Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(24): e2309927, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38498774

RESUMEN

The development of efficient and durable non-precious hydrogen evolution reaction (HER) catalysts for scaling up alkaline water/seawater electrolysis is highly desirable but challenging. Amorphous-crystalline (A-C) heterostructures have garnered attention due to their unusual atomic arrangements at hetero-interfaces, highly exposed active sites, and excellent stability. Here, a heterogeneous synthesis strategy for constructing A-C non-homogeneous interfacial centers of electrocatalysts on nanocages is presented. Isolated PdCo clusters on nanoscale islands in conjunction with Co3S4 A-C, functioning as a bifunctional site "island-sea" synergy, enable the dynamic confinement design of metal active atoms, resulting in excellent HER catalytic activity and durability. The hierarchical structure of hollow porous nanocages and nanoclusters, along with their large surface area and multi-dimensional A-C boundaries and defects, provides the catalyst with abundant active centers. Theoretical calculations demonstrate that the combination of PdCo and Co3S4 regulates the redistribution of interface electrons effectively, promoting the sluggish water-dissociation kinetics at the cluster Co sites. Additionally, PdCo-Co3S4 heterostructure nanocages exhibit outstanding HER activity in alkaline seawater and long-term stability for 100 h, which can be powered by commercial silicon solar cells. This finding significantly advances the development of alkaline seawater electrolysis for large-scale hydrogen production.

2.
ACS Nano ; 18(8): 6111-6129, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38368617

RESUMEN

Electrochemical energy conversion and storage technologies involving controlled catalysis provide a sustainable way to handle the intermittency of renewable energy sources, as well as to produce green chemicals/fuels in an ecofriendly manner. Core to such technology is the development of efficient electrocatalysts with high activity, selectivity, long-term stability, and low costs. Here, two-dimensional (2D) carbonaceous materials have emerged as promising contenders for advancing the chemistry in electrocatalysis. We review the emerging 2D carbonaceous materials for electrocatalysis, focusing primarily on the fine engineering of active structures through thermal condensation, where the design, fabrication, and mechanism investigations over different types of active moieties are summarized. Interestingly, all the recipes creating two-dimensionality on the carbon products also give specific electrocatalytic functionality, where the special mechanisms favoring 2D growth and their consequences on materials functionality are analyzed. Particularly, the structure-activity relationship between specific heteroatoms/defects and catalytic performance within 2D metal-free electrocatalysts is highlighted. Further, major challenges and opportunities for the practical implementation of 2D carbonaceous materials in electrocatalysis are summarized with the purpose to give future material design guidelines for attaining desirable catalytic structures.

3.
Small ; 19(40): e2302338, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37267930

RESUMEN

Electrochemical synthesis of hydrogen peroxide (H2 O2 ) through the selective oxygen reduction reaction (ORR) offers a promising alternative to the energy-intensive anthraquinone method, while its success relies largely on the development of efficient electrocatalyst. Currently, carbon-based materials (CMs) are the most widely studied electrocatalysts for electrosynthesis of H2 O2 via ORR due to their low cost, earth abundance, and tunable catalytic properties. To achieve a high 2e- ORR selectivity, great progress is made in promoting the performance of carbon-based electrocatalysts and unveiling their underlying catalytic mechanisms. Here, a comprehensive review in the field is presented by summarizing the recent advances in CMs for H2 O2 production, focusing on the design, fabrication, and mechanism investigations over the catalytic active moieties, where an enhancement effect of defect engineering or heteroatom doping on H2 O2 selectivity is discussed thoroughly. Particularly, the influence of functional groups on CMs for a 2e- -pathway is highlighted. Further, for commercial perspectives, the significance of reactor design for decentralized H2 O2 production is emphasized, bridging the gap between intrinsic catalytic properties and apparent productivity in electrochemical devices. Finally, major challenges and opportunities for the practical electrosynthesis of H2 O2 and future research directions are proposed.

4.
Biol Pharm Bull ; 46(5): 647-654, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37121691

RESUMEN

Gegen Decoction as anti-inflammatory medicine is used in clinic widespread, however the specific anti-inflammatory molecular mechanism of Gegen Decoction is still unclear. The purpose was to study the anti-inflammatory activity of Gegen Decoction in vivo and to research its anti-inflammatory molecular mechanism. The content of main essential components in Gegen Decoction were determined by HPLC method. The anti-inflammatory activity of Gegen Decoction was confirmed through in vivo animal experiments. Furthermore, RAW 264.7 cells were stimulated by lipopolysaccharides to induce inflammatory reaction, the modulatory effect of Gegen Decoction on the activation process of mitogen-activated protein kinases and nuclear factor-κB signaling pathways was investigated. The content of puerarin was the highest among all the index components. Gegen Decoction inhibited carrageenan-induced paw edema in rats and xylene-induced ear swelling in mice. Gegen Decoction had no obvious toxicity against RAW 264.7 cells at the concentrations of 10-40 mg/mL; significantly inhibited the release of nitric oxide, prostaglandin E2, tumor necrosis factor-α and interleukin-6; down-regulated the high expression of inflammatory proteins inducible nitric oxide synthase and cyclooxygenase-2. It inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs)/extracellular regulated protein kinases (ERK)/c-Jun N-terminal kinase (JNK), the degradation of nuclear factor-κB (NF-κB)/inhibitor of NF-κB-α (IκB-α) and the nuclear translocation of NF-κB/p65 into nucleus. Gegen Decoction exerts significant anti-inflammatory activity, mainly by blocking the activation of both MAPKs and NF-κB pathway.


Asunto(s)
Antiinflamatorios , FN-kappa B , Ratas , Ratones , Animales , FN-kappa B/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Proteínas I-kappa B/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Transducción de Señal , Óxido Nítrico Sintasa de Tipo II/metabolismo , Lipopolisacáridos/farmacología , Óxido Nítrico/metabolismo , Ciclooxigenasa 2/metabolismo
5.
Nat Prod Res ; 37(17): 2969-2972, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36323306

RESUMEN

Arnicolide B and arnicolide C are two sesquiterpene lactones isolated and identified from Centipeda minima, but the anti-inflammatory effects and mechanisms of these two compounds have not been reported. In this study, LPS was used to establish RAW 264.7 macrophages inflammatory response model. Griess, ELISA, Western blot were used to investigate the anti-inflammatory effects in vitro and the molecular mechanisms of these two active compounds. The results showed that arnicolide B and arnicolide C could not only inhibit the production of inflammatory mediators NO, PGE2, TNF-α and IL-6, but also down-regulate the high expression of inflammatory proteins iNOS and COX-2. Furthermore, arnicolide B and arnicolide C inhibited the phosphorylation of ERK, JNK, p38 proteins in the MAPK signaling pathway, but had no effect on the degradation of IκB-α protein and the activation of the NF-κB pathway. As conclusion, these two compounds exert anti-inflammatory effects by inactivation of the MAPK pathway.

6.
Angew Chem Int Ed Engl ; 61(37): e202206915, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-35894267

RESUMEN

The electrochemical oxygen reduction reaction (ORR) provides a green route for decentralized H2 O2 synthesis, where a structure-selectivity relationship is pivotal for the control of a highly selective and active two-electron pathway. Here, we report the fabrication of a boron and nitrogen co-doped turbostratic carbon catalyst with tunable B-N-C configurations (CNB-ZIL) by the assistance of a zwitterionic liquid (ZIL) for electrochemical hydrogen peroxide production. Combined spectroscopic analysis reveals a fine tailored B-N moiety in CNB-ZIL, where interfacial B-N species in a homogeneous distribution tend to segregate into hexagonal boron nitride domains at higher pyrolysis temperatures. Based on the experimental observations, a correlation between the interfacial B-N moieties and HO2 - selectivity is established. The CNB-ZIL electrocatalysts with optimal interfacial B-N moieties exhibit a high HO2 - selectivity with small overpotentials in alkaline media, giving a HO2 - yield of ≈1787 mmol gcatalyst -1 h-1 at -1.4 V in a flow-cell reactor.

7.
Chem Commun (Camb) ; 58(39): 5873-5876, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35470834

RESUMEN

In this communication, we report a photocatalyzed amidation strategy from carboxylic acids and tertiary amines through C-N bond cleavage. A wide scope of structurally diverse carboxylic acids participate smoothly in the reaction, providing the desired tertiary amides with moderate-to-good yields (34 examples, up to 93% yield). This amidation strategy provides an alternative way to address the regioselectivity between nucleophilic functional groups, thus complementing the functional group compatibility of classical amidation protocols. Its synthetic robustness is also proved by the late-stage modification of several complex molecules and gram-scale applications.


Asunto(s)
Aminas , Ácidos Carboxílicos , Amidas/química , Aminas/química , Ácidos Carboxílicos/química , Catálisis
8.
ACS Appl Mater Interfaces ; 13(45): 53798-53809, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34730334

RESUMEN

Electrolytic hydrogen evolution reaction (HER) that can be performed efficiently in neutral conditions enables the direct splitting of seawater. However, the sluggish water dissociation kinetics in neutral media severely limits the practical deployment of this technology. Herein, we present a simple strategy to rationally design oxophilic and nucleophilic moieties through the in situ reconstruction of a free-standing bimetallic cobalt-iron phosphate electrode. Through an electrochemical reduction step, the electrode surface undergoes self-reconstruction to generate a thin (oxy)hydroxide layer, enabling a significantly improved HER activity in both buffered electrolyte and natural seawater. Our mechanistic investigations reveal the essential role of oxophilic (oxy)hydroxide species in improving the HER activity of nucleophilic bimetallic phosphate sites. In a buffer electrolyte (pH = 7), the resultant electrocatalyst only requires overpotentials of 97 and 198 mV to deliver a current density of 10 and 100 mA cm-2, respectively, which outperforms that of the Pt benchmark. The in situ reconstruction strategy of active sites within such electrodes brings significant opportunity in developing active electrocatalysts that are capable of direct seawater splitting.

9.
ACS Nano ; 15(7): 12006-12018, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34192868

RESUMEN

In this study, we propose a top-down approach for the controlled preparation of undercoordinated Ni-Nx (Ni-hG) and Fe-Nx (Fe-hG) catalysts within a holey graphene framework, for the electrochemical CO2 reduction reaction (CO2RR) to synthesis gas (syngas). Through the heat treatment of commercial-grade nitrogen-doped graphene, we prepared a defective holey graphene, which was then used as a platform to incorporate undercoordinated single atoms via carbon defect restoration, confirmed by a range of characterization techniques. We reveal that these Ni-hG and Fe-hG catalysts can be combined in any proportion to produce a desired syngas ratio (1-10) across a wide potential range (-0.6 to -1.1 V vs RHE), required commercially for the Fischer-Tropsch (F-T) synthesis of liquid fuels and chemicals. These findings are in agreement with our density functional theory calculations, which reveal that CO selectivity increases with a reduction in N coordination with Ni, while unsaturated Fe-Nx sites favor the hydrogen evolution reaction (HER). The potential of these catalysts for scale up is further demonstrated by the unchanged selectivity at elevated temperature and stability in a high-throughput gas diffusion electrolyzer, displaying a high-mass-normalized activity of 275 mA mg-1 at a cell voltage of 2.5 V. Our results provide valuable insights into the implementation of a simple top-down approach for fabricating active undercoordinated single atom catalysts for decarbonized syngas generation.

10.
J Nat Prod ; 84(2): 247-258, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33533247

RESUMEN

Sixteen new sesquiterpene lactones (1-16) along with 13 known analogues (17-29) were isolated from the whole plants of Centipeda minima. The structures of 1-16 were delineated by the combination of NMR spectroscopic experiments, HRESIMS, single-crystal X-ray diffraction analyses, and ECD spectra. Compounds 23-26 showed potent cytotoxicity against Hela, HCT-116, and HepG2 cells with IC50 values of 0.8-2.6, 0.4-3.3, and 1.1-2.6 µM, respectively. Compounds 8, 15, and 24 exhibited significant inhibitory activity on the production of nitric oxide in the lipopolysaccharide-activated RAW 264.7 mouse macrophage cell line, with IC50 values ranging from 0.1 to 0.2 µM.


Asunto(s)
Antiinflamatorios/farmacología , Antineoplásicos Fitogénicos/farmacología , Asteraceae/química , Lactonas/farmacología , Sesquiterpenos/farmacología , Animales , Antiinflamatorios/aislamiento & purificación , Antineoplásicos Fitogénicos/aislamiento & purificación , China , Células HCT116 , Células HeLa , Células Hep G2 , Humanos , Lactonas/aislamiento & purificación , Ratones , Estructura Molecular , Óxido Nítrico , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Células RAW 264.7 , Sesquiterpenos/aislamiento & purificación
11.
J Ethnopharmacol ; 267: 113490, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33091501

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Physalis Calyx seu Fructus is typically used to treat inflammatory diseases such as upper respiratory tract infection and acute tonsillitis in clinical practice of China. Physalin A, a main active ingredient of this traditional Chinese medicine (TCM), has been reported for its significant anti-tumor activity. However, most reports focused on the studies of its anti-tumor activity, the anti-inflammatory activity of physalin A and its molecular mechanism are still not elucidated clearly. AIM OF THE STUDY: The aim of the study was to investigate the anti-inflammatory activities both in vitro and in vivo and molecular mechanism of physalin A. MATERIALS AND METHODS: The potential anti-inflammatory properties of physalin A were evaluated in vitro by lipopolysaccharide (LPS)-induced RAW 264.7 macrophage cells, and in vivo via two typical acute inflammation murine models. Some important inflammation-related molecules were analyzed by enzyme-linked immuno sorbent assay (ELISA) and Western blotting. RESULTS: The results showed that physalin A inhibited carrageenan-induced paw edema of rats and capillary permeability of mice induced by acetic acid in vivo. Furthermore, physalin A also significantly reduced the release of inflammatory mediators nitric oxide (NO), prostaglandin E2 (PGE2), and tumor necrosis factor-α (TNF-α) induced by lipopolysaccharide (LPS) in RAW 264.7 in vitro. Further investigations indicated that physalin A can down-regulate the high expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose-dependent manner. Physalin A remarkably blocked the degradation of inhibitor of nuclear factor kappa B alpha (IκB-α) and the nuclear translocation of nuclear factor-κB (NF-κB) p65 induced by LPS in RAW 264.7 cells. However, physalin A did not significantly inhibit the phosphorylation of mitogen-activated protein kinases (MAPKs) family proteins c-Jun N-terminal kinase (JNK) or extracellular signal-regulated kinase (ERK) or p38. CONCLUSIONS: All the results clearly illustrated that the anti-inflammatory action of physalin A is due to the inactivation of NF-κB signal pathway, but is irrelevant to the MAPKs pathway.


Asunto(s)
Antiinflamatorios/farmacología , Edema/prevención & control , Mediadores de Inflamación/metabolismo , Inflamación/prevención & control , Macrófagos/efectos de los fármacos , Witanólidos/farmacología , Ácido Acético , Animales , Permeabilidad Capilar/efectos de los fármacos , Carragenina , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Edema/inducido químicamente , Edema/metabolismo , Edema/patología , Inflamación/inducido químicamente , Inflamación/metabolismo , Luteolina/farmacología , Macrófagos/metabolismo , Masculino , Ratones , FN-kappa B/metabolismo , Células RAW 264.7 , Ratas Sprague-Dawley , Transducción de Señal
12.
ACS Nano ; 14(9): 11327-11340, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32790322

RESUMEN

Engineering the metal-carbon heterointerface has become an increasingly important route toward achieving cost-effective and high-performing electrocatalysts. The specific properties of graphene edge sites, such as the high available density of states and extended unpaired π-bonding, make it a promising candidate to tune the electronic properties of metal catalysts. However, to date, understanding and leveraging graphene edge-metal catalysts for improved electrocatalytic performance remains largely elusive. Herein, edge-rich vertical graphene (er-VG) was synthesized and used as a catalyst support for Ni-Fe hydroxides for the oxygen evolution reaction (OER). The hybrid Ni-Fe/er-VG catalyst exhibits excellent OER performance with a mass current of 4051 A g-1 (at overpotential η = 300 mV) and turnover frequency (TOF) of 4.8 s-1 (η = 400 mV), outperforming Ni-Fe deposited on pristine VG and other metal foam supports. Angle-dependent X-ray absorption spectroscopy shows that the edge-rich VG support can preferentially template Fe-O units with a specific valence orbital alignment interacting with the unoccupied density of states on the graphene edges. This graphene edge-metal interaction was shown to facilitate the formation of undersaturated and strained Fe-sites with high valence states, while promoting the formation of redox-activated Ni species, thus improving OER performance. These findings demonstrate rational design of the graphene edge-metal interface in electrocatalysts which can be used for various energy conversion and chemical synthesis reactions.

13.
Nat Commun ; 11(1): 4181, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32826877

RESUMEN

Hydrogen peroxide produced by electrochemical oxygen reduction reaction provides a potentially cost effective and energy efficient alternative to the industrial anthraquinone process. In this study, we demonstrate that by modulating the oxygen functional groups near the atomically dispersed cobalt sites with proper electrochemical/chemical treatments, a highly active and selective oxygen reduction process for hydrogen peroxide production can be obtained in acidic electrolyte, showing a negligible amount of onset overpotential and nearly 100% selectivity within a wide range of applied potentials. Combined spectroscopic results reveal that the exceptionally enhanced performance of hydrogen peroxide generation originates from the presence of epoxy groups near the Co-N4 centers, which has resulted in the modification of the electronic structure of the cobalt atoms. Computational modeling demonstrates these electronically modified cobalt atoms will enhance the hydrogen peroxide productivity during oxygen reduction reaction in acid, providing insights into the design of electroactive materials for effective peroxide production.

14.
Chem Commun (Camb) ; 56(11): 1709-1712, 2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-31938788

RESUMEN

A novel, simple and controllable approach to designing NiO/Ni heterostructures supported on carbon for the hydrogen evolution reaction (HER) was utilized. By selectively oxidizing the Ni deposits, to differing degrees, the benefits of the NiO/Ni heterostructures were elucidated with the extent of Ni oxidation being a key factor in dictating performance.

15.
Inflammation ; 42(4): 1463-1473, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31011928

RESUMEN

Twelve polyketones were isolated from the fermentation broth of Penicillium sp., including six new compounds (supplementary material). Penicillium sp. is widely used in clinic as a highly effective and low toxic antibiotic. Among these compounds, (3R, 7R)-7-acetoxyl-9-oxo-de-O-methyllasiodiplodin named PS-2 showed significant anti-inflammatory activity. So, the anti-inflammatory mechanism of PS-2 was investigated by using lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. The results showed that PS-2 can significantly inhibit the overproduction of nitric oxide (NO), prostaglandin E2 (PGE2), and interleukin-6 (IL-6), whereas it showed no inhibition on the release of pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α). Cell-free colorimetric method demonstrated that PS-2 could obviously inhibit the enzymatic activity of cyclooxygenase-2 (COX-2). Western blot results indicated that PS-2 could significantly inhibit high expression of iNOS and COX-2 proteins. Further investigations on the anti-inflammatory mechanism showed that PS-2 could suppress the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), but did not exhibit obvious inhibition on the phosphorylation of c-JunN-terminal kinase (JNK) and phosphorylated 38 (p38). In addition, PS-2 inhibited the degradation of inhibitor of kappa-B alpha (IκB-α) and translocation to nucleus of nuclear factor kappa-B (NF-κB) p65 in RAW 264.7 macrophages. These results suggested that PS-2 might be an effective intervention against inflammatory diseases.


Asunto(s)
Antiinflamatorios/farmacología , Inflamación/prevención & control , Macrólidos/farmacología , Macrófagos/patología , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , FN-kappa B/antagonistas & inhibidores , Penicillium/metabolismo , Animales , Mediadores de Inflamación , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Ratones , Fosforilación/efectos de los fármacos , Células RAW 264.7
16.
Nanotechnology ; 27(28): 285602, 2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-27263498

RESUMEN

Inspired by natural photosynthesis, the Z-scheme photocatalyst is a promising approach to extend the absorption spectra of photocatalysts and reduce the recombination of photo-generated electrons and holes. However, the fabrication of well-structured efficient multi-component Z-scheme photocatalysts is still a big challenge. We report here a facile one-pot method to synthesize graphene-based Z-scheme photocatalysts. The one-pot method guarantees good distribution of well-structured individual components on thin-layered rGO sheets with excellent connections. With inactive WO3 nanorods and inactive ß-In2S3 nanosheets attached to the surface of the rGO sheets, the synthesized In2S3/WO3/rGO tertiary nanocomposite shows excellent visible-light catalytic activity for hydrogen production at 1524 µmol g(-1) h(-1), demonstrating unambiguously the Z-scheme catalytic mechanism. To prevent cross-reactions and interferences, our strategy was to choose no more than one ionic precipitation reaction for the one-pot process, as unwanted cross-reactions could become inevitable if many cations and anions were present. This fabrication strategy should be applicable generally to synthesize other multiple-component nanocomposites, as demonstrated also by the preliminary results of the successful synthesis of the BiVO4/WO3/rGO nanocomposite (one ionic precipitation reaction and one hydrolysis reaction) and WO3/TiO2/rGO nanocomposite (two hydrolysis reactions).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...