE under a 1 sun continuous illumination exposure of 700 h.

9.
Nat Commun ; 15(1): 4453, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789454

RESUMEN

Photocatalytic coupling of methane to ethane and ethylene (C2 compounds) offers a promising approach to utilizing the abundant methane resource. However, the state-of-the-art photocatalysts usually suffer from very limited C2 formation rates. Here, we report our discovery that the anatase TiO2 nanocrystals mainly exposing {101} facets, which are generally considered less active in photocatalysis, demonstrate surprisingly better performances than those exposing the high-energy {001} facet. The palladium co-catalyst plays a pivotal role and the Pd2+ site on co-catalyst accounts for the selective C2 formation. We unveil that the anatase {101} facet favors the formation of hydroxyl radicals in aqueous phase near the surface, where they activate methane molecules into methyl radicals, and the Pd2+ site participates in facilitating the adsorption and coupling of methyl radicals. This work provides a strategy to design efficient nanocatalysts for selective photocatalytic methane coupling by reaction-space separation to optimize heterogeneous-homogeneous reactions at solid-liquid interfaces.

10.
J Am Chem Soc ; 146(21): 14528-14538, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38742912

RESUMEN

Composite oxides have been widely applied in the hydrogenation of CO/CO2 to methanol or as the component of bifunctional oxide-zeolite for the synthesis of hydrocarbon chemicals. However, it is still challenging to disentangle the stepwise formation mechanism of CH3OH at working conditions and selectively convert CO2 to hydrocarbon chemicals with narrow distribution. Here, we investigate the reaction network of the hydrogenation of CO2 to methanol over a series of spinel oxides (AB2O4), among which the Zn-based nanostructures offer superior performance in methanol synthesis. Through a series of (quasi) in situ spectroscopic characterizations, we evidence that the dissociation of H2 tends to follow a heterolytic pathway and that hydrogenation ability can be regulated by the combination of Zn with Ga or Al. The coordinatively unsaturated metal sites over ZnAl2Ox and ZnGa2Ox originating from oxygen vacancies (OVs) are evidenced to be responsible for the dissociative adsorption and activation of CO2. The evolution of the reaction intermediates, including both carbonaceous and hydrogen species at high temperatures and pressures over the spinel oxides, has been experimentally elaborated at the atomic level. With the integration of a series of zeolites or zeotypes, high selectivities of hydrocarbon chemicals with narrow distributions can be directly produced from CO2 and H2, offering a promising route for CO2 utilization.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38687859

RESUMEN

Objective: To explore the risk factors and predictive effects of visceral pleural invasion in lung adenocarcinoma patients with mGGN type, in order to identify high-risk groups of visceral pleural invasion early, and to provide more references for targeted intervention and individualized treatment adjustment of high-risk groups based on the analysis of risk factors. Methods: The clinical data of 135 patients with mGGN-type lung adenocarcinoma who received surgical treatment in our hospital from January 2018 to December 2022 were selected from our hospital's medical record database for retrospective analysis. The patient information was entered by a two-person summary and analyzed after verification.The patients were divided into invasion group (60 cases) and non-invasion group (75 cases) according to the invasion of pleural viscera, which was helpful to analyze the difference of clinical features between the two groups. The independent risk factors for visceral pleural invasion in patients with mGGN lung adenocarcinoma were evaluated using univariate and multivariate factor methods, and receiver operating characteristic (ROC) curves were drawn to evaluate the clinical efficacy of these risk factors above alone and in combination in predicting of visceral pleural invasion risk. The larger the area under ROC curve, the higher the corresponding sensitivity and specificity, and the greater the predictive value for the risk of visceral pleural invasion in mGGN lung adenocarcinoma patients. Results: Univariate analysis showed that gender, family history of hypertension, location of focus, maximum diameter of solid component, proportion of solid component, pleural indentation, burr sign, bronchial and nodular route may be related to visceral pleural invasion in lung adenocarcinoma patients with mGGN type (P < .05). Multivariate Logistic regression analysis showed that pleural indentation (OR=2.49, 95%CI:1.17~4.58, P < .001) and abnormal broncho-nodular travel (OR=3.06, 95%CI: 1.35~7.02, P = .01) were the independent risk factors for visceral pleural invasion in lung adenocarcinoma patients with mGGN type (P < .05). ROC curve analysis results showed that pleural indentation (AUC=0.70, 95%CI: 0.65~0.79, P = .02), abnormal bronchial and nodular running relationship (AUC=0.74, 95%CI: 0.69~0.81, P = .01) could both be used to predict the visceral pleural invasion risk in lung adenocarcinoma patients with mGGN type, and combined prediction efficacy of both indexes (AUC=0.90, 95%CI: 0.85~0.97, P < .001) was better than single index. Conclusion: The occurrence of visceral pleural infiltration in patients with mGGN lung adenocarcinoma is related to the relationship between pleural indentation and bronchus and nodules. Combined with the above indicators, the risk of visceral pleural infiltration in patients can be effectively predicted, and early intervention and treatment can be performed on high-risk patients accordingly to effectively prevent and treat visceral pleural infiltration.

12.
Science ; 384(6691): 74-81, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38574120

RESUMEN

Intelligent textiles provide an ideal platform for merging technology into daily routines. However, current textile electronic systems often rely on rigid silicon components, which limits seamless integration, energy efficiency, and comfort. Chipless electronic systems still face digital logic challenges owing to the lack of dynamic energy-switching carriers. We propose a chipless body-coupled energy interaction mechanism for ambient electromagnetic energy harvesting and wireless signal transmission through a single fiber. The fiber itself enables wireless visual-digital interactions without the need for extra chips or batteries on textiles. Because all of the electronic assemblies are merged in a miniature fiber, this facilitates scalable fabrication and compatibility with modern weaving techniques, thereby enabling versatile and intelligent clothing. We propose a strategy that may address the problems of silicon-based textile systems.

13.
Int Immunopharmacol ; 131: 111912, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38522140

RESUMEN

Water-soluble rhamnogalacturonan-I enriched citrus pectin (WRP) has promising effect on antimicrobial defense. We aim to determine whether the modified acidic (A) or neutral (B) WRP solutions can improve intestinal microbial dysbiosis in burn-injured mice. Male Balb/c mice were gavaged with WRPs at 80, 160, 320 mg/kg. Body weight daily for 21 days before exposed to thermal injury of 15 % total body surface area and mortality was monitored. Mice with 80 mg/kg WRPs were also subjected to fecal DNAs and T cell metabonomics analysis, intestinal and plasma glucagon-like peptide 1 (GLP-1) detection, plasma defensin, immunoglobin and intestinal barrier examinations at 1 and 3d postburn (p.b.). Burn-induced mortality was only improved by low dose WRP-A (P = 0.039). Both WRPs could prevent the dysbiosis of gut microbiota in burn injury by reducing the expansion of inflammation-promoting bacteria. Both WRPs suppressed ileum GLP-1 production at 1d p.b. (P = 0.002) and plasma GLP-1 levels at 3d p.b. (P = 0.013). Plasma GLP-1 level correlated closely with ileum GLP-1 production (P = 0.019) but negatively with microbiota diversity at 1d p.b. (P = 0.003). Intestinal T cell number was increased by both WRPs in jejunum at 3d p.b. However, the exaggerated splenic T cell metabolism in burn injury was reversed by both WRPs at 1d p.b. The burn-increased plasma defensin ß1 level was only reduced by WRP-B. Similarly, the intestinal barrier permeability was only rescued by WRP-B at 1d p.b. WRP-A rather than WRP-B could reduce burn-induced mortality in mice by suppressing intestinal GLP-1 secretion, restoring gut microbiota dysbiosis and improving adaptive immune response.


Asunto(s)
Quemaduras , Microbioma Gastrointestinal , Pectinas , Ratones , Masculino , Animales , Péptido 1 Similar al Glucagón , Disbiosis/tratamiento farmacológico , Inmunidad , Quemaduras/tratamiento farmacológico , Quemaduras/metabolismo , Defensinas
14.
Nat Commun ; 15(1): 2374, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38490979

RESUMEN

Developing fiber electronics presents a practical approach for establishing multi-node distributed networks within the human body, particularly concerning triboelectric fibers. However, realizing fiber electronics for monitoring micro-physiological activities remains challenging due to the intrinsic variability and subtle amplitude of physiological signals, which differ among individuals and scenarios. Here, we propose a technical approach based on a dynamic stability model of sheath-core fibers, integrating a micro-flexure-sensitive fiber enabled by nanofiber buckling and an ion conduction mechanism. This scheme enhances the accuracy of the signal transmission process, resulting in improved sensitivity (detectable signal at ultra-low curvature of 0.1 mm-1; flexure factor >21.8% within a bending range of 10°.) and robustness of fiber under micro flexure. In addition, we also developed a scalable manufacturing process and ensured compatibility with modern weaving techniques. By combining precise micro-curvature detection, micro-flexure-sensitive fibers unlock their full potential for various subtle physiological diagnoses, particularly in monitoring fiber upper limb muscle strength for rehabilitation and training.

15.
Science ; 383(6686): 998-1004, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38422151

RESUMEN

Maintaining the stability of single-atom catalysts in high-temperature reactions remains extremely challenging because of the migration of metal atoms under these conditions. We present a strategy for designing stable single-atom catalysts by harnessing a second metal to anchor the noble metal atom inside zeolite channels. A single-atom rhodium-indium cluster catalyst is formed inside zeolite silicalite-1 through in situ migration of indium during alkane dehydrogenation. This catalyst demonstrates exceptional stability against coke formation for 5500 hours in continuous pure propane dehydrogenation with 99% propylene selectivity and propane conversions close to the thermodynamic equilibrium value at 550°C. Our catalyst also operated stably at 600°C, offering propane conversions of >60% and propylene selectivity of >95%.

16.
Acc Chem Res ; 57(5): 714-725, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38349801

RESUMEN

ConspectusThe hydrogenative conversion of both CO and CO2 into high-value multicarbon (C2+) compounds, such as olefins, aromatic hydrocarbons, ethanol, and liquid fuels, has attracted much recent attention. The hydrogenation of CO is related to the chemical utilization of various carbon resources including shale gas, biomass, coal, and carbon-containing wastes via syngas (a mixture of H2 and CO), while the hydrogenation of CO2 by green H2 to chemicals and liquid fuels would contribute to recycling CO2 for carbon neutrality. The state-of-the-art technologies for the hydrogenation of CO/CO2 to C2+ compounds primarily rely on a direct route via Fischer-Tropsch (FT) synthesis and an indirect route via two methanol-mediated processes, i.e., methanol synthesis from CO/CO2 and methanol to C2+ compounds. The direct route would be more energy- and cost-efficient owing to the reduced operation units, but the product selectivity of the direct route via FT synthesis is limited by the Anderson-Schulz-Flory (ASF) distribution. Selectivity control for the direct hydrogenation of CO/CO2 to a high-value C2+ compound is one of the most challenging goals in the field of C1 chemistry, i.e., chemistry for the transformation of one-carbon (C1) molecules.We have developed a relay-catalysis strategy to solve the selectivity challenge arising from the complicated reaction network in the hydrogenation of CO/CO2 to C2+ compounds involving multiple intermediates and reaction channels, which inevitably lead to side reactions and byproducts over a conventional heterogeneous catalyst. The core of relay catalysis is to design a single tandem-reaction channel, which can direct the reaction to the target product controllably, by choosing appropriate intermediates (or intermediate products) and reaction steps connecting these intermediates, and arranging optimized yet matched catalysts to implement these steps like a relay. This Account showcases representative relay-catalysis systems developed by our group in the past decade for the synthesis of liquid fuels, lower (C2-C4) olefins, aromatics, and C2+ oxygenates from CO/CO2 with selectivity breaking the limitation of conventional catalysts. These relay systems are typically composed of a metal or metal oxide for CO/CO2/H2 activation and a zeolite for C-C coupling or reconstruction, as well as a third or even a fourth catalyst component with other functions if necessary. The mechanisms for the activation of H2 and CO/CO2 on metal oxides, which are distinct from that on the conventional transition or noble metal surfaces, are discussed with emphasis on the role of oxygen vacancies. Zeolites catalyze the conversion of intermediates (including hydrocracking/isomerization of heavier hydrocarbons, methanol-to-hydrocarbon reactions, and carbonylation of methanol/dimethyl ether) in the relay system, and the selectivity is mainly controlled by the Brønsted acidity and the shape-selectivity or the confinement effect of zeolites. We demonstrate that the thermodynamic/kinetic matching of the relay steps, the proximity and spatial arrangement of the catalyst components, and the transportation of intermediates/products in sequence are the key issues guiding the selection of each catalyst component and the construction of an efficient relay-catalysis system. Our methodology would also be useful for the transformation of other C1 molecules via controlled C-C coupling, inspiring more efforts toward precision catalysis.

17.
Glob Chall ; 8(2): 2300032, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38356680

RESUMEN

Flexible thin-film thermoelectric devices (TEDs) can generate electricity from the heat emitted by the human body, which holds great promise for use in energy supply and biomonitoring technologies. The p-type Sb2Te3 hexagon nanosheets are prepared by the hydrothermal synthesis method and compounded with Ti3C2Tx to make composite films, and the results show that the Ti3C2Tx content has a significant impact on the thermoelectric properties of the composite films. When the Ti3C2Tx content is 2 wt%, the power factor of the composite film reaches ≈59 µW m-1 K-2. Due to the outstanding electrical conductivity, high specific surface area, and excellent flexibility of Ti3C2Tx, the composite films also exhibit excellent thermoelectric and mechanical properties. Moreover, the small addition of Ti3C2Tx has a negligible effect on the phase composition of Sb2Te3 films. The TED consists of seven legs with an output voltage of 45 mV at ΔT = 30 K. The potential of highly flexible thin film TEDs for wearable energy collecting and sensing is great.

18.
Sci Adv ; 10(2): eadk4620, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38198540

RESUMEN

Collecting energy from the ubiquitous water cycle has emerged as a promising technology for power generation. Here, we have developed a sustainable moisture absorption-evaporation cycling fabric (Mac-fabric). On the basis of the cycling unidirectional moisture conduction in the fabric and charge separation induced by the negative charge channel, sustainable constant voltage power generation can be achieved. A single Mac-fabric can achieve a high power output of 0.144 W/m2 (5.76 × 102 W/m3) at 40% relative humidity (RH) and 20°C. By assembling 500 series and 300 parallel units of Mac-fabrics, a large-scale demo achieves 350 V of series voltage and 33.76 mA of parallel current at 25% RH and 20°C. Thousands of Mac-fabric units are sewn into a tent to directly power commercial electronic products such as mobile phones in outdoor environments. The lightweight (300 g/m2) and soft characteristics of the Mac-fabric make it ideal for large-area integration and energy collection in real circumstances.

19.
ACS Nano ; 18(5): 4008-4018, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38277229

RESUMEN

Mixed ion-electron conductive (MIEC) bioelectronics has emerged as a state-of-the-art type of bioelectronics for bioelectrical signal monitoring. However, existing MIEC bioelectronics is limited by delamination and transmission defects in bioelectrical signals. Herein, a topological MXene network enhanced MIEC hydrogel bioelectronics that simultaneously exhibits both electrical and mechanical property enhancement while maintaining adhesion and biocompatibility, providing an ideal MIEC bioelectronics for electrophysiological signal monitoring, is introduced. Compared with nontopology hydrogel bioelectronics, the MXene topology increases the dynamic stability of bioelectronics by a factor of 8.4 and the electrical signal by a factor of 10.1 and reduces the energy dissipation by a factor of 20.2. Besides, the topology-enhanced hydrogel bioelectronics exhibits low impedance (<25 Ω) at physiologically relevant frequencies and negligible impedance fluctuation after 5000 stretch cycles. The creation of multichannel bioelectronics with high-fidelity muscle action mapping and gait recognition was made possible by achieving such performance.


Asunto(s)
Electrones , Hidrogeles , Nitritos , Elementos de Transición , Conductividad Eléctrica , Electricidad , Iones
20.
Adv Mater ; 36(5): e2305914, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37899672

RESUMEN

Artificial muscles are indispensable components for next-generation robotics to mimic the sophisticated movements of living systems and provide higher output energies when compared with real muscles. However, artificial muscles actuated by electrochemical ion injection have problems with single actuation properties and difficulties in stable operation in air. Here, air-working electrochromic artificial muscles (EAMs) with both color-changing and actuation functions are reported, which are constructed based on vanadium pentoxide nanowires and carbon tube yarn. Each EAM can generate a contractile stroke of ≈12% during stable operation in the air with multiple color changes (yellow-green-gray) under ±4 V actuation voltages. The reflectance contrast is as high as 51%, demonstrating the excellent versatility of the EAMs. In addition, a torroidal EAM arrangement with fast response and high resilience is constructed. The EAM's contractile stroke can be displayed through visual color changes, which provides new ideas for future artificial muscle applications in soft robots and artificial limbs.


Asunto(s)
Órganos Artificiales , Accidente Cerebrovascular , Humanos , Músculos/fisiología , Contracción Muscular , Movimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA