Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Adv Biol (Weinh) ; 8(6): e2300409, 2024 Jun.
Article En | MEDLINE | ID: mdl-38596839

Schizophrenia (SCZ) is a complex neuropsychiatric disorder widely recognized for its impaired bioenergy utilization. The astrocyte-neuron lactate shuttle (ANLS) plays a critical role in brain energy supply. Recent studies have revealed abnormal lactate metabolism in SCZ, which is associated with mitochondrial dysfunction, tissue hypoxia, gastric acid retention, oxidative stress, neuroinflammation, abnormal brain iron metabolism, cerebral white matter hypermetabolic activity, and genetic susceptibility. Furthermore, astrocytes, neurons, and glutamate abnormalities are prevalent in SCZ with abnormal lactate metabolism, which are essential components for maintaining ANLS in the brain. Therefore, an in-depth study of the pathophysiological mechanisms of ANLS in SCZ with abnormal lactate metabolism will contribute to a better understanding of the pathogenesis of SCZ and provide new ideas and approaches for the diagnosis and treatment of SCZ.


Astrocytes , Lactic Acid , Neurons , Schizophrenia , Astrocytes/metabolism , Astrocytes/pathology , Humans , Schizophrenia/metabolism , Schizophrenia/pathology , Neurons/metabolism , Neurons/pathology , Lactic Acid/metabolism , Animals , Energy Metabolism , Brain/metabolism , Brain/pathology
2.
Neurotherapeutics ; 21(2): e00318, 2024 Mar.
Article En | MEDLINE | ID: mdl-38233267

Signal transduction at the neuromuscular junction (NMJ) is compromised in a diverse array of diseases including congenital myasthenic syndromes (CMS). Germline mutations in CHRNE encoding the acetylcholine receptor (AChR) ε subunit are the most common cause of CMS. An active form of vitamin D, calcitriol, binds to vitamin D receptor (VDR) and regulates gene expressions. We found that calcitriol enhanced MuSK phosphorylation, AChR clustering, and myotube twitching in co-cultured C2C12 myotubes and NSC34 motor neurons. RNA-seq analysis of co-cultured cells showed that calcitriol increased the expressions of Rspo2, Rapsn, and Dusp6. ChIP-seq of VDR revealed that VDR binds to a region approximately 15 â€‹kbp upstream to Rspo2. Biallelic deletion of the VDR-binding site of Rspo2 by CRISPR/Cas9 in C2C12 myoblasts/myotubes nullified the calcitriol-mediated induction of Rspo2 expression and MuSK phosphorylation. We generated Chrne knockout (Chrne KO) mouse by CRISPR/Cas9. Intraperitoneal administration of calcitriol markedly increased the number of AChR clusters, as well as the area, the intensity, and the number of synaptophysin-positive synaptic vesicles, in Chrne KO mice. In addition, calcitriol ameliorated motor deficits and prolonged survival of Chrne KO mice. In the skeletal muscle, calcitriol increased the gene expressions of Rspo2, Rapsn, and Dusp6. We propose that calcitriol is a potential therapeutic agent for CMS and other diseases with defective neuromuscular signal transmission.


Myasthenic Syndromes, Congenital , Animals , Mice , Myasthenic Syndromes, Congenital/drug therapy , Myasthenic Syndromes, Congenital/genetics , Myasthenic Syndromes, Congenital/metabolism , Calcitriol/metabolism , Neuromuscular Junction/metabolism , Receptors, Cholinergic/genetics , Receptors, Cholinergic/metabolism , Motor Neurons/metabolism
3.
Ecotoxicol Environ Saf ; 264: 115482, 2023 Oct 01.
Article En | MEDLINE | ID: mdl-37717354

The pervasive weak electromagnetic fields (EMF) inundate the industrialized society, but the biological effects of EMF as weak as 10 µT have been scarcely analyzed. Heat shock proteins (HSPs) are molecular chaperones that mediate a sequential stress response. HSP70 and HSP90 provide cells under undesirable situations with either assisting covalent folding of proteins or degrading improperly folded proteins in an ATP-dependent manner. Here we examined the effect of extremely low-frequency (ELF)-EMF on AML12 and HEK293 cells. Although the protein expression levels of HSP70 and HSP90 were reduced after an exposure to ELF-EMF for 3 h, acetylations of HSP70 and HSP90 were increased, which was followed by an enhanced binding affinities of HSP70 and HSP90 for HSP70/HSP90-organizing protein (HOP/STIP1). After 3 h exposure to ELF-EMF, the amount of mitochondria was reduced but the ATP level and the maximal mitochondrial oxygen consumption were increased, which was followed by the reduced protein aggregates and the increased cell viability. Thus, ELF-EMF exposure for 3 h activated acetylation of HSPs to enhance protein folding, which was returned to the basal level at 12 h. The proteostatic effects of ELF-EMF will be able to be applied to treat pathological states in humans.


Electromagnetic Fields , Heat-Shock Proteins , Humans , Acetylation , Electromagnetic Fields/adverse effects , HEK293 Cells , Protein Folding , HSP70 Heat-Shock Proteins , HSP90 Heat-Shock Proteins , Adenosine Triphosphate
4.
Hum Mol Genet ; 32(9): 1511-1523, 2023 04 20.
Article En | MEDLINE | ID: mdl-36579833

At the neuromuscular junction, the downstream of tyrosine kinase 7 (DOK7) enhances the phosphorylation of muscle-specific kinase (MuSK) and induces clustering of acetylcholine receptors (AChRs). We identified a patient with congenital myasthenic syndrome (CMS) with two heteroallelic mutations in DOK7, c.653-1G>C in intron 5 and c.190G>A predicting p.G64R in the pleckstrin homology domain. iPS cells established from the patient (CMS-iPSCs) showed that c.653-1G>C caused in-frame skipping of exon 6 (120 bp) and frame-shifting activation of a cryptic splice site deleting seven nucleotides in exon 6. p.G64R reduced the expression of DOK7 to 10% of wild-type DOK7, and markedly compromised AChR clustering in transfected C2C12 myotubes. p.G64R-DOK7 made insoluble aggresomes at the juxtanuclear region in transfected C2C12 myoblasts and COS7 cells, which were co-localized with molecules in the autophagosome system. A protease inhibitor MG132 reduced the soluble fraction of p.G64R-DOK7 and enhanced the aggresome formation of p.G64R-DOK7. To match the differentiation levels between patient-derived and control induced pluripotent stem cells (iPSCs), we corrected c.190G>A (p.G64R) by CRISPR/Cas9 to make isogenic iPSCs while retaining c.653-1G>C (CMS-iPSCsCas9). Myogenically differentiated CMS-iPSCs showed juxtanuclear aggregates of DOK7, reduced expression of endogenous DOK7 and reduced phosphorylation of endogenous MuSK. Another mutation, p.T77M, also made aggresome to a less extent compared with p.G64R in transfected COS7 cells. These results suggest that p.G64R-DOK7 makes aggresomes in cultured cells and is likely to compromise MuSK phosphorylation for AChR clustering.


Induced Pluripotent Stem Cells , Myasthenic Syndromes, Congenital , Humans , Cells, Cultured , Induced Pluripotent Stem Cells/metabolism , Muscle Proteins/genetics , Mutation , Myasthenic Syndromes, Congenital/genetics , Myasthenic Syndromes, Congenital/metabolism , Phosphorylation , Receptors, Cholinergic/genetics , Receptors, Cholinergic/metabolism
5.
Comput Math Methods Med ; 2021: 1498431, 2021.
Article En | MEDLINE | ID: mdl-34899963

OBJECTIVE: This study investigated the nature of shared transcriptomic alterations in PBMs from periodontitis and atherosclerosis to unravel molecular mechanisms underpinning their association. METHODS: Gene expression data from PBMs from patients with periodontitis and those with atherosclerosis were each downloaded from the GEO database. Differentially expressed genes (DEGs) in periodontitis and atherosclerosis were identified through differential gene expression analysis. The disease-related known genes related to periodontitis and atherosclerosis each were downloaded from the DisGeNET database. A Venn diagram was constructed to identify crosstalk genes from four categories: DEGs expressed in periodontitis, periodontitis-related known genes, DEGs expressed in atherosclerosis, and atherosclerosis-related known genes. A weighted gene coexpression network analysis (WGCNA) was performed to identify significant coexpression modules, and then, coexpressed gene interaction networks belonging to each significant module were constructed to identify the core crosstalk genes. RESULTS: Functional enrichment analysis of significant modules obtained by WGCNA analysis showed that several pathways might play the critical crosstalk role in linking both diseases, including bacterial invasion of epithelial cells, platelet activation, and Mitogen-Activated Protein Kinases (MAPK) signaling. By constructing the gene interaction network of significant modules, the core crosstalk genes in each module were identified and included: for GSE23746 dataset, RASGRP2 in the blue module and VAMP7 and SNX3 in the green module, as well as HMGB1 and SUMO1 in the turquoise module were identified; for GSE61490 dataset, SEC61G, PSMB2, SELPLG, and FIBP in the turquoise module were identified. CONCLUSION: Exploration of available transcriptomic datasets revealed core crosstalk genes (RASGRP2, VAMP7, SNX3, HMGB1, SUMO1, SEC61G, PSMB2, SELPLG, and FIBP) and significant pathways (bacterial invasion of epithelial cells, platelet activation, and MAPK signaling) as top candidate molecular linkage mechanisms between atherosclerosis and periodontitis.


Atherosclerosis/genetics , Periodontitis/genetics , Transcriptome , Atherosclerosis/blood , Atherosclerosis/etiology , Carrier Proteins/genetics , Computational Biology , Databases, Genetic , Gene Expression Profiling , Gene Regulatory Networks , Genetic Markers , Guanine Nucleotide Exchange Factors/genetics , HMGB1 Protein/genetics , Humans , Membrane Glycoproteins/genetics , Membrane Proteins/genetics , Monocytes/metabolism , Periodontitis/blood , Periodontitis/etiology , Proteasome Endopeptidase Complex/genetics , Protein Interaction Maps/genetics , R-SNARE Proteins/genetics , SEC Translocation Channels/genetics , SUMO-1 Protein/genetics , Signal Transduction/genetics
6.
Med Sci Monit ; 27: e930421, 2021 Aug 20.
Article En | MEDLINE | ID: mdl-34415897

BACKGROUND In a previous study, we reported that pro-brain-derived neurotrophic factor (proBDNF) was involved in the pathology of alcohol dependence, and the single-nucleotide polymorphism (SNP) Val66Met was located at the prodomain of the brain-derived neurotrophic factor gene (BDNF). This polymorphism has been reported to affect intracellular trafficking and activity-dependent secretion of BDNF. Our present research investigated the relationships between the BDNF Val66Met polymorphism and the plasma levels of proBDNF and mature brain-derived neurotrophic factor (mBDNF) in patients with alcohol dependence. MATERIAL AND METHODS The BDNF gene Val66Met polymorphism was genotyped in 59 alcohol-dependent patients and 37 age- and sex-matched controls, and the plasma levels of proBDNF and mBDNF were assessed by enzyme-linked immunosorbent assay in all participants. RESULTS No association was found between the BDNF gene Val66Met polymorphism and alcohol dependence (P>0.05). In comparison with the control group, the level of plasma proBDNF in the alcohol-dependence group was notably increased (Z=-2.228, P=0.026), while the level of mBDNF was remarkedly decreased (Z=-2.014, P=0.044). In the alcohol-dependence group, significant associations were not found between the Val66Met polymorphisms and proBDNF and mBDNF plasma levels (P>0.05). The plasma level of proBDNF was positively correlated with the average daily alcohol consumption in the last month (r=0.344, P=0.008) and drinking history (r=0.317, P=0.014), while the plasma level of mBDNF had negative effects (r=-0.361, P=0.005, with the average daily alcohol consumption; r=-0.427, P=0.001, with drinking history). CONCLUSIONS The BDNF gene Val66Met polymorphism does not appear to affect the secretion of proBDNF and mBDNF in Chinese patients with alcohol dependence. Furthermore, this study reconfirmed that the plasma levels of proBDNF and mBDNF were correlated with the average daily alcohol consumption in the last month and with drinking history.


Alcoholism/blood , Alcoholism/genetics , Amino Acid Substitution , Brain-Derived Neurotrophic Factor/blood , Brain-Derived Neurotrophic Factor/genetics , Polymorphism, Single Nucleotide , Protein Precursors/blood , Adult , Alcoholism/diagnosis , Alleles , Biomarkers , Case-Control Studies , Disease Susceptibility , Enzyme-Linked Immunosorbent Assay , Genotype , Humans , Linkage Disequilibrium , Male , Middle Aged , Protein Precursors/genetics , Young Adult
7.
Curr Neuropharmacol ; 18(7): 613-623, 2020.
Article En | MEDLINE | ID: mdl-31976838

Mitochondrial damage is involved in many pathophysiological processes, such as tumor development, metabolism, and neurodegenerative diseases. The mitochondrial unfolded protein response (mtUPR) is the first stress-protective response initiated by mitochondrial damage, and it repairs or clears misfolded proteins to alleviate this damage. Studies have confirmed that the sirtuin family is essential for the mitochondrial stress response; in particular, SIRT1, SIRT3, and SIRT7 participate in the mtUPR in different axes. This article summarizes the associations of sirtuins with the mtUPR as well as specific molecular targets related to the mtUPR in different disease models, which will provide new inspiration for studies on mitochondrial stress, mitochondrial function protection, and mitochondria-related diseases, such as neurodegenerative diseases.


Mitochondria/metabolism , Sirtuins/metabolism , Unfolded Protein Response/physiology , Animals , Humans , Mitochondria/pathology
8.
J Speech Lang Hear Res ; 62(7): 2203-2212, 2019 07 15.
Article En | MEDLINE | ID: mdl-31200617

Purpose The application of Chinese Mandarin electrolaryngeal (EL) speech for laryngectomees has been limited by its drawbacks such as single fundamental frequency, mechanical sound, and large radiation noise. To improve the intelligibility of Chinese Mandarin EL speech, a new perspective using the automatic speech recognition (ASR) system was proposed, which can convert EL speech into healthy speech, if combined with text-to-speech. Method An ASR system was designed to recognize EL speech based on a deep learning model WaveNet and the connectionist temporal classification (WaveNet-CTC). This system mainly consists of 3 parts: the acoustic model, the language model, and the decoding model. The acoustic features are extracted during speech preprocessing, and 3,230 utterances of EL speech mixed with 10,000 utterances of healthy speech are used to train the ASR system. Comparative experiment was designed to evaluate the performance of the proposed method. Results The results show that the proposed ASR system has higher stability and generalizability compared with the traditional methods, manifesting superiority in terms of Chinese characters, Chinese words, short sentences, and long sentences. Phoneme confusion occurs more easily in the stop and affricate of EL speech than the healthy speech. However, the highest accuracy of the ASR could reach 83.24% when 3,230 utterances of EL speech were used to train the ASR system. Conclusions This study indicates that EL speech could be recognized effectively by the ASR based on WaveNet-CTC. This proposed method has a higher generalization performance and better stability than the traditional methods. A higher accuracy of the ASR system based on WaveNet-CTC can be obtained, which means that EL speech can be converted into healthy speech. Supplemental Material https://doi.org/10.23641/asha.8250830.


Speech Intelligibility/physiology , Speech Recognition Software/standards , Speech, Alaryngeal , China , Deep Learning , Humans , Larynx, Artificial , Models, Theoretical , Phonetics , Speech Acoustics
...