Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Infect Drug Resist ; 17: 3979-3987, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39296776

RESUMEN

Background: Hypervirulent carbapenem-resistant K. pneumoniae (hv-CRKP) has been spreading rapidly worldwide. Here, we investigated the genomic characteristics of ST11 K. pneumoniae isolate SM117 with capsular serotype KL25, co-carrying bla NDM-5, two copies of bla KPC-2 and multiple plasmid-borne virulence genes from a county level hospital in China. Methods: Antimicrobial susceptibility of K. pneumoniae SM117 was evaluated. The Illumina NovaSeq 6000 and Oxford Nanopore MinION platforms were applied to sequence the genome and then de novo assembled. The genome sequence was annotated using the NCBI Prokaryotic Genome Annotation Pipeline and further subjected to identify the sequence type (ST), capsular type, antibiotic resistance genes, plasmid replicon types and virulence genes. The phylogenetic analysis was performed based on the core genome single nucleotide polymorphisms (cgSNPs) using CSI Phylogeny 1.4, and further visualized by Interactive Tree of Life (iTOL) V5 web server. Results: The whole-genome sequence of K. pneumoniae SM117 is made up of eight contigs totaling 6,104,486 bp, contain a 5,612,620 bp single chromosome and seven plasmids. The isolate was assigned to ST11 with capsular serotype KL25, co-carrying including bla NDM-5, bla KPC-2 and multiple plasmid-borne virulence genes including rmpA2 and aerobactin genes iucABCD-iutA. The coexistence of bla KPC and bla NDM in K. pneumoniae strains exhibit a high degree of resistance to ß-lactam antibiotics. The strain SM117 also carries multiple antibiotic resistance genes, making it resistant to all antibiotics except polymyxin. The closest relative of K. pneumoniae C793 was identified in 2023 from a hospital surface sample in Zhejiang, China, with just 52 SNPs difference. Conclusion: This study reported the genomic characteristics of a multidrug-resistant ST11 K. pneumoniae with capsular serotype KL25, co-carrying bla NDM-5, two copies of bla KPC-2 genes and multiple plasmid-borne virulence genes in China. These findings will provide important knowledge of the antibiotic resistance mechanisms, genomic epidemiological characteristics and transmission dynamics of multidrug-resistant K. pneumoniae.

2.
Medicine (Baltimore) ; 103(36): e39464, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39252309

RESUMEN

To more accurately diagnose and treat patients with different subtypes of thyroid cancer, we constructed a diagnostic model related to the iodine metabolism of THCA subtypes. THCA expression profiles, corresponding clinicopathological information, and single-cell RNA-seq were downloaded from TCGA and GEO databases. Genes related to thyroid differentiation score were obtained by GSVA. Through logistic analyses, the diagnostic model was finally constructed. DCA curve, ROC curve, machine learning, and K-M analysis were used to verify the accuracy of the model. qRT-PCR was used to verify the expression of hub genes in vitro. There were 104 crossover genes between different TDS and THCA subtypes. Finally, 5 genes (ABAT, CHEK1, GPX3, NME5, and PRKCQ) that could independently predict the TDS subpopulation were obtained, and a diagnostic model was constructed. ROC, DCA, and RCS curves exhibited that the model has accurate prediction ability. K-M and subgroup analysis results showed that low model scores were strongly associated with poor PFI in THCA patients. The model score was significantly negatively correlated with T cell follicular helper. In addition, the diagnostic model was significantly negatively correlated with immune scores. Finally, the results of qRT-PCR corresponded with bioinformatics results. This diagnostic model has good diagnostic and prognostic value for THCA patients, and can be used as an independent prognostic indicator for THCA patients.


Asunto(s)
Yodo , Neoplasias de la Tiroides , Humanos , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/patología , Biología Computacional/métodos , Femenino , Masculino , Aprendizaje Automático , Persona de Mediana Edad , Glándula Tiroides/patología , Glándula Tiroides/metabolismo , Curva ROC , Diferenciación Celular , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo
4.
Sci Adv ; 10(31): eado6298, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093973

RESUMEN

Accurate prediction of sea surface temperatures (SSTs) in the tropical North Atlantic on multiyear timescales is of paramount importance due to its notable impact on tropical cyclone activity. Recent advances in high-resolution climate predictions have demonstrated substantial improvements in the skill of multiyear SST prediction. This study reveals a notable enhancement in high-resolution tropical North Atlantic SST prediction that stems from a more realistic representation of the Atlantic Meridional Mode and the associated wind-evaporation-SST feedback. The key to this improvement lies in the enhanced surface wind response to changes in cross-equatorial SST gradients, resulting from Intertropical Convergence Zone bias reduction when atmospheric model resolution is increased, which, in turn, amplifies the positive feedback between latent and sensible surface heat fluxes and SST anomalies. These advances in high-resolution climate prediction hold promise for extending tropical cyclone forecasts at multiyear timescales.

5.
Syst Rev ; 13(1): 189, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030630

RESUMEN

BACKGROUND: The COVID-19 pandemic has caused a large mortality and morbidity burden globally. For individuals, a strong immune response is the most effective means to block SARS-CoV-2 infection. To inform clinical case management of COVID-19, development of improved vaccines, and public health policy, a better understanding of antibody response dynamics and duration following SARS-CoV-2 infection and after vaccination is imperatively needed. METHODS: We systematically analyzed antibody response rates in naturally infected COVID-19 patients and vaccinated individuals. Specifically, we searched all published and pre-published literature between 1 December 2019 and 31 July 2023 using MeSH terms and "all field" terms comprising "COVID-19" or "SARS-CoV-2," and "antibody response" or "immunity response" or "humoral immune." We included experimental and observational studies that provided antibody positivity rates following natural COVID-19 infection or vaccination. A total of 44 studies reporting antibody positivity rate changes over time were included. RESULTS: The meta-analysis showed that within the first week after COVID-19 symptom onset/diagnosis or vaccination, antibody response rates in vaccinated individuals were lower than those in infected patients (p < 0.01), but no significant difference was observed from the second week to the sixth month. IgG, IgA, and IgM positivity rates increased during the first 3 weeks; thereafter, IgG positivity rates were maintained at a relatively high level, while the IgM seroconversion rate dropped. CONCLUSIONS: Antibody production following vaccination might not occur as quickly or strongly as after natural infection, and the IgM antibody response was less persistent than the IgG response.


Asunto(s)
Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Vacunación , Humanos , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , SARS-CoV-2/inmunología , Inmunidad Innata/inmunología , Formación de Anticuerpos/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología
6.
Ibrain ; 10(1): 106-110, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38682014

RESUMEN

Similar reports in the past pay less attention to the anesthetic management of these patients. We reported a 46-year-old man who suffered from hypertensive cerebral apoplexy 5 months ago and accepted C7 nerve transfer to improve the central spastic paralysis in the right upper limb. After careful evaluation and anesthesia management before anesthesia, the operation was successfully completed under general anesthesia. The patient was cured and discharged without complications. The anesthesia management of C7 nerve transfer should choose appropriate operation opportunities for patients according to the type of stroke, improve the preoperative preparation, and form a multidisciplinary diagnosis and treatment.

7.
Sci Total Environ ; 926: 171861, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38518819

RESUMEN

The emissions of nitrous oxide (N2O) from agricultural fields are a significant contribution to global warming. Understanding the mechanisms of N2O emissions from agricultural fields is essential for the development of N2O emission mitigation strategies. Currently, there are extensive studies on N2O emissions on the surface of agricultural soils, while studies on N2O fluxes at the interface between the saturated and unsaturated zones (ISU) are limited. Uncertainties exist regarding N2O emissions from the soil-shallow groundwater systems in agricultural fields. In this study, a three-year lysimeter experiment (2019-2020, 2022) was conducted to simulate the soil-shallow groundwater systems under four controlled shallow groundwater depth (SGD) (i.e., SGD = 40, 70, 110, and 150 cm) conditions in North China Plain (NCP). Weekly continuous monitoring of N2O emissions from soil surface, N2O concentration in the shallow groundwater and the upper 10 cm of pores at the ISU, and nitrogen cycling-related parameters in the soil and groundwater was conducted. The results showed that soil surface N2O emissions increased with decreased shallow groundwater depth, and the highest emissions of 96.44 kg ha-1 and 104.32 kg ha-1 were observed at G2 (SGD = 40 cm) in 2020 and 2022. During the observation period of one maize growing season, shallow groundwater acted as a sink for the unsaturated zone when the groundwater depth was 40 cm, 70 cm, and 110 cm. However, when SGD was 150 cm, shallow groundwater became a source for the unsaturated zone. After fertilization, the groundwater in all treatment plots behaved as a sink for the unsaturated zone, and the diffusion intensity decreased with increasing SGD. The results would provide a theoretical basis for cropland water management to reduce N2O emissions.

8.
Water Res ; 251: 121124, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38237464

RESUMEN

Rare earth mining causes severe riverine nitrogen pollution, but its effect on nitrous oxide (N2O) emissions and the associated nitrogen transformation processes remain unclear. Here, we characterized N2O fluxes from China's largest ion-adsorption rare earth mining watershed and elucidated the mechanisms that drove N2O production and consumption using advanced isotope mapping and molecular biology techniques. Compared to the undisturbed river, the mining-affected river exhibited higher N2O fluxes (7.96 ± 10.18 mmol m-2d-1 vs. 2.88 ± 8.27 mmol m-2d-1, P = 0.002), confirming that mining-affected rivers are N2O emission hotspots. Flux variations scaled with high nitrogen supply (resulting from mining activities), and were mainly attributed to changes in water chemistry (i.e., pH, and metal concentrations), sediment property (i.e., particle size), and hydrogeomorphic factors (e.g., river order and slope). Coupled nitrification-denitrification and N2O reduction were the dominant processes controlling the N2O dynamics. Of these, the contribution of incomplete denitrification to N2O production was greater than that of nitrification, especially in the heavily mining-affected reaches. Co-occurrence network analysis identified Thiomonas and Rhodanobacter as the key genus closely associated with N2O production, suggesting their potential roles for denitrification. This is the first study to elucidate N2O emission and influential mechanisms in mining-affected rivers using combined isotopic and molecular techniques. The discovery of this study enhances our understanding of the distinctive processes driving N2O production and consumption in highly anthropogenically disturbed aquatic systems, and also provides the foundation for accurate assessment of N2O emissions from mining-affected rivers on regional and global scales.


Asunto(s)
Desnitrificación , Ríos , Ríos/química , Adsorción , Nitrificación , Óxido Nitroso/análisis , Nitrógeno/análisis
9.
Bioresour Technol ; 380: 129116, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37137447

RESUMEN

This paper aims to investigate the function of a pulsed electric field (PEF) in the anaerobic ammonia oxidation (anammox) process after adding certain chemical oxygen demand (COD) through integrated network and metagenomics analyses. The findings showed that the presence of COD was detrimental to anammox, but PEF could significantly reduce the adverse effect. The total nitrogen removal in the reactor for applying PEF was 16.99% higher on average than the reactor for only dosing COD. Additionally, PEF upgraded the abundance of anammox bacteria subordinate to the phylum Planctomycetes by 9.64%. The analysis of molecular ecological networks promulgated that PEF resulted in an increase in network scale and topology complexity, thereby boosting the potential collaboration of the communities. Metagenomics analyses demonstrated that PEF dramatically promoted anammox central metabolism in the presence of COD, specifically enhancing pivotal N functional genes (hzs, hdh, amo, hao, nas, nor and nos).


Asunto(s)
Oxidación Anaeróbica del Amoníaco , Desnitrificación , Reactores Biológicos/microbiología , Carbono/análisis , Metagenómica , Oxidación-Reducción , Anaerobiosis , Nitrógeno/análisis , Aguas del Alcantarillado/microbiología
10.
Ann Clin Lab Sci ; 53(2): 293-302, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37094860

RESUMEN

OBJECTIVE: Laryngeal squamous cell carcinoma (LSCC) is a malignancy originating from laryngeal squamous cell lesions. Wilm's tumor 1-associated protein (WTAP)-mediated N6-methyladenosine (m6A) modification has been verified to stimulate the progression of numerous cancers, except for LSCC. This study was aimed at exploring the role of WTAP and its mechanism of action in LSCC. METHODS: The expression of WTAP and plasminogen activator urokinase (PLAU) mRNAs in LSCC tissues and cells was quantified using qRT-PCR. Western blotting was performed to estimate PLAU levels in LSCC cells. The relationship between WTAP and PLAU was ascertained using luciferase reporter and methylated-RNA immunoprecipitation (Me-RIP) assays. Functionally, the interaction of WTAP with PLAU in LSCC cells was investigated using CCK-8, EdU, and Transwell assays. RESULTS: The expression of WTAP and PLAU was increased in LSCC, and was positively correlated. WTAP regulated PLAU stability in an m6A-dependent manner. WTAP deficiency suppressed the migration, invasion, and proliferation of LSCC cells. Overexpression of PLAU rescued the phenotype induced by WTAP knockdown in vitro. CONCLUSIONS: These results indicate that WTAP mediates the m6A modification of PLAU to accelerate the growth, migration, and invasion of cells in LSCC. To our knowledge, this is the first report to clarify the functions of WTAP in LSCC and the underlying mechanisms in detail. Based on these findings, we suggest that WTAP may serve as a therapeutic target for LSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias Laríngeas , MicroARNs , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello , Activador de Plasminógeno de Tipo Uroquinasa/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Carcinoma de Células Escamosas/genética , Neoplasias Laríngeas/patología , Activadores Plasminogénicos/genética , Activadores Plasminogénicos/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Proliferación Celular/genética , MicroARNs/genética , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Proteínas de Ciclo Celular/genética
11.
Front Pediatr ; 11: 1115124, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033193

RESUMEN

Background: Sevoflurane anesthesia is widely used in pediatric ambulatory surgery. However, emergency agitation (EA) and emergency delirium (ED), as major complications following sevoflurane anesthesia in children, pose risks to surgery and prognosis. Identifying the high risk of EA/ED, especially anesthesia exposure and the depth of anesthesia, may allow preemptive treatment. Methods: A total of 137 patients were prospectively enrolled in this single-center observational cohort study to assess the incidence of EA or ED. Multivariable logistic regression analyses were used to test the association between volatile anesthesia exposure and depth with EA or ED. The Richmond Agitation and Sedation Scale (RASS), Pediatric Anesthesia Emergence Delirium Scale (PAED) and Face, Legs, Activity, Cry, and Consolability (FLACC) behavioural pain scale was used to assess the severity of EA or ED severity and pain. Bispectral index (BIS) to monitor the depth of anesthesia, as well as TimeLOW-BIS/TimeANES %, EtSevo (%) and EtSevo-time AUC were included in the multivariate logistic regression model as independent variables to analyze their association with EA or ED. Results: The overall prevalence of EA and ED was 73/137 (53.3%) and 75/137 (54.7%) respectively, where 48/137 (35.0%), 19/137 (13.9%), and 6/137 (4.4%) had mild, moderate, and severe EA. When the recovery period was lengthened, the prevalence of ED and extent of FLACC decreased and finally normalized within 30 min in recovered period. Multivariable logistic regression demonstrated that intraoperative agitation [2.84 (1.08, 7.47) p = 0.034], peak FLACC [2.56 (1.70, 3.85) p < 0.001] and adverse event (respiratory complications) [0.03 (0.00, 0.29) p = 0.003] were independently associated with higher odds of EA. Taking EtSevo-time AUC ≤ 2,000 as a reference, the incidence of EA were [15.84 (2.15, 116.98) p = 0.002] times and 16.59 (2.42, 113.83) p = 0.009] times for EtSevo-time AUC 2,500-3,000 and EtSevo-time AUC > 3,000, respectively. Peak FLACC [3.46 (2.13, 5.62) p < 0.001] and intraoperative agitation [5.61 (1.99, 15.86) p = 0.001] were independently associated with higher odds of developing ED. EtSevo (%), intraoperative BIS value and the percentage of the duration of anesthesia at different depths of anesthesia (BIS ≤ 40, BIS ≤ 30, BIS ≤ 20) were not associated with EA and ED. Conclusions: For pediatrics undergoing ambulatory surgery where sevoflurane anesthesia was administered, EA was associated with surgical time, peak FLACC, respiratory complications, and "EtSevo-time AUC" with a dose-response relationship; ED was associated with peak FLACC and intraoperative agitation.

12.
J Hazard Mater ; 451: 131221, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-36934702

RESUMEN

Ion-adsorption rare earth mining results in the production of high levels of nitrogen, multiple metals, and strong acidic mine drainage (AMD), the impacts of which on microbial assembly and ecological functions remain unclear. To address this knowledge gap, we collected river sediments from the watershed of China's largest ion-adsorption rare earth mine and analyzed the bacterial community's structure, function, and assembly mechanisms. Results showed that bacterial community assembly was weakly affected by spatial dispersion, and dispersal limitation and homogeneous selection were the dominant ecological processes, with the latter increasing with pollution gradients. Bacterial alpha diversity decreased with pollution, which was mainly influenced by lead (Pb), pH, rare earth elements (REEs), and electrical conductivity (EC). However, bacteria developed survival strategies (i.e., enhanced acid tolerance and interspecific competition) to adapt to extreme environments, sustaining species diversity and community stability. Community structure and function showed a consistent response to the polluted environment (r = 0.662, P = 0.001). Enhanced environmental selection reshaped key microbial-mediated biogeochemical processes in the mining area, in particular weakening the potential for microbial denitrification. These findings provide new insights into the ecological response of microbes to compound pollution and offer theoretical support for proposing effective remediation and management strategies for polluted areas.


Asunto(s)
Metales de Tierras Raras , Minería , Adsorción , Metales de Tierras Raras/química , Bacterias , China
13.
Front Plant Sci ; 14: 1014349, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36959940

RESUMEN

Introduction: Soy isoflavone, a class of polyphenolic compounds exclusively occurred in legumes, is an important bioactive compound for both plants and human beings. The outline of isoflavones biosynthesis pathway has been drawn up basically in the previous research. However, research on the subject has been mostly restricted to investigate the static regulation of isoflavone content in soybean, rather than characterize its dynamic variation and modulation network in developing seeds. Methods: In this study, by using eight recombinant inbred lines (RIL), the contents of six isoflavone components in the different stages of developing soybean seeds were determined to characterize the dynamic variation of isoflavones, and the isoflavones accumulation pattern at physiological level was investigated. Meanwhile, we integrated and analyzed the whole genome expression profile of four lines and 42 meta-transcriptome data, based on the multiple algorithms. Results: This study: 1) obtained 4 molecular modules strongly correlated with isoflavone accumulation; 2) identified 28 novel major genes that could affect the accumulation of isoflavones in developing seeds free from the limitation of environments; 3) discussed the dynamic molecular patterns regulating isoflavones accumulation in developing seed; 4) expanded the isoflavone biosynthesis pathway. Discussion: The results not only promote the understandings on the biosynthesis and regulation of isoflavones at physiological and molecular level, but also facilitate to breed elite soybean cultivars with high isoflavone contents.

14.
PeerJ ; 10: e14080, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36199285

RESUMEN

As people's demand for healthy diet increases, improving soybean seed nutritional quality is becoming as important as yield. Carbon ion beam radiation (CIBR) is an effective method to create soybean mutants, and thus breeding cultivars with better seed nutritional quality. In this study, the high-yield soybean line 'Dongsheng 28' was used, and three CIBR doses (100, 120, and 140 Gy) were used to explore the characteristics of quality separation and variation in the offspring of early mutant populations. Eleven quality traits, including protein, oil, sucrose, soluble sugar, iron (Fe), manganese (Mn), zinc (Zn), cupper (Cu), daidzin, glycitin, and genistin concentrations were analyzed in the M2 and M3 generations. The results revealed that the range of protein and oil concentration of all three CIBR doses changed by 38.5-42.9% and 18.8-23.8% in the M2 and M3 generations, respectively, while soluble sugar and sucrose concentrations changed by 48.1-123.4 and 22.7-74.7 mg/g, with significant effects by 140 Gy across the two generations. Therefore, around the optimum range, a higher CIBR dose is better for high protein, oil, and sugar varieties selection. In general, irradiation raised isoflavone concentrations, but 140 Gy had an inhibitory effect on isoflavone concentrations in the M3 generation. Although a variety could not be released in the M2 or M3 generation, the results of this study have important guiding significance for the targeted cultivation of specific nutritional quality materials. For instance, a lower irradiation dose is preferable when breeding targets are higher isoflavones and Mn concentrations. It is essential to increase the irradiation dose if the breeding targets contain high levels of protein, oil, sucrose, soluble sugars, Fe, Zn, and Cu.


Asunto(s)
Glycine max , Isoflavonas , Humanos , Glycine max/genética , Fitomejoramiento , Isoflavonas/análisis , Carbohidratos/farmacología , Sacarosa/metabolismo , Valor Nutritivo
15.
J Adv Model Earth Syst ; 14(5): e2021MS002868, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35865233

RESUMEN

The Intergovernmental Panel on Climate Change Fifth Assessment Report lists sea-level rise as one of the major future climate challenges. Based on pre-industrial and historical-and-future climate simulations with the Community Earth System Model, we analyze the projected sea-level rise in the Northwest Atlantic Ocean with two sets of simulations at different horizontal resolutions. Compared with observations, the low resolution (LR) model simulated Gulf Stream does not separate from the shore but flows northward along the entire coast, causing large biases in regional dynamic sea level (DSL). The high resolution (HR) model improves the Gulf Stream representation and reduces biases in regional DSL. Under the RCP8.5 future climate scenario, LR projects a DSL trend of 1.5-2 mm/yr along the northeast continental shelf (north of 40° N), which is 2-3 times the trend projected by HR. Along the southeast shelf (south of 35° N), HR projects a DSL trend of 0.5-1 mm/yr while the DSL trend in LR is statistically insignificant. The different spatial patterns of DSL changes are attributable to the different Gulf Stream reductions in response to a weakening Atlantic Meridional Overturning Circulation. Due to its poor representation of the Gulf Stream, LR projects larger (smaller) current decreases along the north (south) east continental slope compared to HR. This leads to larger (smaller) trends of DSL rise along the north (south) east shelf in LR than in HR. The results of this study suggest that the better resolved ocean circulations in HR can have significant impacts on regional DSL simulations and projections.

16.
Front Psychol ; 13: 762402, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814087

RESUMEN

The research expects to explore the application of intelligent music recognition technology in music teaching. Based on the Long Short-Term Memory network knowledge, an algorithm model which can distinguish various music signals and generate various genres of music is designed and implemented. First, by analyzing the application of machine learning and deep learning in the field of music, the algorithm model is designed to realize the function of intelligent music generation, which provides a theoretical basis for relevant research. Then, by selecting massive music data, the music style discrimination and generation model is tested. The experimental results show that when the number of hidden layers of the designed model is 4 and the number of neurons in each layer is 1,024, 512, 256, and 128, the training result difference of the model is the smallest. The classification accuracy of jazz, classical, rock, country, and disco music types can be more than 60% using the designed algorithm model. Among them, the classification effect of jazz schools is the best, which is 77.5%. Moreover, compared with the traditional algorithm, the frequency distribution of the music score generated by the designed algorithm is almost consistent with the spectrum of the original music. Therefore, the methods and models proposed can distinguish music signals and generate different music, and the discrimination accuracy of different music signals is higher, which is superior to the traditional restricted Boltzmann machine method.

17.
Environ Pollut ; 309: 119747, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35835280

RESUMEN

Agricultural tillage practices have a significant impact on the generation and consumption of greenhouse gases (GHGs), the primary causes of global warming. Two tillage systems, conventional tillage (CT) and no-tillage (NT), were compared to evaluate their effects on GHG emissions in this study. Averaged from 2018 to 2020, significant decreases of CO2 and N2O emissions by 7.4% and 51.1% were observed in NT as compared to those of CT. NT was also found to inhibit the soil CH4 uptake. In this study, soil was a source of CO2 and N2O but a sink for CH4. The effect of soil temperature on the fluxes of CO2 was more pronounced than that of soil moisture. However, soil temperature and soil moisture had a weak correlation with CH4 and N2O flux variations. As compared to CT, NT did not affect maize yields but significantly reduced global warming potential (GWP) by 8.07%. For yield-scaled GWP, no significant difference was observed in NT (9.63) and CT (10.71). Taken together, NT was an environment-friendly tillage practice to mitigate GHG emissions in the soil under the tested conditions.


Asunto(s)
Gases de Efecto Invernadero , Agricultura , Dióxido de Carbono/análisis , Metano/análisis , Óxido Nitroso/análisis , Suelo , Zea mays
18.
Sci Total Environ ; 847: 157681, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35908708

RESUMEN

Although straw mulching and nitrogen applications are extensively practiced in the agriculture sector, large uncertainties remain about their impacts on crop yields and especially the environment. The responses of summer maize yields, fertilizer use efficiency, and greenhouse gas (GHG) emissions including carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) in the North China Plain (NCP) to two straw management practices (S0: no straw and S1: straw mulching) and two nitrogen application rates (N1: 180 and N2: 210 kg N ha-1) were investigated in field tests in 2018, 2019, and 2020. The highest yields and partial factor productivity (PFP) were obtained by S1N1, followed by S1N2, S0N1, and S0N2. S1N2 had the highest CO2 emissions and greatest CH4 uptake, S0N1 had the lowest CO2 emissions, and S0N2 had the smallest CH4 uptake. The highest and lowest N2O emissions were found in S0N1 and S1N1, respectively. The S1N2 treatment, an extensively applied practice, had the greatest global warming potential (GWP), which was 70.3 % larger than S1N1 and two times more than S0N1 and S0N2. The largest GHG emission intensity (GHGI) of 19.4 was found in the S1N2 treatment, while the other three treatments, S0N1, S0N2, and S1N1, had a GHGI of 10.1, 10.7, and 10.7, respectively according to three tested results. In conclusion, S1N1 treatment achieved a better trade-off between crop yields and GHG emissions of summer maize in NCP.


Asunto(s)
Fertilizantes , Gases de Efecto Invernadero , Agricultura/métodos , Dióxido de Carbono , China , Fertilizantes/análisis , Gases de Efecto Invernadero/análisis , Metano/análisis , Nitrógeno , Óxido Nitroso/análisis , Suelo , Zea mays
19.
Chem Res Toxicol ; 35(6): 1117-1124, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35583123

RESUMEN

Methysticin is one of the naturally occurring bioactive constituents extracted from Piper methysticum Forst. In the present study, we intended to investigate the inhibitory effect of methysticin on cytochrome P450 (P450) enzymes. Methysticin exhibited time-, concentration-, and NADPH-dependent inhibition on CYP2C9 using diclofenac as a probe substrate. Approximately 85% of CYP2C9 activity was inhibited by methysticin at 50 µM after a 30 min preincubation with human liver microsomes in the presence of NADPH. The kinetic parameters KI, kinact, and t1/2,inact were 13.32 ± 1.35 µM, 0.054 ± 0.005 min-1, and 12.83 ± 3.23 min, respectively. Sulfaphenazole (competitive inhibitor of CYP2C9) displayed a significant protective effect on methysticin-induced CYP2C9 inactivation. However, the inclusion of catalase/superoxide dismutase or glutathione (GSH) showed no such protection. A carbene intermediate was postulated to be involved in methysticin-induced CYP2C9 inactivation as K3Fe(CN)6 recovered 14.96% of CYP2C9 activity. A methysticin-derived ortho-quinone intermediate dependent on NADPH was trapped by GSH, and this intermediate was believed to be involved in CYP2C9 inactivation. CYP1A2, 2C9, and 3A4 were the major enzymes responsible for methysticin bioactivation. Taken together, the present work demonstrated that methysticin was a mechanism-based inactivator of CYP2C9. Both ortho-quinone and carbene intermediates appeared to be involved in the inactivation of CYP2C9 induced by methysticin.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Microsomas Hepáticos , Citocromo P-450 CYP2C9 , Humanos , NADP , Piranos , Quinonas/farmacología
20.
Sci Total Environ ; 835: 155343, 2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-35489483

RESUMEN

Africa is facing an increasing challenge with respect to water scarcity (WS), which is driven by climate change, population growth, and socioeconomic growth combined with inadequate water resources management. In particular, there is significant concern of virtual water (VW) trade, which plays the key role in water resource management and food security sustainability. Using bilateral trade data, this study consistently evaluated the change and balanced trade of major grains, the VW flows, WS status, water dependency (WD), water self-sufficiency (WSS), and water savings/losses within5 African sub-regions and their partners from 2000 to 2020. The ratio of water use to water availability was used to estimate the WS. The WD was quantified by the ratio of the net VW import to the regional water appropriation and the regional water savings/losses were also quantified by multiplying the inter-regional trade by the virtual water content of the imported/exported grains. The overall average trade deficit of African regions was found to increase to -1364.22 × 106 tons and Africa imported 41,359.07 Bm3 of VW from grain products. Green water contributed 79.33% of the total VWI. The WS values for East African countries were >100, indicating overexploitation. Besides, the overall WD in Africa was 465.5% for the studied period. The trade of main grains between Africa and the rest of the planet corresponded to a global water loss of 2820.7 Bm3·yr-1. However, the inter-continental cereal VW trade pattern and high trend will continue in the future. In view of the rising tension of WS, some African countries need to revise international crop trade and water resources conservation policies to promote a more balanced ecosystem. This study exemplifies that decision makers would consider VW flows and water savings/losses for enhancing water use efficiency and fair trading, thus increasing food production in Africa.


Asunto(s)
Inseguridad Hídrica , Agua , Agricultura/métodos , Ecosistema , Grano Comestible , Políticas , Abastecimiento de Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA