Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 56
1.
Mikrochim Acta ; 191(5): 276, 2024 04 22.
Article En | MEDLINE | ID: mdl-38644435

Solid-phase microextraction (SPME) coupled with electrospray ionization mass spectrometry (ESI-MS) was developed for rapid and sensitive determination of endogenous androgens. The SPME probe is coated with covalent organic frameworks (COFs) synthesized by reacting 1,3,5-tri(4-aminophenyl)benzene (TPB) with 2,5-dioctyloxybenzaldehyde (C8PDA). This COFs-SPME probe offers several advantages, including enhanced extraction efficiency and stability. The analytical method exhibited wide linearity (0.1-100.0 µg L-1), low limits of detection (0.03-0.07 µg L-1), high enrichment factors (37-154), and satisfactory relative standard deviations (RSDs) for both within one probe (4.0-14.8%) and between different probes (3.4-12.7%). These remarkable performance characteristics highlight the reliability and precision of the COFs-SPME-ESI-MS method. The developed method was successfully applied to detect five kinds of endogenous androgens in female serum samples, indicating that the developed analytical method has great potential for application in preliminary clinical diagnosis.


Androgens , Limit of Detection , Solid Phase Microextraction , Spectrometry, Mass, Electrospray Ionization , Solid Phase Microextraction/methods , Spectrometry, Mass, Electrospray Ionization/methods , Humans , Androgens/blood , Androgens/analysis , Androgens/chemistry , Female , Metal-Organic Frameworks/chemistry , Reproducibility of Results
2.
Sci Total Environ ; 929: 172263, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38583623

The relationships between α-diversity and ecosystem functioning (BEF) have been extensively examined. However, it remains unknown how spatial heterogeneity of microbial community, i.e., microbial ß-diversity within a region, shapes ecosystem functioning. Here, we examined microbial community compositions and soil respiration (Rs) along an elevation gradient of 853-4420 m a.s.l. in the southeastern Tibetan Plateau, which is renowned as one of the world's biodiversity hotspots. There were significant distance-decay relationships for both bacterial and fungal communities. Stochastic processes played a dominant role in shaping bacterial and fungal community compositions, while soil temperature was the most important environmental factor that affected microbial communities. We evaluated BEF relationships based on α-diversity measured by species richness and ß-diversity measured by community dispersions, revealing significantly positive correlations between microbial ß-diversities and Rs. These correlations became stronger with increasing sample size, differing from those between microbial α-diversities and Rs. Using Structural Equation Modeling (SEM), we found that soil temperature, soil moisture, and total nitrogen were the most important edaphic properties in explaining Rs. Meanwhile, stochastic processes (e.g., homogenous dispersal and dispersal limitation) significantly mediated effects between microbial ß-diversities and Rs. Microbial α-diversity poorly explained Rs, directly or indirectly. In a nutshell, we identified a previously unknown BEF relationship between microbial ß-diversity and Rs. By complementing common practices to examine BEF with α-diversity, we demonstrate that a focus on ß-diversity could be leveraged to explain Rs.


Microbiota , Soil Microbiology , Soil , Soil/chemistry , Tibet , Biodiversity , Ecosystem , Bacteria/classification , Fungi
3.
J Mol Cell Cardiol ; 190: 62-75, 2024 May.
Article En | MEDLINE | ID: mdl-38583797

Intimal hyperplasia is a complicated pathophysiological phenomenon attributable to in-stent restenosis, and the underlying mechanism remains unclear. Interleukin enhancer-binding factor 3 (ILF3), a double-stranded RNA-binding protein involved in regulating mRNA stability, has been recently demonstrated to assume a crucial role in cardiovascular disease; nevertheless, its impact on intimal hyperplasia remains unknown. In current study, we used samples of human restenotic arteries and rodent models of intimal hyperplasia, we found that vascular smooth muscle cell (VSMC) ILF3 expression was markedly elevated in human restenotic arteries and murine ligated carotid arteries. SMC-specific ILF3 knockout mice significantly suppressed injury induced neointimal formation. In vitro, platelet-derived growth factor type BB (PDGF-BB) treatment elevated the level of VSMC ILF3 in a dose- and time-dependent manner. ILF3 silencing markedly inhibited PDGF-BB-induced phenotype switching, proliferation, and migration in VSMCs. Transcriptome sequencing and RNA immunoprecipitation sequencing depicted that ILF3 maintained its stability upon binding to the mRNA of the high-mobility group box 1 protein (HMGB1), thereby exerting an inhibitory effect on the transcription of dual specificity phosphatase 16 (DUSP16) through enhanced phosphorylation of signal transducer and activator of transcription 3 (STAT3). Therefore, the results both in vitro and in vivo indicated that the loss of ILF3 in VSMC ameliorated neointimal hyperplasia by regulating the STAT3/DUSP16 axis through the degradation of HMGB1 mRNA. Our findings revealed that vascular injury activates VSMC ILF3, which in turn promotes intima formation. Consequently, targeting specific VSMC ILF3 may present a potential therapeutic strategy for ameliorating cardiovascular restenosis.


HMGB1 Protein , Hyperplasia , Mice, Knockout , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Nuclear Factor 90 Proteins , RNA Stability , STAT3 Transcription Factor , Tunica Intima , Animals , Humans , Male , Mice , Cell Movement , Cell Proliferation , Disease Models, Animal , Gene Expression Regulation , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Neointima/metabolism , Neointima/pathology , Nuclear Factor 90 Proteins/metabolism , Nuclear Factor 90 Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , STAT3 Transcription Factor/metabolism , Tunica Intima/metabolism , Tunica Intima/pathology
4.
J Chem Phys ; 160(16)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38656445

The prevention of drying-induced cracking is crucial in maintaining the mechanical integrity and functionality of colloidal deposits and coatings. Despite exploring various approaches, controlling drying-induced cracking remains a subject of great scientific interest and practical importance. By introducing chain-like particles composed of the same material and with comparable size into commonly used colloidal suspensions of spherical silica nanoparticles, we can significantly reduce the cracks formed in dried particle deposits and achieve a fivefold increase in the critical cracking thickness of colloidal silica coatings. The mechanism underlying the crack suppression is attributed to the increased porosity and pore sizes in dried particle deposits containing chain-like particle, which essentially leads to reduction in internal stresses developed during the drying process. Meanwhile, the nanoindentation measurements reveal that colloidal deposits with chain-like particles exhibit a smaller reduction in hardness compared to those reported using other cracking suppression approaches. This work demonstrates a promising technique for preparing colloidal coatings with enhanced crack resistance while maintaining desirable mechanical properties.

5.
Soft Matter ; 20(16): 3401-3410, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38563244

Living active collectives have evolved with remarkable self-patterning capabilities to adapt to the physical and biological constraints crucial for their growth and survival. However, the intricate process by which complex multicellular patterns emerge from a single founder cell remains elusive. In this study, we utilize an agent-based model, validated through single-cell microscopy imaging, to track the three-dimensional (3D) morphodynamics of cells within growing bacterial biofilms encased by agarose gels. The confined growth conditions give rise to a spatiotemporally heterogeneous stress landscape within the biofilm. In the core of the biofilm, where high hydrostatic and low shear stresses prevail, cell packing appears disordered. In contrast, near the gel-cell interface, a state of high shear stress and low hydrostatic stress emerges, driving nematic ordering, albeit with a time delay inherent to shear stress relaxation. Strikingly, we observe a robust spatiotemporal correlation between stress anisotropy and nematic ordering within these confined biofilms. This correlation suggests a mechanism whereby stress anisotropy plays a pivotal role in governing the spatial organization of cells. The reciprocity between stress anisotropy and cell ordering in confined biofilms opens new avenues for innovative 3D mechanically guided patterning techniques for living active collectives, which hold significant promise for a wide array of environmental and biomedical applications.


Biofilms , Stress, Mechanical , Anisotropy , Models, Biological
6.
Biosens Bioelectron ; 254: 116195, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38479341

The fluorescence-quenching method is crucial in vitro analysis, particularly for immunochromatographic test strips (ICTs) using noble metal nanoparticles as probes. However, ICTs still fall short in meeting the requirements for the detection of traces biomarkers due to the noble metal nanoparticles can only quench fluorescence of the dyes within a confined distance. Interestingly, noble metal nanoparticles, such as Pt NPs cannot only perform fluorescence-quenching ability based on the Förster resonance energy transfer (FRET), but also show perfect oxidase-like catalytic performance on many kinds of substrates, such as 3,3',5,5' -tetramethylbenzidine (TMB). We observed that the oxTMB (the oxidation products of TMB) exhibited notable effectiveness in quenching Cy5 fluorescence by the strong inner filter effect (IFE), which obviously improved the fluorescence-quenching efficiency with extremely low background signal. Through the dual-enhanced fluorescence quenching mechanism, the fluorescence quenching constant (Kn) was 661.24-fold that of only Pt NPs on the NC membrane. To validate the feasibility of this technique, we employed two types of biomarkers, namely microRNA (miR-15a-5p) and the signature protein (PSA). The sensitivity of miR-15a-5p was 9.286 × 10-18 mol/L and 17.5-fold more than that based on Pt NPs. As for the PSA, the LOD (0.6265 pg/mL) was 15.5-fold enhancement more sensitive after catalysis. Overall, the dual-enhanced fluorescence quenching rFICTs could act as a practical detection for biomarker in real samples.


Biosensing Techniques , Metal Nanoparticles , MicroRNAs , Metal Nanoparticles/chemistry , Fluorescence Resonance Energy Transfer , Biomarkers
7.
mSystems ; 8(6): e0102523, 2023 Dec 21.
Article En | MEDLINE | ID: mdl-38038441

IMPORTANCE: Amplicon sequencing of targeted genes is the predominant approach to estimate the membership and structure of microbial communities. However, accurate reconstruction of community composition is difficult due to sequencing errors, and other methodological biases and effective approaches to overcome these challenges are essential. Using a mock community of 33 phylogenetically diverse strains, this study evaluated the effect of GC content on sequencing results and tested different approaches to improve overall sequencing accuracy while characterizing the pros and cons of popular amplicon sequence data processing approaches. The sequencing results from this study can serve as a benchmarking data set for future algorithmic improvements. Furthermore, the new insights on sequencing error, chimera formation, and GC bias from this study will help enhance the quality of amplicon sequencing studies and support the development of new data analysis approaches.


DNA Barcoding, Taxonomic , Microbiota , Base Composition , Sequence Analysis, DNA/methods , Bias
8.
Front Immunol ; 14: 1250946, 2023.
Article En | MEDLINE | ID: mdl-37841280

Epstein-Barr virus (EBV) is a ubiquitous human tumor virus associated with various malignancies, including B-lymphoma, NK and T-lymphoma, and epithelial carcinoma. It infects B lymphocytes and epithelial cells within the oropharynx and establishes persistent infection in memory B cells. With a balanced virus-host interaction, most individuals carry EBV asymptomatically because of the lifelong surveillance by T cell immunity against EBV. A stable anti-EBV T cell repertoire is maintained in memory at high frequency in the blood throughout persistent EBV infection. Patients with impaired T cell immunity are more likely to develop life-threatening lymphoproliferative disorders, highlighting the critical role of T cells in achieving the EBV-host balance. Recent studies reveal that the EBV protein, LMP1, triggers robust T-cell responses against multiple tumor-associated antigens (TAAs) in B cells. Additionally, EBV-specific T cells have been identified in EBV-unrelated cancers, raising questions about their role in antitumor immunity. Herein, we summarize T-cell responses in EBV-related cancers, considering latency patterns, host immune status, and factors like human leukocyte antigen (HLA) susceptibility, which may affect immune outcomes. We discuss EBV-induced TAA-specific T cell responses and explore the potential roles of EBV-specific T cell subsets in tumor microenvironments. We also describe T-cell immunotherapy strategies that harness EBV antigens, ranging from EBV-specific T cells to T cell receptor-engineered T cells. Lastly, we discuss the involvement of γδ T-cells in EBV infection and associated diseases, aiming to elucidate the comprehensive interplay between EBV and T-cell immunity.


Epstein-Barr Virus Infections , Lymphoma , Lymphoproliferative Disorders , Humans , Herpesvirus 4, Human , T-Lymphocyte Subsets/pathology , Lymphoproliferative Disorders/pathology , Tumor Microenvironment
9.
Adv Mater ; 35(16): e2207882, 2023 Apr.
Article En | MEDLINE | ID: mdl-36895051

The extracellular matrix is the biophysical environment that scaffolds mammalian cells in the body. The main constituent is collagen. In physiological tissues, collagen network topology is diverse with complex mesoscopic features. While studies have explored the roles of collagen density and stiffness, the impact of complex architectures remains not well-understood. Developing in vitro systems that recapitulate these diverse collagen architectures is critical for understanding physiologically relevant cell behaviors. Here, methods are developed to induce the formation of heterogeneous mesoscopic architectures, referred to as collagen islands, in collagen hydrogels. These island-containing gels have highly tunable inclusions and mechanical properties. Although these gels are globally soft, there is regional enrichment in the collagen concentration at the cell-scale. Collagen-island architectures are utilized to study mesenchymal stem cell behavior, and it is demonstrated that cell migration and osteogenic differentiation are altered. Finally, induced pluripotent stem cells are cultured in island-containing gels, and it is shown that the architecture is sufficient to induce mesodermal differentiation. Overall, this work highlights complex mesoscopic tissue architectures as bioactive cues in regulating cell behavior and presents a novel collagen-based hydrogel that captures these features for tissue engineering applications.


Mesenchymal Stem Cells , Osteogenesis , Animals , Collagen , Tissue Engineering/methods , Cell Differentiation , Hydrogels/pharmacology , Mammals
10.
J Cancer ; 13(12): 3368-3377, 2022.
Article En | MEDLINE | ID: mdl-36186902

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with limited therapeutic options available. We have recently demonstrated that lovastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor, suppresses TNBC cell proliferation and stemness properties in vitro and in vivo. However, the mechanisms through which lovastatin inhibits TNBC cells are not fully understood. Here, we used 1H NMR-based metabolomic profiling to investigate lovastatin-induced metabolic changes in TNBC cell line MDA-MB-231. Among the 46 metabolites identified, lactate demonstrated the highest variable importance in projection (VIP) score. Glycolysis stress test revealed that lovastatin significantly decreased the extracellular acidification rate (ECAR) in MDA-MB-231 cells. Furthermore, lovastatin treatment down-regulated the levels of glycolysis-related proteins including GLUT1, PFK1, and PKM2 in MDA-MB-231 but not non-TNBC MDA-MB-453 cells. In addition, lovastatin induced autophagy as evidenced by increased LC3 puncta formation and LC3-II/I ratio, increased AMPK phosphorylation, and decreased Akt phosphorylation. We also revealed the interaction between the glycolytic enzyme hexokinase 2 (HK2) and the mitochondrial membrane protein voltage-dependent anion channel 1 (VDAC1), an important regulator of autophagy. Further bioinformatics analysis revealed that VDAC1 was expressed at a higher level in breast cancer than normal tissues and higher level of VDAC1 predicted poorer survival outcomes in breast cancer patients. The present study suggests that lovastatin might exert anti-tumor activity by reprogramming glycolysis toward autophagy in TNBC cells through HK2-VDAC1 interaction.

11.
Food Chem ; 395: 133546, 2022 Nov 30.
Article En | MEDLINE | ID: mdl-35802979

Acrolein (ACR) is predominantly generated from oil-rich food during thermos- processing. Accumulation of ACR in vivo through food consumption has been associated with an increased risk of developing chronic diseases. Here, we investigated the inhibitory effect of octyl gallate (OG), a new food additive tolerant to high-temperature, alkaline and fat-soluble saturations, on the generation of ACR in OG-ACR, oil-Rancimat models, and real-world frying. Our results demonstrate that approximately 80% and 60% of ACR was eliminated by OG in the two models, respectively, and OG-ACR was detected in the deep-frying process using LC-MS/MS. The reaction pathways were clarified by synthesis and OG-ACR and OG-2ACR adduct structural elucidation. Our work reveals that the antibacterial activity of OG-ACR against Escherichia coli (gram-negative) was four times higher than that of OG. Thus, OG can be developed as a promising novel ACR scavenger for high-temperature food processing and an antibacterial agent in food storage.


Acrolein , Food Additives , Acrolein/pharmacology , Chromatography, Liquid , Gallic Acid/analogs & derivatives , Tandem Mass Spectrometry
12.
Microbiol Spectr ; 10(4): e0114722, 2022 08 31.
Article En | MEDLINE | ID: mdl-35730942

Pigs are the amplifying hosts of Japanese encephalitis virus (JEV). Currently, the safe and effective live attenuated vaccine made of JEV strain SA14-14-2, which does not express NS1', is widely used in humans and domestic animals to prevent JEV infection. In this study, we constructed the NS1' expression recombinant virus (rA66G) through a single nucleotide mutation in NS2A of JEV strain SA14-14-2. Animal experiments showed that NS1' significantly enhanced JEV infection in pig central nervous system (CNS) and tonsil tissues. Pigs shed virus in oronasal secretions in the JEV rA66G virus inoculation group, indicating that NS1' may facilitate the horizontal transmission of JEV. Additionally, dendritic cells (DCs) and macrophages are the main target cells of JEV infection in pig tonsils, which are an important site of persistent JEV infection. The reduction of major histocompatibility complex class II (MHC II) and activation of inducible nitric oxide synthase (iNOS) in pig tonsils caused by viral infection may create a beneficial environment for persistent JEV infection. These results are of significance for JEV infection in pigs and lay the foundation for future studies of JEV persistent infection in pig tonsils. IMPORTANCE Pigs are amplification hosts for Japanese encephalitis virus (JEV). JEV can persist in the tonsils for months despite the presence of neutralizing antibodies. The present study shows that NS1' increases JEV infection in pig tonsils. In addition, DCs and macrophages in the tonsils are the target cells for JEV infection, and JEV NS1' promotes virus infection in DCs and macrophages. This study reveals a novel function of JEV NS1' protein and lays the foundation for future studies of JEV persistent infection in pig tonsils.


Encephalitis Virus, Japanese , Encephalitis, Japanese , Animals , Cell Line , Dendritic Cells , Encephalitis Virus, Japanese/genetics , Encephalitis Virus, Japanese/metabolism , Encephalitis, Japanese/prevention & control , Macrophages , Palatine Tonsil , Swine , Vaccines, Attenuated
13.
Front Oncol ; 12: 731528, 2022.
Article En | MEDLINE | ID: mdl-35174077

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and lacks approved specific targeted therapies. One of the major reasons why TNBC is difficult to treat is the high proportion of cancer stem cells within the tumor tissue. Nucleolus is the location of ribosome biogenesis which is frequently overactivated in cancer cells and overactivation of ribosome biogenesis frequently drives the malignant transformation of cancer. Nucleolar and coiled-body phosphoprotein 1 (NOLC1) is a nucleolar protein responsible for nucleolus organization and rRNA synthesis and plays an important role in ribosome biogenesis. However, the correlation of NOLC1 expression with patient prognosis and its value as a therapeutic target have not been evaluated in TNBC. In the current study, based on bioinformatics analysis of the online databases, we found that the expression of NOLC1 was higher in breast cancer tissues than normal tissues, and NOLC1 was expressed at a higher level in TNBC than other subtypes of breast cancer. GSEA analysis revealed that stemness-related pathways were significantly enriched in breast cancer with high NOLC1 gene expression. Further analyses using gene expression profiling interactive analysis 2 (GEPIA2), tumor immune estimation resource (TIMER) and search tool for retrieval of interacting genes/proteins (STRING) demonstrated that NOLC1 was significantly associated with stemness in both all breast cancer and basal-like breast cancer/TNBC patients at both gene and protein levels. Knockdown of NOLC1 by siRNA decreased the protein level of the key stemness regulators MYC and ALDH and inhibited the sphere-forming capacity in TNBC cell line MDA-MB-231. Univariate and multivariate Cox regression analyses demonstrated that NOLC1 was an independent risk factor for overall survival in breast cancer. PrognoScan and Kaplan-Meier plotter analyses revealed that high expression of NOLC1 was associated with poor prognosis in both all breast cancer and TNBC patients. Further immunohistochemical analysis of breast cancer patient samples revealed that TNBC cells had a lower level of NOLC1 in the nucleus compared with non-TNBC cells. These findings suggest that NOLC1 is closely associated with the stemness properties of TNBC and represents a potential therapeutic target for TNBC.

14.
Anticancer Drugs ; 33(1): e21-e27, 2022 01 01.
Article En | MEDLINE | ID: mdl-34561998

The nucleolus is the site of ribosome biogenesis and is found to play an important role in stress sensing. For over 100 years, the increase in the size and number of nucleoli has been considered as a marker of aggressive tumors. Despite this, the contribution of the nucleolus and the biologic processes mediated by it to cancer pathogenesis has been largely overlooked. This state has been changed over the recent decades with the demonstration that the nucleolus controls numerous cellular functions associated with cancer development. Induction of nucleolar stress has recently been regarded as being superior to conventional cytotoxic/cytostatic strategy in that it is more selective to neoplastic cells while sparing normal cells. Natural products represent an excellent source of bioactive molecules and some of them have been found to be able to induce nucleolar stress. The demonstration of these nucleolar stress-inducing natural products has paved the way for a new therapeutic approach to more delicate tumor cell-killing. This review provides a contemporary summary of the role of the nucleolus as a novel promising target for cancer therapy, with particular emphasis on natural products as an exciting new class of anti-cancer drugs with nucleolar stress-inducing properties.


Antineoplastic Agents/pharmacology , Biological Products/pharmacology , Cell Nucleolus/drug effects , Neoplasms/pathology , DNA, Ribosomal/drug effects , Humans , Neoplasms/drug therapy , RNA Polymerase I/drug effects , RNA, Ribosomal/drug effects , Stress, Physiological/drug effects
15.
J Musculoskelet Neuronal Interact ; 21(4): 560-567, 2021 12 01.
Article En | MEDLINE | ID: mdl-34854396

OBJECTIVES: To explore the role and mechanism of miR-125a-3p in rheumatoid arthritis (RA) progression. METHODS: The RA-tissues and fibroblast-like synovial cells in rheumatoid arthritis (RA-FLS) were used in this study. qRT-PCR, western blot and ELISA assay were performed to detect the expression levels of IL-6, IL-ß and ΤΝF-α. Dual-luciferase reporter gene assay was used to observe the binding effect of miR-125a-3p and MAST3, and CCK-8 was used to observe the effect of miR-125a-3p on the proliferation of RA-FLS. RESULTS: miR-125a-3p was significantly downregulated in the RA-tissues and RA-FLS, and miR-125a-3p could inhibit the proliferation and reduce the inflammation response of RA-FLS. Besides, MAST3 was found as a target of miR-125a-3p, and increased MAST3 could reverse the effects of miR-125a-3p on RA-FLS including decreased proliferation, reduced inflammation level and the inactivation of Wnt/ß-catenin and NF-κB pathways. CONCLUSIONS: This study suggests that miR-125a-3p could inactivate the Wnt/ß-catenin and NF-κB pathways to reduce the proliferation and inflammation response of RA-FLS via targeting MAST3.


Arthritis, Rheumatoid , MicroRNAs , Microtubule-Associated Proteins , Protein Serine-Threonine Kinases , Arthritis, Rheumatoid/genetics , Cell Proliferation , Cells, Cultured , Fibroblasts , Humans , Inflammation/genetics , MicroRNAs/genetics , NF-kappa B , Wnt Signaling Pathway
16.
Nat Commun ; 12(1): 6632, 2021 11 17.
Article En | MEDLINE | ID: mdl-34789754

In growing active matter systems, a large collection of engineered or living autonomous units metabolize free energy and create order at different length scales as they proliferate and migrate collectively. One such example is bacterial biofilms, surface-attached aggregates of bacterial cells embedded in an extracellular matrix that can exhibit community-scale orientational order. However, how bacterial growth coordinates with cell-surface interactions to create distinctive, long-range order during biofilm development remains elusive. Here we report a collective cell reorientation cascade in growing Vibrio cholerae biofilms that leads to a differentially ordered, spatiotemporally coupled core-rim structure reminiscent of a blooming aster. Cell verticalization in the core leads to a pattern of differential growth that drives radial alignment of the cells in the rim, while the growing rim generates compressive stresses that expand the verticalized core. Such self-patterning disappears in nonadherent mutants but can be restored through opto-manipulation of growth. Agent-based simulations and two-phase active nematic modeling jointly reveal the strong interdependence of the driving forces underlying the differential ordering. Our findings offer insight into the developmental processes that shape bacterial communities and provide ways to engineer phenotypes and functions in living active matter.


Biofilms/growth & development , Bacterial Adhesion/genetics , Bacterial Adhesion/physiology , Biomechanical Phenomena , Models, Biological , Mutation , Vibrio cholerae/cytology , Vibrio cholerae/physiology
17.
J Agric Food Chem ; 69(40): 11937-11946, 2021 Oct 13.
Article En | MEDLINE | ID: mdl-34607437

Acrolein (ACR), the simplest α,ß-unsaturated aldehyde, possesses high reactivity and toxicity both in vitro and in vivo and results in various chronic diseases. This has attracted increasing interest from researchers to screen various bioactive compounds to control it. In this article, we attempted to discover a new attribute of cyanidin-3-O-glucoside (C3G), including its ACR-scavenging capacity, reaction pathway, and possible application. Our findings revealed that C3G could capture ACR to form mono- and diadducts at room temperature by using liquid chromatography-mass spectrometry, and we further synthesized and elucidated the structures of C3G-ACR and C3G-2ACR using HRMS and 2D NMR. The structural data validated that there were two active sites of C3G for trapping ACR: at C-6 in the A-ring and C-5' in the B-ring. In addition, we found that C3G-ACR exhibited a more remarkable clearing ability than C3G within a short time. More than 65.9% of ACR was eliminated by C3G-ACR within 5 min via further formation of C3G-2ACR, but there was no obvious effect of C3G on ACR. When the incubation time was extended to 120 min, C3G could remove up to 83.2% of ACR. Subsequently, we also observed that mynica red (>5% C3G), as a pigmented food additive, could efficiently eliminate ACR generated in the Chinese liquor model and real red bayberry wine products to form C3G-ACR and C3G-2ACR. Both adducts increased significantly, by 10 times to a 100 times, after adding mynica red to red bayberry wine products for 24 h; they also increased rapidly with prolonged incubation time in the liquor-mynica red model system. Therefore, our findings suggest that C3G or mynica red may be developed as a promising novel ACR inhibitor in fruit wine and assembled alcoholic drinks or as a health food.


Acrolein , Myrica , Anthocyanins , Chromatography, Liquid , Glucosides
18.
Foods ; 10(9)2021 Aug 25.
Article En | MEDLINE | ID: mdl-34574097

Ultrasound is one of the most commonly used methods to prepare Pickering emulsions. In the study, zein nanoparticles-flaxseed gum (ZNP-FSG) complexes were fabricated through various preparation routes. Firstly, the ZNP-FSG complexes were prepared either through direct homogenization/ultrasonication of the zein and flaxseed gum mixture or through pretreatment of zein and/or flaxseed gum solutions by ultrasonication before homogenization. The Pickering emulsions were then produced with the various ZNP-FSG complexes prepared. ZNP-FSG complexes and the final emulsions were then characterized. We found that the complex prepared by ultrasonication of zein as pretreatment followed by homogenization of the ZNP with FSG ((ZNPU-FSG)H) exhibited the smallest turbidity, highest absolute potential value, relatively small particle size, and formed the most stable complex particles. Meanwhile, complex prepared through direct ultrasonication plus homogenization on the mixture ((ZNP-FSG)HU) showed significantly decreased emulsifying properties and stability. Compared with the complex without ultrasonic treatment, the complex and emulsion, which prepared by ultrasonicated FSG were extremely unstable, and the phase separation phenomenon of the emulsion was observed 30 min after preparation. The above conclusions are also in line with the findings obtained from the properties of the corresponding emulsions, such as the droplets size, microstructure, freeze-thaw stability, and storage stability. It is, therefore, clear that to produce stable Pickering emulsion, ultrasonication should be avoided to apply together at the end of ZNP-FGS complex preparation. It is worth noticing that the emulsions prepared by complex with ultrasonicated zein (ZNPU-FSG)H are smaller, distributed more uniformly, and are able to encapsulate oil droplets well. It was found that the emulsions prepared with ZNPU-FSG remained stable without serum phase for 14 days and exhibited improved stability at low-temperature storage. The current study will provide guidance for the preparation of protein-polysaccharide complexes and Pickering emulsions for future work.

19.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Article En | MEDLINE | ID: mdl-34330824

Biofilms are aggregates of bacterial cells surrounded by an extracellular matrix. Much progress has been made in studying biofilm growth on solid substrates; however, little is known about the biophysical mechanisms underlying biofilm development in three-dimensional confined environments in which the biofilm-dwelling cells must push against and even damage the surrounding environment to proliferate. Here, combining single-cell imaging, mutagenesis, and rheological measurement, we reveal the key morphogenesis steps of Vibrio cholerae biofilms embedded in hydrogels as they grow by four orders of magnitude from their initial size. We show that the morphodynamics and cell ordering in embedded biofilms are fundamentally different from those of biofilms on flat surfaces. Treating embedded biofilms as inclusions growing in an elastic medium, we quantitatively show that the stiffness contrast between the biofilm and its environment determines biofilm morphology and internal architecture, selecting between spherical biofilms with no cell ordering and oblate ellipsoidal biofilms with high cell ordering. When embedded in stiff gels, cells self-organize into a bipolar structure that resembles the molecular ordering in nematic liquid crystal droplets. In vitro biomechanical analysis shows that cell ordering arises from stress transmission across the biofilm-environment interface, mediated by specific matrix components. Our imaging technique and theoretical approach are generalizable to other biofilm-forming species and potentially to biofilms embedded in mucus or host tissues as during infection. Our results open an avenue to understand how confined cell communities grow by means of a compromise between their inherent developmental program and the mechanical constraints imposed by the environment.


Biofilms/growth & development , Extracellular Matrix/physiology , Single-Cell Analysis/methods , Vibrio cholerae/physiology
20.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article En | MEDLINE | ID: mdl-34140412

Biological systems have a remarkable capability of synthesizing multifunctional materials that are adapted for specific physiological and ecological needs. When exploring structure-function relationships related to multifunctionality in nature, it can be a challenging task to address performance synergies, trade-offs, and the relative importance of different functions in biological materials, which, in turn, can hinder our ability to successfully develop their synthetic bioinspired counterparts. Here, we investigate such relationships between the mechanical and optical properties in a multifunctional biological material found in the highly protective yet conspicuously colored exoskeleton of the flower beetle, Torynorrhina flammea Combining experimental, computational, and theoretical approaches, we demonstrate that a micropillar-reinforced photonic multilayer in the beetle's exoskeleton simultaneously enhances mechanical robustness and optical appearance, giving rise to optical damage tolerance. Compared with plain multilayer structures, stiffer vertical micropillars increase stiffness and elastic recovery, restrain the formation of shear bands, and enhance delamination resistance. The micropillars also scatter the reflected light at larger polar angles, enhancing the first optical diffraction order, which makes the reflected color visible from a wider range of viewing angles. The synergistic effect of the improved angular reflectivity and damage localization capability contributes to the optical damage tolerance. Our systematic structural analysis of T. flammea's different color polymorphs and parametric optical and mechanical modeling further suggest that the beetle's microarchitecture is optimized toward maximizing the first-order optical diffraction rather than its mechanical stiffness. These findings shed light on material-level design strategies utilized in biological systems for achieving multifunctionality and could thus inform bioinspired material innovations.


Animal Shells/anatomy & histology , Animal Shells/physiology , Coleoptera/anatomy & histology , Coleoptera/physiology , Flowers/parasitology , Optical Phenomena , Animals , Biomechanical Phenomena , Models, Biological , Photons , Pigmentation , Scattering, Radiation
...