Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
BMC Med ; 22(1): 62, 2024 02 08.
Article En | MEDLINE | ID: mdl-38331793

BACKGROUND: The distal transradial access (dTRA) has become an attractive and alternative access to the conventional transradial access (TRA) for cardiovascular interventional diagnosis and/or treatment. There was a lack of randomized clinical trials to evaluate the effect of the dTRA on the long-term radial artery occlusion (RAO). METHODS: This was a prospective, randomized controlled study. The primary endpoint was the incidence of long-term RAO at 3 months after discharge. The secondary endpoints included the successful puncture rate, puncture time, and other access-related complications. RESULTS: The incidence of long-term RAO was 0.8% (3/361) for dTRA and 3.3% (12/365) for TRA (risk ratio = 0.25, 95% confidence interval = 0.07-0.88, P = 0.02). The incidence of RAO at 24 h was significantly lower in the dTRA group than in the TRA group (2.5% vs. 6.7%, P < 0.01). The puncture success rate (96.0% vs. 98.5%, P = 0.03) and single puncture attempt (70.9% vs. 83.9%, P < 0.01) were significantly lower in the dTRA group than in the TRA group. However, the number of puncture attempts and puncture time were higher in the dTRA group. The dTRA group had a lower incidence of bleeding than the TRA group (1.5% vs. 6.0%, P < 0.01). There was no difference in the success rate of the procedure, total fluoroscopy time, or incidence of other access-related complications between the two groups. In the per-protocol analysis, the incidence of mEASY type ≥ II haematoma was significantly lower in the dTRA group, which was consistent with that in the as-treated analysis. CONCLUSIONS: The dTRA significantly reduced the incidence of long-term RAO, bleeding or haematoma. TRIAL REGISTRATION: ClinicalTrials.gov identifer: NCT05253820.


Arterial Occlusive Diseases , Percutaneous Coronary Intervention , Humans , Radial Artery/surgery , Prospective Studies , Arterial Occlusive Diseases/diagnostic imaging , Arterial Occlusive Diseases/epidemiology , Hemorrhage , Hematoma/etiology , Hematoma/complications , Coronary Angiography/adverse effects , Coronary Angiography/methods , Percutaneous Coronary Intervention/adverse effects , Percutaneous Coronary Intervention/methods , Treatment Outcome
2.
Biomater Adv ; 154: 213644, 2023 Nov.
Article En | MEDLINE | ID: mdl-37778294

Recent advancements in medical technology and increased interdisciplinary research have facilitated the development of the field of medical engineering. Specifically, in bone repair, researchers and potential users have placed greater demands on orthopedic implants regarding their biocompatibility, degradation rates, antibacterial properties, and other aspects. In response, our team developed composite ceramic samples using degradable materials calcium phosphate and magnesium oxide through the vat photopolymerization (VP) technique. The calcium phosphate content in each sample was, respectively, 80 %, 60 %, 40 %, and 20 %. To explore the relationship between the biocompatibility, antibacterial activity, and MgO content of the samples, we cultured them with osteoblasts (MC3T3-E1), Escherichia coli (a gram-negative bacterium), and Staphylococcus aureus (a gram-positive bacterium). Our results demonstrate that as the MgO content of the sample increases, its biocompatibility improves but its antibacterial activity decreases. Regarding the composite material samples, the 20 % calcium phosphate content group exhibited the best biocompatibility. However, after 0.5 h of co-cultivation, the antibacterial rates of all groups except the 20 % calcium phosphate content group co-cultured with S. aureus exceed 80 %. Furthermore, after 3 h, the antibacterial rates against E. coli exceed 95 % in all groups. This is because higher levels of MgO correspond to lower pH values and Mg2+ concentrations in the cell and bacterial culture solutions, which ultimately promote cell and bacterial proliferation. This elevates the biocompatibility of the samples, albeit at the expense of their antimicrobial efficacy. Thus, modulating the MgO content in the composite ceramic samples provides a strategy to develop gradient composite scaffolds for better control of their biocompatibility and antibacterial performance during different stages of bone regeneration.


Magnesium Oxide , Staphylococcus aureus , Magnesium Oxide/pharmacology , Magnesium Oxide/chemistry , Escherichia coli , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Calcium Phosphates/pharmacology , Calcium Phosphates/chemistry , Ceramics/pharmacology , Technology
3.
Biology (Basel) ; 11(12)2022 Dec 09.
Article En | MEDLINE | ID: mdl-36552299

Plant growth-promoting bacteria are generating increasing interest in the agricultural industry as a promising alternative to traditional chemical fertilizers; however, much of the focus has been on rhizosphere bacteria. Bacterial endophytes are another promising source of plant growth-promoting bacteria, and though many plants have already been prospected for beneficial microbes, desert plants have been underrepresented in such studies. In this study, we show the growth-promoting potential of five strains of endophytic Pseudomonas sp. isolated from Agave palmeri, an agave from the Sonoran Desert. When inoculated onto Kentucky bluegrass, clover, carrot, coriander, and wheat, endophytic Pseudomonas sp. increased seedling root lengths in all hosts and seedling shoot lengths in Kentucky bluegrass, carrot, and wheat. Transformation of the Pseudomonas sp. strain P3AW to express the fluorescent protein mCherry revealed that Pseudomonas sp. becomes endophytic in non-native hosts and participates in parts of the rhizophagy cycle, a process by which endophytic bacteria cycle between the soil and roots, bringing in nutrients from the soil which are then extracted through reactive oxygen-mediated bacterial degradation in the roots. Tracking of the Pseudomonas sp. strain P3AW also provided evidence for a system of endophyte, or endophyte cell content, transport via the vascular bundle. These results provide further evidence of the rhizophagy cycle in plants and how it relates to growth promotion in plants by biostimulant bacteria.

4.
Biology (Basel) ; 11(6)2022 Jun 07.
Article En | MEDLINE | ID: mdl-35741397

We used light and confocal microscopy to visualize bacteria in leaf and bract cells of more than 30 species in 18 families of seed plants. Through histochemical analysis, we detected hormones (including ethylene and nitric oxide), superoxide, and nitrogenous chemicals (including nitric oxide and nitrate) around bacteria within plant cells. Bacteria were observed in epidermal cells, various filamentous and glandular trichomes, and other non-photosynthetic cells. Most notably, bacteria showing nitrate formation based on histochemical staining were present in glandular trichomes of some dicots (e.g., Humulus lupulus and Cannabis sativa). Glandular trichome chemistry is hypothesized to function to scavenge oxygen around bacteria and reduce oxidative damage to intracellular bacterial cells. Experiments to assess the differential absorption of isotopic nitrogen into plants suggest the assimilation of nitrogen into actively growing tissues of plants, where bacteria are most active and carbohydrates are more available. The leaf and bract cell endosymbiosis types outlined in this paper have not been previously reported and may be important in facilitating plant growth, development, oxidative stress resistance, and nutrient absorption into plants. It is unknown whether leaf and bract cell endosymbioses are significant in increasing the nitrogen content of plants. From the experiments that we conducted, it is impossible to know whether plant trichomes evolved specifically as organs for nitrogen fixation or if, instead, trichomes are structures in which bacteria easily colonize and where some casual nitrogen transfer may occur between bacteria and plant cells. It is likely that the endosymbioses seen in leaves and bracts are less efficient than those of root nodules of legumes in similar plants. However, the presence of endosymbioses that yield nitrate in plants could confer a reduced need for soil nitrogen and constitute increased nitrogen-use efficiency, even if the actual amount of nitrogen transferred to plant cells is small. More research is needed to evaluate the importance of nitrogen transfer within leaf and bract cells of plants.

5.
Biology (Basel) ; 10(10)2021 Sep 26.
Article En | MEDLINE | ID: mdl-34681060

Deserts are challenging places for plants to survive in due to low nutrient availability, drought and heat stress, water stress, and herbivory. Endophytes-microbes that colonize and infect plant tissues without causing apparent disease-may contribute to plant success in such harsh environments. Current knowledge of desert plant endophytes is limited, but studies performed so far reveal that they can improve host nutrient acquisition, increase host tolerance to abiotic stresses, and increase host resistance to biotic stresses. When considered in combination with their broad host range and high colonization rate, there is great potential for desert endophytes to be used in a commercial agricultural setting, especially as croplands face more frequent and severe droughts due to climate change and as the agricultural industry faces mounting pressure to break away from agrochemicals towards more environmentally friendly alternatives. Much is still unknown about desert endophytes, but future studies may prove fruitful for the discovery of new endophyte-based biofertilizers, biocontrol agents, and abiotic stress relievers of crops.

6.
PeerJ ; 8: e8417, 2020.
Article En | MEDLINE | ID: mdl-31942261

Turfgrass investigators have observed that plantings of grass seeds produced in moist climates produce seedling stands that show greater stand evenness with reduced disease compared to those grown from seeds produced in dry climates. Grass seeds carry microbes on their surfaces that become endophytic in seedlings and promote seedling growth. We hypothesize that incomplete development of the microbiome associated with the surface of seeds produced in dry climates reduces the performance of seeds. Little is known about the influence of moisture on the structure of this microbial community. We conducted metagenomic analysis of the bacterial communities associated with seeds of three turf species (Festuca rubra, Lolium arundinacea, and Lolium perenne) from low moisture (LM) and high moisture (HM) climates. The bacterial communities were characterized by Illumina high-throughput sequencing of 16S rRNA V3-V4 regions. We performed seed germination tests and analyzed the correlations between the abundance of different bacterial groups and seed germination at different taxonomy ranks. Climate appeared to structure the bacterial communities associated with seeds. LM seeds vectored mainly Proteobacteria (89%). HM seeds vectored a denser and more diverse bacterial community that included Proteobacteria (50%) and Bacteroides (39%). At the genus level, Pedobacter (20%), Sphingomonas (13%), Massilia (12%), Pantoea (12%) and Pseudomonas (11%) were the major genera in the bacterial communities regardless of climate conditions. Massilia, Pantoea and Pseudomonas dominated LM seeds, while Pedobacter and Sphingomonas dominated HM seeds. The species of turf seeds did not appear to influence bacterial community composition. The seeds of the three turf species showed a core microbiome consisting of 27 genera from phyla Actinobacteria, Bacteroidetes, Patescibacteria and Proteobacteria. Differences in seed-vectored microbes, in terms of diversity and density between high and LM climates, may result from effects of moisture level on the colonization of microbes and the development of microbe community on seed surface tissues (adherent paleas and lemmas). The greater diversity and density of seed vectored microbes in HM climates may benefit seedlings by helping them tolerate stress and fight disease organisms, but this dense microbial community may also compete with seedlings for nutrients, slowing or modulating seed germination and seedling growth.

7.
Pest Manag Sci ; 75(10): 2558-2565, 2019 Oct.
Article En | MEDLINE | ID: mdl-31228333

Endophytes are microbes (mostly bacteria and fungi) present asymptomatically in plants. Endophytic microbes are often functional in that they may carry nutrients from the soil into plants, modulate plant development, increase stress tolerance of plants, suppress virulence in pathogens, increase disease resistance in plants, and suppress development of competitor plant species. Endophytic microbes have been shown to: (i) obtain nutrients in soils and transfer nutrients to plants in the rhizophagy cycle and other nutrient-transfer symbioses; (ii) increase plant growth and development; (iii) reduce oxidative stress of hosts; (iv) protect plants from disease; (v) deter feeding by herbivores; and (vi) suppress growth of competitor plant species. Because of the effective functions of endophytic microbes, we suggest that endophytic microbes may significantly reduce use of agrochemicals (fertilizers, fungicides, insecticides, and herbicides) in the cultivation of crop plants. The loss of endophytic microbes from crop plants during domestication and long-term cultivation could be remedied by transfer of endophytes from wild relatives of crops to crop species. Increasing atmospheric carbon dioxide levels could reduce the efficiency of the rhizophagy cycle due to repression of reactive oxygen used to extract nutrients from microbes in roots. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Crop Production/methods , Crop Protection/methods , Crops, Agricultural/microbiology , Endophytes/physiology , Symbiosis , Crops, Agricultural/growth & development , Crops, Agricultural/physiology , Fertilizers/analysis
...