Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Hum Brain Mapp ; 45(7): e26692, 2024 May.
Article En | MEDLINE | ID: mdl-38712767

In neuroimaging studies, combining data collected from multiple study sites or scanners is becoming common to increase the reproducibility of scientific discoveries. At the same time, unwanted variations arise by using different scanners (inter-scanner biases), which need to be corrected before downstream analyses to facilitate replicable research and prevent spurious findings. While statistical harmonization methods such as ComBat have become popular in mitigating inter-scanner biases in neuroimaging, recent methodological advances have shown that harmonizing heterogeneous covariances results in higher data quality. In vertex-level cortical thickness data, heterogeneity in spatial autocorrelation is a critical factor that affects covariance heterogeneity. Our work proposes a new statistical harmonization method called spatial autocorrelation normalization (SAN) that preserves homogeneous covariance vertex-level cortical thickness data across different scanners. We use an explicit Gaussian process to characterize scanner-invariant and scanner-specific variations to reconstruct spatially homogeneous data across scanners. SAN is computationally feasible, and it easily allows the integration of existing harmonization methods. We demonstrate the utility of the proposed method using cortical thickness data from the Social Processes Initiative in the Neurobiology of the Schizophrenia(s) (SPINS) study. SAN is publicly available as an R package.


Cerebral Cortex , Magnetic Resonance Imaging , Schizophrenia , Humans , Magnetic Resonance Imaging/standards , Magnetic Resonance Imaging/methods , Schizophrenia/diagnostic imaging , Schizophrenia/pathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/anatomy & histology , Neuroimaging/methods , Neuroimaging/standards , Image Processing, Computer-Assisted/methods , Image Processing, Computer-Assisted/standards , Male , Female , Adult , Normal Distribution , Brain Cortical Thickness
2.
bioRxiv ; 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38105933

In neuroimaging studies, combining data collected from multiple study sites or scanners is becoming common to increase the reproducibility of scientific discoveries. At the same time, unwanted variations arise by using different scanners (inter-scanner biases), which need to be corrected before downstream analyses to facilitate replicable research and prevent spurious findings. While statistical harmonization methods such as ComBat have become popular in mitigating inter-scanner biases in neuroimaging, recent methodological advances have shown that harmonizing heterogeneous covariances results in higher data quality. In vertex-level cortical thickness data, heterogeneity in spatial autocorrelation is a critical factor that affects covariance heterogeneity. Our work proposes a new statistical harmonization method called SAN (Spatial Autocorrelation Normalization) that preserves homogeneous covariance vertex-level cortical thickness data across different scanners. We use an explicit Gaussian process to characterize scanner-invariant and scanner-specific variations to reconstruct spatially homogeneous data across scanners. SAN is computationally feasible, and it easily allows the integration of existing harmonization methods. We demonstrate the utility of the proposed method using cortical thickness data from the Social Processes Initiative in the Neurobiology of the Schizophrenia(s) (SPINS) study. SAN is publicly available as an R package.

3.
Imaging Neurosci (Camb) ; 1: 1-16, 2023 Aug 01.
Article En | MEDLINE | ID: mdl-37719839

Combining data collected from multiple study sites is becoming common and is advantageous to researchers to increase the generalizability and replicability of scientific discoveries. However, at the same time, unwanted inter-scanner biases are commonly observed across neuroimaging data collected from multiple study sites or scanners, rendering difficulties in integrating such data to obtain reliable findings. While several methods for handling such unwanted variations have been proposed, most of them use univariate approaches that could be too simple to capture all sources of scanner-specific variations. To address these challenges, we propose a novel multivariate harmonization method called RELIEF (REmoval of Latent Inter-scanner Effects through Factorization) for estimating and removing both explicit and latent scanner effects. Our method is the first approach to introduce the simultaneous dimension reduction and factorization of interlinked matrices to a data harmonization context, which provides a new direction in methodological research for correcting inter-scanner biases. Analyzing diffusion tensor imaging (DTI) data from the Social Processes Initiative in Neurobiology of the Schizophrenia (SPINS) study and conducting extensive simulation studies, we show that RELIEF outperforms existing harmonization methods in mitigating inter-scanner biases and retaining biological associations of interest to increase statistical power. RELIEF is publicly available as an R package.

4.
Neural Comput Appl ; 34(8): 6377-6396, 2022 Apr.
Article En | MEDLINE | ID: mdl-35936508

Many modern techniques for analyzing time-varying longitudinal data rely on parametric models to interrogate the time-courses of univariate or multivariate processes. Typical analytic objectives include utilizing retrospective observations to model current trends, predict prospective trajectories, derive categorical traits, or characterize various relations. Among the many mathematical, statistical, and computational strategies for analyzing longitudinal data, tensor-based linear modeling offers a unique algebraic approach that encodes different characterizations of the observed measurements in terms of state indices. This paper introduces a new method of representing, modeling, and analyzing repeated-measurement longitudinal data using a generalization of event order from the positive reals to the complex plane. Using complex time (kime), we transform classical time-varying signals as 2D manifolds called kimesurfaces. This kime characterization extends the classical protocols for analyzing time-series data and offers unique opportunities to design novel inference, prediction, classification, and regression techniques based on the corresponding kimesurface manifolds. We define complex time and illustrate alternative time-series to kimesurface transformations. Using the Laplace transform and its inverse, we demonstrate the bijective mapping between time-series and kimesurfaces. A proposed general tensor regression based linear model is validated using functional Magnetic Resonance Imaging (fMRI) data. This kimesurface representation method can be used with a wide range of machine learning algorithms, artificial intelligence tools, analytical approaches, and inferential techniques to interrogate multivariate, complex-domain, and complex-range longitudinal processes.

...