Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(1): 1874-1884, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34937333

RESUMEN

A flexible strain sensor is of significant importance in wearable electronics since it can help monitor the physical signals from the human body. Among various strain sensors, the polyurethane (PU)-based ones have received widespread attention owing to their excellent toughness, large working range, and nice gas permeability. However, the hydrophobicity of these sensors is not good enough, which may affect their use life and sensitivity. In this work, a high-performance strain sensor composed of PU, reduced graphene oxide (rGO), polydopamine (PDA), and 1H,1H,2H,2H-perfluorodecane-thiol (PFDT) was designed and prepared. The results revealed that this PU/rGO/PDA/PFDT device possessed good superhydrophobicity with a water contact angle of 153.3°, a wide working strain range of 590%, and an outstanding gauge factor as high as 221 simultaneously. Because of these above advantages, the sensor worked effectively in detecting both subtle and large human movements (such as joint motion, finger motion, and vocal cord vibration) even in a high humidity environment. This strain sensor with high sensitivity, wide working range, and suitable modulus may have great potential in the field of flexible and wearable electronics in the near future.


Asunto(s)
Materiales Biocompatibles/química , Monitoreo Fisiológico , Dispositivos Electrónicos Vestibles , Diseño de Equipo , Fluorocarburos/química , Grafito/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Indoles/química , Ensayo de Materiales , Polímeros/química , Compuestos de Sulfhidrilo/química
2.
Materials (Basel) ; 10(3)2017 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-28772607

RESUMEN

A series of novel polyurethanes containing cross-linked siloxane in the side chain (SPU) were successfully synthesized through a sol-gel process. The SPU was composed of 0%-20% N-(n-butyl)-3-aminopropyltriethoxysilane (HDI-T) modified hexamethylene diisocynate homopolymer. The effects of HDI-T content on both the structure and properties of SPU were investigated by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), mechanical properties tests, gel content test, water contact angle measurement and water absorption test. FT-IR, XPS and XRD results confirmed the successful incorporation of HDI-T onto polyurethanes and the formation of Si-O-Si. The surface roughness and the Si content of SPU enhanced with the increase of HDI-T content. Both crystallization and melting temperature shifted to a lower point after the incorporation of HDI-T. The hydrophobicity, tensile strength, Young's modulus and pencil hardness overall increased with the increasing of HDI-T content, whereas the thermal stability and the elongation at break of SPU slightly decreased.

3.
Materials (Basel) ; 10(7)2017 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-28773054

RESUMEN

To understand the role of molecular structure on the crystallization behavior of copolyester in thermoplastic poly(ether ester) elastomers (TPEEs), series of poly(butylene-co-1,4-cyclohexanedimethylene terephthalate) (P(BT-co-CT))-b-poly(tetramethylene glycol) (PTMG) are synthesized through molten polycondensation process. The effects of poly(cyclohexanedimethylene terephthalate) (PCT) content on the copolymer are investigated by Fourier transform infrared spectroscopy (FT-IR), ¹H and 13C nuclear magnetic resonance (NMR), gel permeation chromatographs (GPC), wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), mechanical, and visible light transmittance tests. FT-IR and NMR results confirm the incorporation of PCT onto the copolymer. WAXD and DSC indicate that the crystalline structure of the copolymers changed from α-PBT lattice to trans-PCT lattice when the molar fraction of PCT (MPCT) is above 30%, while both crystallization and melting temperatures reach the minima. An increase in MPCT led to an increase in the number sequence length of PCT, the thermal stability and the visible light transmittance of the copolymer, but to a slight decrease in tensile strength and elastic modulus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...