Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 92
1.
Int Immunopharmacol ; 137: 112337, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38861915

BACKGROUND: Allergic Rhinitis (AR) is a prevalent chronic non-infectious inflammation affecting the nasal mucosa. NLRP3-mediated pyroptosis of epithelial cells plays a pivotal role in AR pathogenesis. Herein, we evaluated the impact of the long non-coding RNA nuclear paraspeckle assembly transcript 1 (lncRNA NEAT1) on NLR family pyrin domain containing 3 (NLRP3)-mediated pyroptosis in AR. METHODS: Nasal inflammation levels in ovalbumin (OVA)-induced AR mice were assessed using HE staining, and NLRP3 expression was evaluated through immunohistochemistry. ELISA was utilized to detect OVA-specific IgE, IL-6, IL-5, and inflammatory cytokines (IL-1ß, IL-18). Human nasal epithelial cells (HNEpCs) stimulated with IL4/IL13 were used to analyze the mRNA and protein levels of associated genes utilizing RT-qPCR and western blot, respectively. Cell viability and pyroptosis were assessed by CCK-8 and flow cytometry. The targeting relationship between NEAT1, PTBP1 and FOXP1 were analyzed by RIP and RNA pull down assays. FISH and IF analysis were performed to assess the co-localization of NEAT1 and PTBP1. RESULTS: In both the AR mouse and cellular models, increased levels of NEAT1, PTBP1 and FOXP1 were observed. AR mice exhibited elevated inflammatory infiltration and pyroptosis, evidenced by enhanced expressions of OVA-specific IgE, IL-6, and IL-5, NLRP3, Cleaved-caspase 1, GSDMD-N, IL-1ß and IL-18. Functional assays revealed that knockdown of PTBP1 or NEAT1 inhibited pyroptosis while promoting the proliferation of IL4/IL13-treated HNEpCs. Mechanistically, NEAT1 directly interacted with PTBP1, thereby maintaining FOXP1 mRNA stability. Rescue assays demonstrated that FOXP1 upregulation reversed the inhibitory effects of silencing NEAT1 or PTBP1 on IL4/IL13-stimulated pyroptosis activation in HNEpCs. CONCLUSION: NEAT1 acts as a RNA scaffold for PTBP1, activating the PTBP1/FOXP1 signaling cascade, subsequently triggering NLRP3-mediated pyroptosis in HNEpCs, and ultimately promoting AR progression. These findings highlight some new insights into the pathogenesis of AR.

2.
Sci Rep ; 14(1): 392, 2024 01 03.
Article En | MEDLINE | ID: mdl-38172209

The pathogenesis of Acute-on-chronic liver failure (ACLF) involves several forms of cell death, such as pyroptosis, apoptosis, and necroptosis, which consist of PANoptosis. To explore PANoptosis as a regulated cell death pathway in ACLF. Firstly, a bioinformatic strategy was used to observe the role of the PANoptosis pathway in ACLF and identify differentially expressed genes related to PANoptosis. Enrichment analysis showed that PANoptosis-related pathways were up-regulated in ACLF. We screened out BAX from the intersection of pyroptosis, apoptosis, necroptosis, and DEGs. Secondly, we screened articles from literature databases related to PANoptosis and liver failure, and specific forms of PANoptosis were reported in different experimental models in vitro and in vivo. Secondly, we established a model of ACLF using carbon tetrachloride-induced liver fibrosis, followed by D-galactosamine and lipopolysaccharide joint acute attacks. A substantial release of inflammatory factors(IL-6, IL-18, TNFα, and IFNγ) and the key proteins of PANoptosis (NLRP3, CASP1, GSDMD, BAX, CASP8, CASP3, CASP7, and MLKL) were detected independently in the ACLF rats. Finally, we found that combining TNF-α/INF-γ inflammatory cytokines could induce L02 cells PANoptosis. Our study highlighted the potential role of ACLF and helps drug discovery targeting PANoptosis in the future.


Acute-On-Chronic Liver Failure , Rats , Animals , Acute-On-Chronic Liver Failure/metabolism , bcl-2-Associated X Protein , Cytokines/metabolism , Liver Cirrhosis , Tumor Necrosis Factor-alpha/metabolism , Apoptosis
3.
PLoS One ; 18(12): e0295291, 2023.
Article En | MEDLINE | ID: mdl-38060597

Aflatoxin B1 (AFB1), with the strong toxicity and carcinogenicity, has been reported to great toxicity to the liver and other organs of animals. It cause huge economic losses to breeding industry, including the aquaculture industry. Chinese mitten crabs (Eriocheir sinensis), as one of important species of freshwater aquaculture in China, are deeply disturbed by it. However, the molecular and metabolic mechanisms of hepatopancreas and ovary in crabs underlying coping ability are still unclear. Hence, we conducted targeted injection experiment with or without AFB1, and comprehensively analyzed transcriptome and metabolomics of hepatopancreas and ovary. As a result, 210 and 250 DEGs were identified in the L-C vs. L-30 m and L-C vs. L-60 m comparison, among which 14 common DEGs were related to six major functional categories, including antibacterial and detoxification, ATP energy reaction, redox reaction, nerve reaction, liver injury repair and immune reaction. A total of 228 and 401 DAMs in the ML-C vs. ML-30 m and ML-C vs. ML-60 m comparison both enriched 12 pathways, with clear functions of cutin, suberine and wax biosynthesis, tyrosine metabolism, purine metabolism, nucleotide metabolism, glycine, serine and threonine metabolism, ABC transporters and tryptophan metabolism. Integrated analysis of metabolomics and transcriptome in hepatopancreas discovered three Co-enriched pathways, including steroid biosynthesis, glycine, serine and threonine metabolism, and sphingolipid metabolism. In summary, the expression levels and functions of related genes and metabolites reveal the regulatory mechanism of Chinese mitten crab (Eriocheir sinensis) adaptability to the Aflatoxin B1, and the findings contribute to a new perspective for understanding Aflatoxin B1 and provide some ideas for dealing with it.


Brachyura , Transcriptome , Animals , Female , Aflatoxin B1/toxicity , Aflatoxin B1/metabolism , Plant Breeding , Glycine/metabolism , Serine/metabolism , Threonine/metabolism , Brachyura/genetics , Hepatopancreas/metabolism
4.
Chin Med ; 18(1): 157, 2023 Nov 30.
Article En | MEDLINE | ID: mdl-38037150

BACKGROUND: Acute-on-chronic liver failure (ACLF) is a refractory disease with high mortality, which is characterized by a pathophysiological process of inflammation-related dysfunction of energy metabolism. Jieduan-Niwan formula (JDNWF) is a eutherapeutic Chinese medicine formula for ACLF. However, the intrinsic mechanism of its anti-ACLF effect still need to be studied systematically. PURPOSE: This study aimed to investigate the mechanism of JDNWF against ACLF based on altered substance metabolic profile in ACLF the expression levels of related molecules. MATERIALS AND METHODS: The chemical characteristics of JDNWF were characterized using ultra performance liquid chromatography (UPLC) coupled with triple quadrupole mass spectrometry. Wistar rats subjected to a long-term CCL4 stimulation followed by a combination of an acute attack with LPS/D-GalN were used to establish the ACLF model. Liver metabolites were analyzed by LC-MS/MS and multivariate analysis. Liver function, coagulation function, histopathology, mitochondrial metabolic enzyme activity and mitochondrial damage markers were evaluated. The protein expression of mitochondrial quality control (MQC) was investigated by western blot. RESULTS: Liver function, coagulation function, inflammation, oxidative stress and mitochondrial enzyme activity were significantly improved by JDNWF. 108 metabolites are considered as biomarkers of JDNWF in treating ACLF, which were closely related to TCA cycle. It was further suggested that JDNWF alleviated mitochondrial damage and MQC may be potential mechanism of JDNWF improving mitochondrial function. CONCLUSIONS: Metabolomics revealed that TCA cycle was impaired in ACLF rats, and JDNWF had a regulatory effect on it. The potential mechanism may be improving the mitochondrial function through MQC pathway, thus restoring energy metabolism.

5.
ACS Omega ; 8(23): 20858-20868, 2023 Jun 13.
Article En | MEDLINE | ID: mdl-37323404

In this study, the catalytic activity of bifunctional SiO2/Zr catalysts prepared by template and chelate methods using potassium hydrogen phthalate (KHF) for crude palm oil (CPO) hydrocracking to biofuels was investigated. The parent catalyst was successfully prepared by the sol-gel method, followed by the impregnation of zirconium using ZrOCl2·8H2O as a precursor. The morphological, structural, and textural properties of the catalysts were examined using several techniques, including electron microscopy energy-dispersive X-ray with mapping, transmission electron microscopy, X-ray diffraction, particle size analyzer (PSA), N2 adsorption-desorption, Fourier transform infrared-pyridine, and total and surface acidity analysis using the gravimetric method. The results showed that the physicochemical properties of SiO2/Zr were affected by different preparation methods. The template method assisted by KHF (SiO2/Zr-KHF2 and SiO2-KHF catalysts) provides a porous structure and high catalyst acidity. The catalyst prepared by the chelate method assisted by KHF (SiO2/Zr-KHF1) exhibited excellent Zr dispersion toward the SiO2 surface. The modification remarkably enhanced the catalytic activity of the parent catalyst in the order SiO2/Zr-KHF2 > SiO2/Zr-KHF1 > SiO2/Zr > SiO2-KHF > SiO2, with sufficient CPO conversion. The modified catalysts also suppressed coke formation and resulted in a high liquid yield. The catalyst features of SiO2/Zr-KHF1 promoted high-selectivity biofuel toward biogasoline, whereas SiO2/Zr-KHF2 led to an increase in the selectivity toward biojet. Reusability studies showed that the prepared catalysts were adequately stable over three consecutive runs for CPO conversion. Overall, SiO2/Zr prepared by the template method assisted by KHF was chosen as the most prominent catalyst for CPO hydrocracking.

6.
Genes (Basel) ; 14(1)2023 01 04.
Article En | MEDLINE | ID: mdl-36672879

Catalase (CAT) is an important antioxidant enzyme in plants that plays a key role in plant growth and stress responses. CAT is usually encoded by a small gene family that has been cloned and functionally studied in some species, such as Arabidopsis, wheat and cucumber, but its specific roles in rice are not clear at present. In this study, we identified three CAT family genes (OsCAT1, OsCAT2 and OsCAT3) in the rice genome and performed a systematic bioinformatics analysis. RT-PCR analysis revealed that OsCAT1-OsCAT3 was primarily expressed in vegetative tissues such as roots, stems and leaves. Since OsCAT3 showed the highest expression level among the three OsCAT genes, we then focused on its related functions. OsCAT3 prokaryotic expression protein has an obvious ability to remove H2O2. The OsCAT3crispr plant was short and had a low survival rate, the leaves were small with brown lesions, and the activities of the CAT, POD and SOD enzymes were significantly reduced. A microarray analysis showed that differentially expressed genes were primarily enriched in toxin metabolism and photosynthesis. This study laid a foundation for further understanding the function of the rice OsCAT gene.


Oryza , Catalase/genetics , Catalase/metabolism , Hydrogen Peroxide/metabolism , Antioxidants/metabolism , Photosynthesis
7.
J Ethnopharmacol ; 304: 116011, 2023 Mar 25.
Article En | MEDLINE | ID: mdl-36529253

ETHNOPHARMACOLOGICAL RELEVANCE: Tongxinluo (TXL) is one of the most common traditional Chinese medicines and plays a vital role in treating atherosclerosis (AS). Endothelial cell (EC) pyroptosis plays a crucial role in the development of AS. Previous research revealed the inhibitory function of TXL in EC apoptosis and autophagy. However, whether TXL can inhibit the pyroptosis of ECs has not been determined. AIM OF THE STUDY: To explore the influence of TXL on EC pyroptosis and determine its underlying mechanism of action in AS. MATERIALS AND METHODS: The TXL components were determined by ultra-performance liquid chromatography coupled with a photodiode array detector. We used ApoE-/- mice to establish a disease model of AS. After treatment with TXL, we recorded pathological changes in the mice and performed immunofluorescence staining of mice aortas. We also measured protein and gene levels to explore the influence of TXL on pyroptosis in vivo. The model was established by stimulating mouse aortic endothelial cells (MAECs) with oxidized low-density lipoprotein (ox-LDL) and analyzing the effect of TXL on pyroptosis by Western blotting (WB), real-time PCR (RT-PCR), and flow cytometry (FCM). We also investigated the impact of TXL on reactive oxygen species (ROS) by FCM and WB. RESULTS: Ten major components of TXL were detected. The vivo results showed that TXL inhibited the development of AS and decreased EC pyroptosis, the activation of caspase-1, and the release of inflammatory cytokines. The vitro experiments showed that TXL significantly reduced the extent of injury to MAECs by oxidized LDL (ox-LDL). TXL reversed the high expression of gasdermin D and other proteins induced by ox-LDL and had a significant synergistic effect with the caspase-1 inhibitor VX-765. We also confirmed that TXL decreased the accumulation of ROS and the expression levels of its essential regulatory proteins Cox2 and iNOS. When ROS accumulation was reduced, EC pyroptotic damage was reduced accordingly. CONCLUSION: Our results indicated that TXL inhibited EC pyroptosis in AS. Reducing the accumulation of ROS may be the essential mechanism of AS inhibition by TXL.


Atherosclerosis , Endothelial Cells , Mice , Animals , Pyroptosis , Caspase 1/metabolism , Reactive Oxygen Species/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Atherosclerosis/metabolism
8.
Bioengineering (Basel) ; 9(11)2022 Nov 17.
Article En | MEDLINE | ID: mdl-36421101

Metal-organic frameworks (MOFs) have widespread application prospects in the field of catalysis owing to their functionally adjustable metal sites and adjustable structure. In this minireview, we summarize the current advancements in zirconium-based metal-organic framework (Zr-based MOF) catalysts (including single Zr-based MOFs, modified Zr-based MOFs, and Zr-based MOF derivatives) for green biofuel synthesis. Additionally, the yields, conversions, and reusability of Zr-based MOF catalysts for the production of biodiesel are compared. Finally, the challenges and future prospects regarding Zr-based MOFs and their derivatives for catalytic application in the biorefinery field are highlighted.

9.
J Oncol ; 2022: 5300523, 2022.
Article En | MEDLINE | ID: mdl-36193202

Background: As a frequent cause of death in cancer patients, liver cancer usually occurs in hepatitis B and cirrhosis. In China, Chinese people have been using traditional Chinese medicine (TCM) in treating various chronic liver diseases, which could effectively improve the symptoms and slow down the progression of liver diseases. However, due to the complexity rules of TCM prescription, their action mechanisms are still not clearly understood, which may affect the popularization of effective prescriptions. This study aims to identify the core TCM herbs in the treatment of hepatitis B, liver cirrhosis, and liver cancer so as to clarify the mechanism of action of the core herb networks. Methods: There were 1,673 prescriptions for chronic liver diseases collected in this study, of which 854 were hepatic B prescriptions, 530 were for liver cirrhosis, and 289 were for liver cancer. The basic characteristics of herbal medicine were firstly explained via descriptive analysis, then the core prescriptions of herbal medicine were analyzed through association rule, and finally, the mechanism of core prescriptions was explored with the help of systematic network pharmacology and by applying such databases as TCMIP, HERB, OMIM, GeneCards, KEGG, and software like RStudio and Cytoscape. Results: The rule of the core prescriptions in these cases was characterized by the application of herbs with both cold and warm properties, in which bitter herbs with cold property took priority. Tonifying deficiency, clearing heat, and activating blood circulations to remove stasis were common treatment principles for the three liver diseases. Turmeric Root Tuber (YuJin), White Peony Root (BaiShao), Bupleurum (ChaiHu), Salvia miltiorrhiza (DanShen), and Astragali Radix (HuangQi) were prescribed the most in hepatitis B treatment to invigorate the spleen and soothe the liver. Astragali Radix (HuangQi), Tuckahoe (FuLing), Atractylodis Macrocephalae Rhizoma (BaiZhu), Fructus Polygoni Orientalis (ShuiHongHuaZi), and Curcumae Rhizome (EZhu) were most frequently applied in liver cirrhosis treatment to replenish qi and activate blood. Oldenlandia (BaiHuaSheSheCao), Bearded Scutellaria (BanZhiLian), Curcumae Rhizome (EZhu), and Cardamom (DouKou) were most frequently prescribed to eliminate cancer toxin, invigorate the spleen, and activate blood. These core herbs mainly act through signal transduction and immune system pathways, in which the PI3K-Akt pathway plays a key role. The core prescription for liver cirrhosis regulated more endocrine system pathways than the hepatitis B prescription, and liver cancer prescription regulated more nervous system-related pathways. Conclusion: Three core prescriptions for hepatitis B, liver cirrhosis, and liver cancer treatment were identified, which acted mainly through signal transduction and immune system pathways to regulate immunity and cell growth and participate in inflammation inhibition, in which liver cancer prescription regulated more pathways, especially more nervous system-related pathways than the other two.

10.
J Adv Res ; 40: 59-68, 2022 09.
Article En | MEDLINE | ID: mdl-36100334

INTRODUCTION: Cell wall degradation and remodeling is the key factor causing fruit softening during ripening. OBJECTIVES: To explore the mechanism underlying postharvest cell wall metabolism, a transcriptome analysis method for more precious prediction on functional genes was needed. METHODS: Kiwifruits treated by ethylene (a conventional and effective phytohormone to accelerate climacteric fruit ripening and softening as kiwifruits) or air were taken as materials. Here, Consensus Coexpression Network Analysis (CCNA), a procedure evolved from Weighted Gene Co-expression Network Analysis (WGCNA) package in R, was applied and generated 85 consensus clusters from twelve transcriptome libraries. Advanced and comprehensive modifications were achieved by combination of CCNA and WGCNA with introduction of physiological traits, including firmness, cell wall materials, cellulose, hemicellulose, water soluble pectin, covalent binding pectin and ionic soluble pectin. RESULTS: As a result, six cell wall metabolisms related structural genes AdGAL1, AdMAN1, AdPL1, AdPL5, Adß-Gal5, AdPME1 and four transcription factors AdZAT5, AdDOF3, AdNAC083, AdMYBR4 were identified as hub candidate genes for pectin degradation. Dual-luciferase system and electrophoretic mobility shift assays validated that promoters of AdPL5 and Adß-Gal5 were recognized and trans-activated by transcription factor AdZAT5. The relatively higher enzyme activities of PL and ß-Gal were observed in ethylene treated kiwifruit, further emphasized the critical roles of these two pectin related genes for fruit softening. Moreover, stable transient overexpression AdZAT5 in kiwifruit significantly enhanced AdPL5 and Adß-Gal5 expression, which confirmed the in vivo regulations between transcription factor and pectin related genes. CONCLUSION: Thus, modification and application of CCNA would be powerful for the precious phishing the unknown regulators. It revealed that AdZAT5 is a key factor for pectin degradation by binding and regulating effector genes AdPL5 and Adß-Gal5.


Actinidia , Fruit , Actinidia/genetics , Actinidia/metabolism , Consensus , Ethylenes/metabolism , Fruit/genetics , Fruit/metabolism , Pectins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
11.
Sci Rep ; 12(1): 14052, 2022 08 18.
Article En | MEDLINE | ID: mdl-35982134

Acute-on-chronic liver failure (ACLF) is a critical and refractory disease and a hepatic disorder accompanied by immune dysfunction. Thus, it is essential to explore key immune-related genes of ACLF and investigate its mechanisms. We used two public datasets (GSE142255 and GSE168048) to perform various bioinformatics analyses, including WGCNA, CIBERSORT, and GSEA. We also constructed an ACLF immune-related protein-protein interaction (PPI) network to obtain hub differentially expressed genes (DEGs) and predict corresponding miRNAs. Finally, an ACLF rat model was established to verify the results. A total of 388 DEGs were identified in ACLF, including 162 upregulated and 226 downregulated genes. The enrichment analyses revealed that these DEGs were mainly involved in inflammatory-immune responses and biosynthetic metabolic pathways. Twenty-eight gene modules were obtained using WGCNA and the coral1 and darkseagreen4 modules were highly correlated with M1 macrophage polarization. As a result, 10 hub genes and 2 miRNAs were identified to be significantly altered in ACLF. The bioinformatics analyses of the two datasets presented valuable insights into the pathogenesis and screening of hub genes of ACLF. These results might contribute to a better understanding of the potential molecular mechanisms of ACLF. Finally, further studies are required to validate our current findings.


Acute-On-Chronic Liver Failure , MicroRNAs , Acute-On-Chronic Liver Failure/genetics , Animals , Computational Biology/methods , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , MicroRNAs/metabolism , Rats
12.
Article En | MEDLINE | ID: mdl-35873636

Jieduan-Niwan (JDNW) formula is a traditional Chinese medicine compound created by the famous Chinese medicine expert Professor Qian Ying, and has been used clinically for decades to treat acute-on-chronic liver failure (ACLF) and exhibits remarkable efficacy. However, the exact mechanism remains to be discovered. As an important hepatocyte damage-associated molecular patterns (DAMP) factor, high mobility group box 1 (HMGB1) is a potential therapeutic target as an accelerator of ACLF in the pathogenesis. Therefore, the present study investigated whether JDNW inhibits the overexpression and cytoplasmic translocation of HMGB1 in ACLF liver tissue and alleviates its mediated oxidative stress and apoptosis. In vivo, an immune-induced ACLF rat model was established, and then treated with JDNW for 5, 10, and 15 d. The results showed that a large number of cytoplasmic translocations of HMGB1 occurred in the ACLF group. And there was an increase in the expression of HMGB1 in the M-5 d group. After the intervention of JDNW, the overexpression and translocation of HMGB1 were inhibited. In vitro, D-GaLN caused an increase in the expression and translocation of HMGB1 in L02 cells. Similar to the inhibitor of HMGB1, JDNW serum alleviated this kind of increase. Further tests showed that JDNW attenuated ACLF-related oxidative stress and apoptosis, and the inhibition was associated with the regulation of TLR-4/NF-κB signaling pathway. In conclusion, our present findings suggest that the therapeutic effect of JDNW on ACLF was associated with the inhibition of high expression and cytoplasmic translocation of HMGB1 during the acute injury phase, thus, attenuating oxidative stress injury and apoptosis induced by HMGB1/TLR-4/NF-κB pathway.

13.
Research (Wash D C) ; 2022: 9816234, 2022.
Article En | MEDLINE | ID: mdl-35707046

Radiofrequency (RF) catheter ablation has emerged as an effective alternative for the treatment of atrial fibrillation (AF), but ablation lesions will result in swelling and hematoma of local surrounding tissue, triggering inflammatory cell infiltration and increased release of inflammatory cytokines. Some studies have shown that the inflammatory response may be related to the early occurrence of AF. The most direct way to inhibit perioperative inflammation is to use anti-inflammatory drugs such as glucocorticoids. Here, we prepared polylactic-co-glycolic acid (PLGA) nanoparticles loaded with budesonide (BUD) and delivered them through irrigation of saline during the onset of ablation. Local high temperature promoted local rupture of PLGA nanoparticles, releasing BUD, and produced a timely and effective local myocardial anti-inflammatory effect, resulting in the reduction of acute hematoma and inflammatory cell infiltration and the enhancement of ablation effect. Nanoparticles would also infiltrate into the local myocardium and gradually release BUD ingredients to produce a continuous anti-inflammatory effect in the next few days. This resulted in a decrease in the level of inflammatory cytokine IL-6 and an increase of anti-inflammatory cytokine IL-10. This study explored an extraordinary drug delivery strategy to reduce ablation-related inflammation, which may prevent early recurrence of AF.

14.
Water Sci Technol ; 85(10): 2928-2944, 2022 May.
Article En | MEDLINE | ID: mdl-35638797

The persistence of antibiotics in sewage treatment plants in recent years has become a serious problem. Meanwhile, humic acid and ammonia nitrogen are widely distributed in natural reservoirs and might influence the sorption, migration and transformation of antibiotics. In this study, natural zeolite (NZ) was evaluated as an adsorbent for the removal of levofloxacin (LEV). The physical and chemical properties of NZ before and after adsorption were characterized by various analytical techniques to develop the mechanism. The effects of ammonia nitrogen and humic acid (HA) on the interfacial behavior of LEV on NZ were explored. Comparative experiments revealed that LEV adsorption on NZ involved electrostatic interactions and ion exchange, and the adsorption processes were well fitted by the Langmuir isotherm model and pseudosecond-order kinetic model. The maximum experimental adsorption capacity of LEV was 22.17 mg·g-1 at pH 6.5. The presence of ammonia nitrogen and HA significantly suppressed the adsorption of LEV due to competitive adsorption, and the adsorption capacity decreased 58 and 46%, respectively. It is obvious that low concentrations of ammonia nitrogen and HA are conducive to improving the treatment effect of sewage. This study demonstrates that NZ is a promising and efficient material for LEV adsorption.


Humic Substances , Zeolites , Adsorption , Ammonia , Anti-Bacterial Agents , Levofloxacin/chemistry , Nitrogen , Sewage , Zeolites/chemistry
15.
Biochem Genet ; 60(6): 2268-2285, 2022 Dec.
Article En | MEDLINE | ID: mdl-35325440

To further understand the molecular mechanism for rice male reproduction, a rice male sterile mutant paa1 was screened from the rice mutant library generated by treatment with 60Coγ-rays. Genetic analysis revealed that paa1 is controlled by a single- recessive nuclear gene, and the anthers of the paa1 mutant were smaller than those of WT plants with a white color. Histological analysis demonstrated that the anthers of the paa1 mutant began to turn abnormal at the microspore stage after meiosis, with abnormal degradation of tapetum, deformed Ubisch bodies, and defective pollen exine. TUNEL assay results also confirmed the delay of tapetum PCD in paa1. Map-based cloning was performed for the PAA1 location. As a result, PAA1 was located in a 88-kb region at the end of chromosome 10, which comprises a total of seven candidate genes, and no genes related to anther development have been reported in this region. The results indicate that PAA1 is an essential gene in regulating tapetum development and pollen/microspore formation after rice meiosis.


Gene Expression Regulation, Plant , Oryza , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen/genetics , Pollen/metabolism , Meiosis/genetics , Flowers/genetics
16.
Sci Rep ; 12(1): 2310, 2022 02 10.
Article En | MEDLINE | ID: mdl-35145172

Aiming at the ecological footprint model, the traditional trade adjustment method only considered the international trade process at the urban scale, ignoring the trade footprint generated by domestic trade and indirect trade in various products. This paper adopts the urban-scale ecological footprint model based on the macro-trade adjustment method to calculate the trade adjustment coefficient of biological products and the energy trade adjustment coefficient respectively to correct the trade footprint. The results showed that the per capita ecological deficit showed a straight upward trend, from 0.07351 hm2 in 2013 to 0.15472 hm2 in 2018. From 2013 to 2018, the per capita ecological footprint of Guangdong Province was greater than the per capita ecological carrying capacity, and the ecological economic system of Guangdong Province was in an unsustainable state. According to the trade ecological footprint, Guangdong Province was a completely foreign resource and service exporting city, which was consistent with Guangdong Province's own economic development direction; the analysis results of the ecological product trade footprint were more consistent with the current city positioning of biological resource products of each city, and the energy indirect trade footprint. The improved ecological footprint model could more accurately assess the true status of ecological vitality above the urban scale.

17.
Altern Ther Health Med ; 28(2): 65-69, 2022 Feb.
Article En | MEDLINE | ID: mdl-35139493

OBJECTIVE: Acute-on-chronic liver failure (ACLF) is a type of liver failure commonly found in China, and currently the mechanism of the disease remains unknown. This study aimed to investigate the epidemiology, clinical features and prognostic factors in ACLF. METHODS: This study retrospectively included 170 patients with ACLF admitted to Beijing Friendship Hospital in Beijing, China from November 2017 to May 2019. Patients were divided into 2 groups: the improved group and the deteriorated group, according to the severity of their disease. Patients' demographic data; clinical manifestations; complications; laboratory indicators including platelets (PLT), alanine aminotransferase (ALT), aspartate amino transferase (AST), total bilirubin (TBIL), prothrombin time (PT), activated partial thromboplastin time (APTT), prothrombin activity (PTA), international normalized ratio (INR), and alkaline phosphatase (ALP) were collected. The relationship between these factors and the patients' prognosis were analyzed by logistic multivariate regression analysis. RESULTS: The highest morbidity rate was in the age group 40 to 49 years (29.41%). The age group with the second highest morbidity was between 50 and 59 years (25.29%), followed by >60 (21.18%), 30 to 39 (20.59%), 20 to 29 (2.94%) and <20 years (0.59%). A total of 53 patients (31.18%) had a family history of hepatitis B virus infection. The patients' main clinical manifestations were ascites (77.65%) and weakness (68.23%). The most common complications were hypoalbuminemia (80%), infection (67.65%) and electrolyte imbalance (44.12%). In addition, the PTA (P = .009), hepatorenal syndrome (P = .005) and hepatic encephalopathy (level IV) (P = .005) were independently related to the prognosis of ACLF. There is a significant relationship between complications and prognosis (χ2 = 8.502; P = .004). CONCLUSION: This study showed that prothrombin activity, hepatorenal syndrome and hepatic encephalopathy were independently related to the prognosis of ACLF. This outcome provided more options for reducing patient mortality in clinic.


Acute-On-Chronic Liver Failure , Adult , China/epidemiology , Hepatitis B virus , Humans , Middle Aged , Prognosis , Retrospective Studies
18.
Front Chem ; 10: 1106426, 2022.
Article En | MEDLINE | ID: mdl-36704618

In this study, we summarize recent advances in the synthesis of magnetic catalysts utilized for biodiesel production, particularly focusing on the physicochemical properties, activity, and reusability of magnetic mixed metal oxides, supported magnetic catalysts, ionic acid-functionalized magnetic catalysts, heteropolyacid-based magnetic catalysts, and metal-organic framework-based magnetic catalysts. The prevailing reaction conditions in the production of biodiesel are also discussed. Lastly, the current limitations and challenges for future research needs in the magnetic catalyst field are presented.

19.
Article En | MEDLINE | ID: mdl-34904016

BACKGROUND: Acute on chronic liver failure (ACLF) is a syndrome of acute liver failure that occurs on the basis of chronic liver disease, which is characterized by a rapid deterioration in a short period and high mortality. High mobility group box 1 (HMGB1) may be involved in the pathological process of ACLF; its specific role remains to be further elucidated. Our previous studies have shown that quercetin (Que) exerts anti-oxidant and anti-apoptotic effects by inhibiting HMGB1 in vitro. The present study aimed to investigate the effect of Que on liver injury in ACLF rats. METHODS: The contents of ALT, AST, TBiL, and PT time of rats in each group were observed. HE staining was used to detect liver pathology. The levels of oxidative stress indicators such as MDA, GSH, and 4-HNE in the rat liver were detected. TUNEL assay was used to detect apoptosis in rat hepatocytes. Immunofluorescence and western blot analysis were performed to explore the protective effect of Que on ACLF rats and the underlying mechanism. RESULTS: The results showed that Que could reduce the increase of serum biochemical indices, improve liver pathology, and reduce liver damage in ACLF rats. Further results confirmed that Que reduced the occurrence of oxidative stress and apoptosis of hepatocytes, and these reactions may aggravate the progress of ACLF. Meanwhile, the results of immunofluorescence and western blotting also confirmed that the expression of HMGB1 and extranuclear translocation in ACLF rat hepatocytes were significantly increased, which was alleviated by the treatment of Que. In addition, when cotreated with glycyrrhizin (Gly), an inhibitor of HMGB1, the inhibition of Que on HMGB1 and its translocation, apoptosis and oxidative stress, and the related proteins of HMGB1-mediated cellular pathway have been significantly enhanced. CONCLUSION: Thus, Que alleviates liver injury in ACLF rats, and its mechanism may be related to oxidative stress and apoptosis caused by HMGB1 and its translocation.

20.
Front Chem ; 9: 707908, 2021.
Article En | MEDLINE | ID: mdl-34881223

Biomass, the only globally available, renewable feedstock of organic carbon, is considered a viable alternative to fossil fuels. It can be efficiently utilized to produce various building blocks in accordance with green and sustainable chemistry principles. In this review, recent progress, such as the transformation of carbohydrates (C5 or C6 sugar, inulin, and cellulose) and their derivatives (furfural, hydroxymethylfurfural) into significant platform chemicals over polyoxometalates, zeolites, non-noble metals, and ionic liquids in single or multiphase, is evaluated.

...