Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 43
1.
BMC Infect Dis ; 24(1): 308, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38481149

BACKGROUND: Scedosporium apiospermum (S. apiospermum) belongs to the asexual form of Pseudallescheria boydii and is widely distributed in various environments. S. apiospermum is the most common cause of pulmonary infection; however, invasive diseases are usually limited to patients with immunodeficiency. CASE PRESENTATION: A 54-year-old Chinese non-smoker female patient with normal lung structure and function was diagnosed with pulmonary S. apiospermum infection by metagenomic next-generation sequencing (mNGS) of bronchoalveolar lavage fluid (BALF). The patient was admitted to the hospital after experiencing intermittent right chest pain for 8 months. Chest computed tomography revealed a thick-walled cavity in the upper lobe of the right lung with mild soft tissue enhancement. S. apiospermum was detected by the mNGS of BALF, and DNA sequencing reads were 426. Following treatment with voriconazole (300 mg q12h d1; 200 mg q12h d2-d20), there was no improvement in chest imaging, and a thoracoscopic right upper lobectomy was performed. Postoperative pathological results observed silver staining and PAS-positive oval spores in the alveolar septum, bronchiolar wall, and alveolar cavity, and fungal infection was considered. The patient's symptoms improved; the patient continued voriconazole for 2 months after surgery. No signs of radiological progression or recurrence were observed at the 10-month postoperative follow-up. CONCLUSION: This case report indicates that S. apiospermum infection can occur in immunocompetent individuals and that the mNGS of BALF can assist in its diagnosis and treatment. Additionally, the combined therapy of antifungal drugs and surgery exhibits a potent effect on the disease.


Pneumonia , Scedosporium , Humans , Female , Middle Aged , Scedosporium/genetics , Voriconazole/therapeutic use , Bronchoalveolar Lavage Fluid/microbiology , Antifungal Agents/therapeutic use , Lung/diagnostic imaging , Pneumonia/drug therapy , High-Throughput Nucleotide Sequencing
3.
Cancer Res ; 83(22): 3739-3752, 2023 11 15.
Article En | MEDLINE | ID: mdl-37695315

Pancreatic cancer is a highly lethal disease with obesity as one of the risk factors. Oncogenic KRAS mutations are prevalent in pancreatic cancer and can rewire lipid metabolism by altering fatty acid (FA) uptake, FA oxidation (FAO), and lipogenesis. Identification of the underlying mechanisms could lead to improved therapeutic strategies for treating KRAS-mutant pancreatic cancer. Here, we observed that KRASG12D upregulated the expression of SLC25A1, a citrate transporter that is a key metabolic switch to mediate FAO, fatty acid synthesis, glycolysis, and gluconeogenesis. In genetically engineered mouse models and human pancreatic cancer cells, KRASG12D induced SLC25A1 upregulation via GLI1, which directly stimulated SLC25A1 transcription by binding its promoter. The enhanced expression of SLC25A1 increased levels of cytosolic citrate, FAs, and key enzymes in lipid metabolism. In addition, a high-fat diet (HFD) further stimulated the KRASG12D-GLI1-SLC25A1 axis and the associated increase in citrate and FAs. Pharmacologic inhibition of SLC25A1 and upstream GLI1 significantly suppressed pancreatic tumorigenesis in KrasG12D/+ mice on a HFD. These results reveal a KRASG12D-GLI1-SLC25A1 regulatory axis, with SLC25A1 as an important node that regulates lipid metabolism during pancreatic tumorigenesis, thus indicating an intervention strategy for oncogenic KRAS-driven pancreatic cancer. SIGNIFICANCE: Upregulation of SLC25A1 induced by KRASG12D-GLI1 signaling rewires lipid metabolism and is exacerbated by HFD to drive the development of pancreatic cancer, representing a targetable metabolic axis to suppress pancreatic tumorigenesis.


Lipid Metabolism , Pancreatic Neoplasms , Animals , Humans , Mice , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Citrates , Fatty Acids , Lipid Metabolism/genetics , Mice, Transgenic , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Zinc Finger Protein GLI1/metabolism
4.
J Neuroimmunol ; 382: 578166, 2023 09 15.
Article En | MEDLINE | ID: mdl-37536051

Shikonin is an anti-inflammatory natural herbal drug extracted from Lithospermum erythrorhizon and its therapeutic effect on neuropsychiatric systemic lupus erythematosus (NPSLE) is yet unknown. In our study, Shikonin significantly reversed the cognitive impairment and alleviated the brain tissue damage in NPSLE mice. The permeability of blood-brain barrier was also verified to be repaired in Shikonin-treated NPSLE mice. In particular, we found that Shikonin alleviated neuroinflammation through inhibiting ß-catenin signaling pathway, thereby depressing the activation of microglia and the loss of neuronal synapses. Overall, Shikonin may be a promising candidate drug for NPSLE through diminishing neuroinflammation and repairing neuron damage.


Cognitive Dysfunction , Lupus Erythematosus, Systemic , Lupus Vasculitis, Central Nervous System , Animals , Mice , Neuroinflammatory Diseases , Cognitive Dysfunction/drug therapy , Neurons , Anti-Inflammatory Agents
5.
Phytother Res ; 2023 May 08.
Article En | MEDLINE | ID: mdl-37157900

Most human papillomavirus (HPV) types, including HPV16 and HPV18, are closely related to the occurrence of cervical cancer, predominantly through the action of viral oncoproteins E6 and E7. Curcumin, the active ingredient of the turmeric plant, has been gaining attention over the past two decades as an antioxidant, anti-inflammatory, and anticancer agent. In the present study, the HPV-positive cervical cancer cells HeLa and CaSki were treated with curcumin, and the results showed that curcumin has a dose-dependent and time-dependent inhibitory effect on cell viability. In addition, apoptosis induction was further quantitatively confirmed through flow cytometric analysis. Furthermore, the influence of different concentrations of curcumin on the mitochondrial membrane potential was evaluated through JC-1 staining and found to dramatically decrease the membrane potential in treated HeLa and CaSki cells, suggesting the critical role of the mitochondrial pathway in their apoptosis-inducing effect. This study also demonstrated the wound-healing potential of curcumin, and the results of transwell assays showed that curcumin treatment inhibited HeLa and CaSki cell invasion and migration in a dose-dependent manner compared with the control treatment. Curcumin also downregulated the expression of Bcl-2, N-cadherin, and Vimentin and upregulated the expression of Bax, C-caspase-3, and E-cadherin in both cell lines. Further research showed that curcumin also selectively inhibited the expression of the viral oncoproteins E6 and E7, as demonstrated by western blot analysis; moreover, the downregulation of E6 was more significant than that of E7. Our research also showed that coculture with cells infected with siE6 lentivirus (siE6 cells) can inhibit the proliferation, invasion, and metastasis of HPV-positive cells. While the siE6 cells were also treated with curcumin, the effect of curcumin monotherapy was offset. In summary, our research shows that curcumin regulates the apoptosis, migration, and invasion of cervical cancer cells, and the mechanism may be related to its ability to downregulate E6. This study provides a foundation for future research on the prevention and treatment of cervical cancer.

7.
iScience ; 26(1): 105889, 2023 Jan 20.
Article En | MEDLINE | ID: mdl-36691621

Generation of induced pluripotent stem cells (iPSCs) is inefficient and stochastic. The underlying causes for these deficiencies are elusive. Here, we showed that the reprogramming factors (OCT4, SOX2, and KLF4, collectively OSK) elicit dramatic reprogramming stress even without the pro-oncogene MYC including massive transcriptional turbulence, massive and random deregulation of stress-response genes, cell cycle impairment, downregulation of mitotic genes, illegitimate reprogramming, and cytotoxicity. The conserved dominant-negative (DN) peptides of the three ubiquitous human bromodomain and extraterminal (BET) proteins enhanced iPSC reprogramming and mitigated all the reprogramming stresses mentioned above. The concept of reprogramming stress developed here affords an alternative avenue to understanding and improving iPSC reprogramming. These DN BET fragments target a similar set of the genes as the BET chemical inhibitors do, indicating a distinct approach to targeting BET proteins.

8.
J Food Biochem ; 46(12): e14430, 2022 12.
Article En | MEDLINE | ID: mdl-36165435

The theory of medicine and food homology has a long history in China. Numerous traditional Chinese medicinal could be used as both medicine and food. Many flower medicinal materials also belong to the homology of medicine and food, such as Chrysanthemum morifolium, Lonicera japonica, Crocus sativus, and Lonicera macranthoides. They mainly contain flavonoids, organic acids, terpenoids, and other active ingredients, which have a variety of medicinal values, including anti-inflammatory, anti-tumor, and antioxidant. There are many formulations and functional foods containing these plants in Chinese medicine, which have a variety of nutritional and health effects on the human body. In this review, 10 widely used flowers were selected to review their pharmacological activities, prevention and treatment of related diseases and underlying mechanisms, and discussed the current limitations and future development prospects, hoping to provide references for the research on the development and utilization of natural medical flowers. PRACTICAL APPLICATIONS: The "homology of medicine and food" flowers have a wide range of uses and are of great research value. In this paper, we introduce 10 "homology of medicine and food" flowers. Their active ingredients, pharmacological activities, and treatments for related diseases are reviewed, and the limitations and development prospects of the "homology of medicine and food" flowers are discussed. It is hoped that this will contribute to the development of the food and pharmacological fields.


Drugs, Chinese Herbal , Flowers , Humans , Flavonoids , Drugs, Chinese Herbal/pharmacology , Antioxidants , Terpenes
9.
Chem Biodivers ; 19(9): e202100961, 2022 Sep.
Article En | MEDLINE | ID: mdl-35979749

Herba Patriniae (HP) is widely used as a medicinal and edible material in China. Besides food value, HP attracts more attention due to its medicinal potential. Patrinia villosa Juss. (PV) and Patrinia scabiosaefolia Fisch. (PS) are the two species origins of HP. These two of HP show different effects on cell proliferation, migration, angiogenesis and anti-diabetic. As we have previously reported, PV and PS show significant differences on their anti-inflammatory ability in the same experimental model. Comparing the ingredient profiles of two different sources will not only facilitate the understanding of their medicinal effects, but also help the development and research of new activities. However, still now, there is no systematic and detailed study to compare the components of PV and PS. In present study, ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was employed to achieve a high-throughput qualitative and thorough analysis of the chemical composition spectrum of HP. A total of 164 compounds were identified, among these compounds, 127 compounds were identified from PV, and 107 compounds were identified from PS. Most of the chemical components was discovered for the first time. Flavonoids, saponins, terpenoids and organic acids, as the main ingredients in PV and PS were 45.45 %vs 28.46 %, 12.61 % vs. 32.09 %, 14.33 % vs. 22.38 % and 14.58 % vs. 6.79 %, respectively. Flavonoids are the main components of PV, while PS is rich in saponins. PV and PS were classified into two groups by principal component analysis (PCA) and screened out the main molecular differences responsible by orthogonal partial least squares discriminant analysis (OPLS-DA). All the results will be a guide for the quality control, functional activity research, or better clinic use based on the ingredients profile between these two species. Besides, this first study on ingredients profile of two species origins will be beneficial for potential and best resources utilization of both PV and PS.


Patrinia , Saponins , Anti-Inflammatory Agents/pharmacology , Chromatography, High Pressure Liquid/methods , Discriminant Analysis , Flavonoids/chemistry , Least-Squares Analysis , Patrinia/chemistry , Tandem Mass Spectrometry/methods , Terpenes
10.
ACS Appl Mater Interfaces ; 14(28): 32706-32718, 2022 Jul 20.
Article En | MEDLINE | ID: mdl-35817757

A great number of anions exist in biological systems and natural environment, and are highly relevant to human health and environment quality. It is necessary to develop simple and effective sensors to differentiate and identify those similar or different anions. Here, an imidazolium-modified bispyrene-based fluorescent amphiphilic probe DPyDIM was synthesized and its aggregates were applied to detect and discriminate various anions. The fluorescent aggregates exhibit ratiometric responses to different types of anions. Moreover, the ratiometric responses to different types of anions are featured with multiple-wavelength cross-reactivity. The collection of fluorescence variation at four typical wavelengths can generate distinct recognition patterns to specific anions. The heat map and principal component analysis results verify that this single fluorescent sensor system can effectively and sensitively identify 16 kinds of anions that belong to phosphorus-containing, sulfur-containing anions, and anionic surfactants. The cross-reactive sensing of the amphiphilic fluorescent aggregates was attributed to the different influences on the aggregation behaviors of the probes by different anions. The present work provides a promising strategy for effective detection and discrimination of multiple anions by employing dynamic fluorescent aggregates as a sensing platform.


Fluorescent Dyes , Water , Anions , Fluorescent Dyes/analysis , Humans , Spectrometry, Fluorescence , Surface-Active Agents/analysis
11.
J Food Biochem ; 46(2): e14072, 2022 02.
Article En | MEDLINE | ID: mdl-34997623

Gouty arthritis, one of the most severe and common forms of arthritis, is characterized by monosodium urate crystal deposition in joints and surrounding tissues. Epidemiological evidence indicates that gouty arthritis incidence is sharply rising globally. Polyphenols are found in many foods and are secondary metabolites in plant foods. The anti-inflammatory and antioxidant effects of food polyphenols have been extensively studied in many inflammatory chronic diseases. Research has suggested that many food polyphenols have excellent anti-gouty arthritis effects. The mechanisms mainly include (a) inhibiting xanthine oxidase activity; (b) reducing the levels of inflammatory cytokines and chemokines; (c) inhibiting the activation of signaling pathways and the NLRP3 inflammasome; and (d) reducing oxidative stress. This paper reviews the research progress and pathogenesis of gouty arthritis and introduces the mechanisms of food polyphenols in treating gouty arthritis, which aims to explore the potential of functional foods in the treatment of gouty arthritis. PRACTICAL APPLICATIONS: The incidence rate of gouty arthritis has increased sharply worldwide, which has seriously affected people's quality of life. According to the current research progress, food polyphenols alleviate gouty arthritis through anti-inflammatory and antioxidant effects. This paper reviews the research progress and molecular pathogenesis of gouty arthritis and introduces the mechanisms of food-derived polyphenols in the treatment of gouty arthritis, which is helpful to the prevention and treatment of gouty arthritis.


Arthritis, Gouty , Polyphenols , Arthritis, Gouty/drug therapy , Arthritis, Gouty/metabolism , Arthritis, Gouty/pathology , Eating , Humans , NLR Family, Pyrin Domain-Containing 3 Protein , Quality of Life , Uric Acid
12.
Planta Med ; 88(14): 1311-1324, 2022 Nov.
Article En | MEDLINE | ID: mdl-34911135

Clinical studies have shown that insomnia and anxiety are usually accompanied by cardiovascular dysfunction. In traditional Chinese medicine, Schisandra chinensis (SC) and wine processed Schisandra chinensis (WSC) are mainly used for the treatment of dysphoria, palpitation and insomnia. However, little attention was paid to its mechanism. In this study, we monitored the effect of SC and WSC on the nervous system and cardiovascular system of free-moving rats in the real-time. Our results show that SC and WSC can alleviate cardiovascular dysfunction while promoting sleep, and we further explored their potential mechanisms. HPLC-QTOF-MS was used for the quality control of chemical components in SC and WSC. Data sciences international (DSI) physiological telemetry system was applied to collect the electroencephalogram (EEG), electrocardiogram (ECG) and other parameters of free-moving rats to understand the effects of long-term intake of SC and WSC on rats. The content of Cortisol (CORT), neurotransmitters and amino acids in rat pituitary and hypothalamus were analyzed by UPLC-MS to determine the activity of HPA axis. The expression of melatonin receptor MT1 was analyzed by immunofluorescence technique. Our results suggested that SC and WSC may play the role of promoting sleep by increasing the expression level of melatonin receptor MT1 in hypothalamus, and modulate the activity of HPA axis by regulating the levels of the related neurotransmitters and amino acid, so as to improve the abnormal cardiovascular system of rats. This study may provide theoretical support for explicating the advantages of SC and other phytomedicines in the treatment of insomnia.


Schisandra , Sleep Initiation and Maintenance Disorders , Wine , Animals , Rats , Schisandra/chemistry , Schisandra/metabolism , Sleep Initiation and Maintenance Disorders/drug therapy , Receptors, Melatonin/metabolism , Chromatography, Liquid , Hypothalamo-Hypophyseal System/metabolism , Tandem Mass Spectrometry/methods , Rats, Sprague-Dawley , Pituitary-Adrenal System/metabolism , Neurotransmitter Agents/metabolism , Amino Acids , Sleep
13.
Front Oncol ; 11: 673154, 2021.
Article En | MEDLINE | ID: mdl-34113570

GLI1 is a transcriptional effector at the terminal end of the Hedgehog signaling (Hh) pathway and is tightly regulated during embryonic development and tissue patterning/differentiation. GLI1 has low-level expression in differentiated tissues, however, in certain cancers, aberrant activation of GLI1 has been linked to the promotion of numerous hallmarks of cancer, such as proliferation, survival, angiogenesis, metastasis, metabolic rewiring, and chemotherapeutic resistance. All of these are driven, in part, by GLI1's role in regulating cell cycle, DNA replication and DNA damage repair processes. The consequences of GLI1 oncogenic activity, specifically the activity surrounding DNA damage repair proteins, such as NBS1, and cell cycle proteins, such as CDK1, can be linked to tumorigenesis and chemoresistance. Therefore, understanding the underlying mechanisms driving GLI1 dysregulation can provide prognostic and diagnostic biomarkers to identify a patient population that would derive therapeutic benefit from either direct inhibition of GLI1 or targeted therapy towards proteins downstream of GLI1 regulation.

15.
Methods Mol Biol ; 2239: 235-249, 2021.
Article En | MEDLINE | ID: mdl-33226623

The pluripotency of human induced pluripotent stem cells (HiPSCs) cannot be tested strictly in a similar way as we can do for the mouse ones because of ethical restrictions. One common and initial approach to prove the pluripotency of an established human iPSC line is to demonstrate expression of a set of established surface and intracellular pluripotency markers. This chapter provides procedures of immunocytochemistry of the established HiPSC lines for a set of the signature intracellular pluripotency proteins, OCT4, SOX2, NANOG, and LIN28. We also describe cell phenotyping by flow cytometry for the five established human pluripotency surface markers, SSEA3, SSEA4, TRA-1-60, TRA-1-81, and TRA2-49 (ALP). Numbers of ALP+ and TRA-1-60+ colonies are the most widely used parameters for evaluation of human iPSC reprogramming efficiency. Therefore, this chapter also provides detailed steps for substrate colorimetric reaction of the ALP activity, as well as the TRA-1-60 staining, of the iPSC colonies in the reprogramming population.


Cellular Reprogramming , Immunophenotyping/methods , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Transcription Factors/metabolism , Alkaline Phosphatase/metabolism , Antigens, Surface/metabolism , Antigens, Tumor-Associated, Carbohydrate/metabolism , Biomarkers/metabolism , Cells, Cultured , Fibroblasts/cytology , Fibroblasts/metabolism , Flow Cytometry , Humans , Nanog Homeobox Protein/metabolism , Octamer Transcription Factor-3/metabolism , Proteoglycans/metabolism , RNA-Binding Proteins/metabolism , SOXB1 Transcription Factors/metabolism , Stage-Specific Embryonic Antigens/metabolism
16.
Front Oncol ; 10: 241, 2020.
Article En | MEDLINE | ID: mdl-32185127

Resistance to radiation and chemotherapy in colorectal cancer (CRC) patients contribute significantly to refractory disease and disease progression. Herein, we provide mechanistic rationale for acquired or inherent chemotherapeutic resistance to the anti-tumor effects of 5-fluorouracil (5-FU) that is linked to oncogenic GLI1 transcription activity and NBS1 overexpression. Patients with high levels of GLI1 also expressed high levels of NBS1. Non-canonical activation of GLI1 is driven through oncogenic pathways in CRC, like the BRAFV600E mutation. GLI1 was identified as a novel regulator of NBS1 and discovered that by knocking down GLI1 levels in vitro, diminished NBS1 expression, increased DNA damage/apoptosis, and re-sensitization of 5-FU resistant cancer to treatment was observed. Furthermore, a novel GLI1 inhibitor, SRI-38832, which exhibited pharmacokinetic properties suitable for in vivo testing, was identified. GLI1 inhibition in a murine BRAFV600E variant xenograft model of CRC resulted in the same down-regulation of NBS1 observed in vitro as well as significant reduction of tumor growth/burden. GLI1 inhibition could therefore be a therapeutic option for 5-FU resistant and BRAFV600E variant CRC patients.

17.
Oncol Rep ; 42(5): 1893-1903, 2019 Nov.
Article En | MEDLINE | ID: mdl-31485631

Cancer requires aerobic glycolysis to supply the energy required for proliferation. Existing evidence has revealed that blocking glycolysis results in apoptosis of cancer cells. Tanshinone IIA (Tan IIA) is a diterpenoid naphthoquinone found in traditional Chinese medicine, Danshen (Salvia sp.). Tan IIA exhibits potential anticancer activity. However, its effect on cell viability of human cervical cancer cells and its mechanism are unknown. The aim of the present study was to determine the effect of Tan IIA on proliferation and glucose metabolism in cervical cancer cells. Cell viability was measured by MTT assay, apoptosis was determined using flow cytometry and glucose uptake, lactate production, and adenosine triphosphate content were measured to assess glucose metabolism. The expression of apoptosis­associated proteins was detected by western blotting and the antitumor activity of Tan IIA in vivo was evaluated in cervical carcinoma­bearing mice. The results revealed Tan IIA treatment resulted in a considerable reduction in the viability of SiHa cells. Tan IIA decreased the expression of HPV oncogenes E6 and E7, induced apoptosis and also decreased glycolysis by suppressing the activity of the intracellular AKT/mTOR and HIF­1α. In vivo, treatment with Tan IIA resulted in a 72.7% reduction in tumor volume. The present study highlights the potential therapeutic value of Tan IIA, which functions by inducing apoptosis and may be associated with inhibition of glycolysis.


Abietanes/administration & dosage , Antineoplastic Agents, Phytogenic/administration & dosage , Glucose/metabolism , Uterine Cervical Neoplasms/drug therapy , Abietanes/pharmacology , Adenosine Triphosphate/metabolism , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , HeLa Cells , Humans , Lactic Acid/metabolism , Mice , Signal Transduction/drug effects , Treatment Outcome , Uterine Cervical Neoplasms/metabolism , Xenograft Model Antitumor Assays
18.
J Pharmacol Sci ; 140(3): 211-217, 2019 Jul.
Article En | MEDLINE | ID: mdl-31445828

Human papillomaviruses (HPVs), for instance, HPV 16 and HPV 18, are concerned associated with cervical cancer. Thus, it is essential to suppress HPVs-in HPV-positive cervical cancer for treating cervical cancer. The purpose of this study was to explore the proposed molecular mechanisms, which that underlies the antintumor potential of juglone to treat of HPV-positive on cervical cancer cells. The results showed that juglone suppressed HPV-positive cell growth in a dose- and time-dependent way. In addition, cell invasion and metastasis were also inhibited by juglone. Nevertheless, when pin 1 was knocked down in HPV-positive cells, cell proliferation, invasion and metastasis were reduced. This study was designed to acquire an understanding of the mechanism of invasion and metastasis in HPV-positive cells suppressed by juglone. It provides evidence of the advantageous use of juglone in the future.


Naphthoquinones/pharmacology , Neoplasm Invasiveness/pathology , Neoplasm Metastasis/drug therapy , Papillomavirus Infections/complications , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/virology , Cell Line, Tumor , Cell Proliferation/drug effects , Female , HeLa Cells , Humans , Papillomaviridae/pathogenicity , Papillomavirus Infections/virology , Uterine Cervical Neoplasms/etiology
19.
Nutrients ; 10(4)2018 Apr 20.
Article En | MEDLINE | ID: mdl-29677121

Strychnos alkaloids (SAs) are the main toxic constituents in Semen Strychni, a traditional Chinese medicine, which is known for its fatal neurotoxicity. Hence, the present study was carried out to evaluate the neurotoxicity induced by SAs and the pre-protective effects of the total glucosides of Paeoniae Radix Alba (TGP). An SA brain damage model was firstly established. The neurotoxicity induced by SAs and the pre-protective effects of TGP were confirmed by physical and behavioral testing, biochemical assay, and histological examination. Then, a liquid chromatography-tandem mass spectrometry method was developed and validated to investigate the time-course change and distribution of strychnine and brucine (two main SAs) in the brain after oral SA administration with or without TGP pretreatment. Biochemical analysis results indicated that TGP could ameliorate the oxidative stress status caused by SAs. Time-course change and distribution studies demonstrated that strychnine and brucine were rapidly absorbed into the brain, peaked early at 0.5 h, and were mainly located in the hippocampus and cerebellum. TGP showed a pre-protective effect against neurotoxicity by reducing the absorption of toxic alkaloids into the brain. These findings could provide beneficial information in facilitating future studies of Semen Strychni neurotoxicity and developing herbal medicines to alleviate neurotoxicity in the clinic.


Antioxidants/pharmacology , Brain/drug effects , Glucosides/pharmacology , Neuroprotective Agents/pharmacology , Neurotoxicity Syndromes/prevention & control , Oxidative Stress/drug effects , Paeonia , Plant Extracts/pharmacology , Strychnine/analogs & derivatives , Strychnine/toxicity , Strychnos/toxicity , Administration, Oral , Animals , Antioxidants/isolation & purification , Behavior, Animal/drug effects , Brain/metabolism , Brain/pathology , Brain/physiopathology , Chromatography, High Pressure Liquid , Glucosides/isolation & purification , Male , Motor Activity/drug effects , Neuroprotective Agents/isolation & purification , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/physiopathology , Paeonia/chemistry , Permeability , Phytotherapy , Plant Extracts/isolation & purification , Plants, Medicinal , Rats, Sprague-Dawley , Strychnine/administration & dosage , Strychnine/metabolism , Tandem Mass Spectrometry , Time Factors , Tissue Distribution
20.
Metab Brain Dis ; 32(6): 2033-2044, 2017 Dec.
Article En | MEDLINE | ID: mdl-28852923

In this study, we investigated the protective effect of total glycosides of paeony against Semen Strychni-induced neurotoxicity and discussed some probably mechanisms. Levels of estrone, estradiol, estriol and growth hormone in male rats' serum were determined by ELISA, levels of ATP and substances associated with energy metabolism in rats' brain were determined by HPLC and levels of progesterone was determined by a UPLC-MS/MS method. The results showed that neurotoxicity induced by Semen Strychni could cause a significant decrease (p < 0.05, compare to the blank group) in secretion of estrogens and GH and disorder brain energy metabolism at the same time. While, rats with total glycosides of paeony pre-protection (orally administrated with total glycosides of paeony for 15 days before administrating Semen Strychni extract) showed a much better condition in the secretion of hormones and brain energy metabolism, and showed no significant changes in most of those associated substances when comparing to the blank group. Our study indicated that total glycosides of paeony have neuroprotective effects on Semen Strychni-induced neurotoxicity. It could recover the disordered hormone secretion and improve the brain energy metabolism. Total glycosides of paeony is potential to be further used in clinic to protect against neurotoxicity induced by other reasons.


Brain/drug effects , Drugs, Chinese Herbal/pharmacology , Energy Metabolism/drug effects , Neuroprotective Agents/pharmacology , Paeonia , Plant Extracts/pharmacology , Strychnos nux-vomica/toxicity , Adenosine Diphosphate/metabolism , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Brain/metabolism , Estradiol/blood , Estriol/blood , Estrone/blood , Growth Hormone/blood , Hypoxanthine/metabolism , Male , Rats , Rats, Sprague-Dawley , Xanthine/metabolism
...