Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 247
1.
Biomolecules ; 13(11)2023 10 31.
Article En | MEDLINE | ID: mdl-38002283

Aging is a natural and inescapable phenomenon characterized by a progressive deterioration of physiological functions, leading to increased vulnerability to chronic diseases and death. With economic and medical development, the elderly population is gradually increasing, which poses a great burden to society, the economy and the medical field. Thus, healthy aging has now become a common aspiration among people over the world. Accumulating evidence indicates that substances that can mediate the deteriorated physiological processes are highly likely to have the potential to prolong lifespan and improve aging-associated diseases. Foods from natural sources are full of bioactive compounds, such as polysaccharides, polyphenols, carotenoids, sterols, terpenoids and vitamins. These bioactive compounds and their derivatives have been shown to be able to delay aging and/or improve aging-associated diseases, thereby prolonging lifespan, via regulation of various physiological processes. Here, we summarize the current understanding of the anti-aging activities of the compounds, polysaccharides, polyphenols, carotenoids, sterols, terpenoids and vitamins from natural food sources, and their modes of action in delaying aging and improving aging-associated diseases. This will certainly provide a reference for further research on the anti-aging effects of bioactive compounds from natural food sources.


Aging , Carotenoids , Aged , Humans , Carotenoids/pharmacology , Polyphenols/pharmacology , Vitamins/pharmacology , Terpenes/pharmacology , Sterols , Polysaccharides
2.
Commun Biol ; 6(1): 744, 2023 07 18.
Article En | MEDLINE | ID: mdl-37464027

Adenosine-to-inosine tRNA-editing enzyme has been identified for more than two decades, but the study on its DNA editing activity is rather scarce. We show that amphioxus (Branchiostoma japonicum) ADAT2 (BjADAT2) contains the active site 'HxE-PCxxC' and the key residues for target-base-binding, and amphioxus ADAT3 (BjADAT3) harbors both the N-terminal positively charged region and the C-terminal pseudo-catalytic domain important for recognition of substrates. The sequencing of BjADAT2-transformed Escherichia coli genome suggests that BjADAT2 has the potential to target E. coli DNA and can deaminate at TCG and GAA sites in the E. coli genome. Biochemical analyses further demonstrate that BjADAT2, in complex with BjADAT3, can perform A-to-I editing of tRNA and convert C-to-U and A-to-I deamination of DNA. We also show that BjADAT2 preferentially deaminates adenosines and cytidines in the loop of DNA hairpin structures of substrates, and BjADAT3 also affects the type of DNA substrate targeted by BjADAT2. Finally, we find that C89, N113, C148 and Y156 play critical roles in the DNA editing activity of BjADAT2. Collectively, our study indicates that BjADAT2/3 is the sole naturally occurring deaminase with both tRNA and DNA editing capacity identified so far in Metazoa.


Lancelets , Animals , Lancelets/genetics , Lancelets/metabolism , Deamination , Escherichia coli/genetics , Escherichia coli/metabolism , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , RNA, Transfer/metabolism , Adenosine/metabolism , DNA/genetics , Inosine/genetics
3.
Biogerontology ; 24(2): 207-223, 2023 04.
Article En | MEDLINE | ID: mdl-36592268

Microplastics (MPs) are ubiquitous in aquatic and terrestrial ecosystem, increasingly becoming a serious concern of human health. Many studies have explored the biological effects of MPs on animal and plant life in recent years. However, information regarding the effects of MPs on aging and lifespan is completely lacking in vertebrate species to date. Here we first confirm the bioavailability of MPs by oral delivery in the annual fish N. guentheri. We then show for the first time that administration of MPs not only shortens the lifespan but also accelerates the development of age-related biomarkers in N. guentheri. We also demonstrate that administration of MPs induces oxidative stress, suppresses antioxidant enzymes, reduces digestive enzymes, and causes hepatic dysfunction. Therefore, we propose that administration of MPs reduces lifespan of N. guentheri via induction of both suppressed antioxidant system and digestive disturbance as well as hepatic damage. Our results also suggest that smaller MPs appear more toxic to digestion, metabolism and growth of animals.


Cyprinodontiformes , Longevity , Animals , Humans , Microplastics/pharmacology , Plastics/pharmacology , Antioxidants/pharmacology , Ecosystem , Eating
4.
Front Microbiol ; 14: 1321386, 2023.
Article En | MEDLINE | ID: mdl-38298540

Cancer is the most common cause of human death worldwide, posing a serious threat to human health and having a negative impact on the economy. In the past few decades, significant progress has been made in anticancer therapies, but traditional anticancer therapies, including radiation therapy, surgery, chemotherapy, molecular targeted therapy, immunotherapy and antibody-drug conjugates (ADCs), have serious side effects, low specificity, and the emergence of drug resistance. Therefore, there is an urgent need to develop new treatment methods to improve efficacy and reduce side effects. Antimicrobial peptides (AMPs) exist in the innate immune system of various organisms. As the most promising alternatives to traditional drugs for treating cancers, some AMPs also have been proven to possess anticancer activities, which are defined as anticancer peptides (ACPs). These peptides have the advantages of being able to specifically target cancer cells and have less toxicity to normal tissues. More and more studies have found that marine and terrestrial animals contain a large amount of ACPs. In this article, we introduced the animal derived AMPs with anti-cancer activity, and summarized the types of tumor cells inhibited by ACPs, the mechanisms by which they exert anti-tumor effects and clinical applications of ACPs.

5.
Tissue Cell ; 79: 101943, 2022 Dec.
Article En | MEDLINE | ID: mdl-36174270

The organ pancreas is characteristic of all vertebrates, but its evolutionary origin remains largely unknown. The serine proteinases trypsin, chymotrypsin and elastase are produced primarily in the pancreas in vertebrates. Here we clearly demonstrate by enzymatic activity assay, histochemical staining and in situ hybridization that trypsin, chymotrypsin and elastase are widely distributed in the digestive tract of the amphioxus Branchiostoma japonicum, especially in the hepatic caecum and mid-gut. This suggests that an extensive region of the amphioxus digestive tract including the hepatic caecum is homologous to the vertebrate exocrine pancreatic cells, providing a new angle for the study of the origin and evolution of vertebrate pancreas.


Lancelets , Animals , Lancelets/genetics , Trypsin , Chymotrypsin , Pancreatic Elastase/genetics , Phylogeny , Vertebrates/genetics , Pancreas , Gastrointestinal Tract
6.
Front Immunol ; 13: 970626, 2022.
Article En | MEDLINE | ID: mdl-36119065

CD248, also known as endosialin or tumor endothelial marker 1, is a type I single transmembrane glycoprotein. CD248 has been demonstrated to be upregulated in cancers, tumors and many fibrotic diseases in human and mice, such as liver damage, pulmonary fibrosis, renal fibrosis, arthritis and tumor neovascularization. However, no definite CD248 orthologs in fish have been documented so far. In this study, we report the identification of cd248a and cd248b in the zebrafish. Both the phylogenetic analysis and the conserved synteny strongly suggested that zebrafish cd248a and cd248b are orthologs of the human CD248. Both cd248a and cd248b exhibited similar and dynamic expression pattern in early development, both genes had weak maternal expression, the zygotic transcripts were first seen in anterior somites and head mesenchyme, then shifted to eyes and head mesenchyme, later expanded to branchial arches, and gradually declined with development. The expression profiles of cd248a and cd248b were upregulated upon LPS (Lipopolysaccharide) challenge. Both Cd248a protein and Cd248b protein were localized on the cell membrane and cytoplasm, and overexpression of cd248a and cd248b induced the expression of pro-inflammatory cytokines, in vitro and in vivo. Moreover, deficiency of cd248a or cd248b both downregulated the expression of pro-inflammatory cytokines and upregulated anti-inflammatory cytokine. Additionally, loss of cd248a or cd248b both downregulated the expression of pro-inflammatory cytokines after LPS treatment. Taken together, these results indicated that cd248a and cd248b in zebrafish were involved in immune response and would provide further information to understand functions of Cd248 protein in innate immunity of fish.


Antigens, CD/metabolism , Immunity, Innate , Zebrafish Proteins/metabolism , Zebrafish/immunology , Animals , Antigens, CD/genetics , Antigens, Neoplasm , Cytokines/metabolism , Fibrosis , Glycoproteins/genetics , Humans , Lipopolysaccharides , Mice , Neoplasms , Phylogeny , Zebrafish Proteins/genetics
7.
Biomolecules ; 12(7)2022 07 10.
Article En | MEDLINE | ID: mdl-35883521

With the increase in the incidence of fungal infections, and the restrictions of existing antifungal drugs, the development of novel antifungal agents is urgent. Here we prove that AP10W, a short peptide derived from AP-2 complex subunit mu-A, displays conspicuous antifungal activities against the main fungal pathogens of human infections Candida albicans and Aspergillus fumigatus. We also show that AP10W suppresses the fungal biofilm formation, and reduces the pre-established fungal biofilms. AP10W appears to exert its fungicidal activity through a mode of combined actions, including interaction with the fungal cell walls via laminarin, mannan and chitin, enhancement of cell wall permeabilization, induction of membrane depolarization, and increase in intracellular ROS generation. Importantly, we demonstrate that AP10W exhibits little toxicity towards mammalian fibroblasts, and effectively promotes the healing of wounded skins infected by C. albicans. These together indicate that AP10W is a new member of fungicidal agents. It also suggests that AP10W has a considerable potential for future development as a novel antifungal drug.


Antifungal Agents , Candida albicans , Animals , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Aspergillus fumigatus , Biofilms , Humans , Mammals , Microbial Sensitivity Tests , Peptides/pharmacology
8.
J Hazard Mater ; 438: 129454, 2022 09 15.
Article En | MEDLINE | ID: mdl-35803186

Growing inputs of microplastics into marine sediment have increased significantly the needs for assessment of their potential risks to the marine benthos. A knowledge gap remains with regard to the effect of microplastics on benthos, such as cephalochordates. By employing amphioxus as a model benthic chordate, here we show that exposure to microplastics for 96 h at doses of 1 mg/L and 100 mg/L results in evident accumulation of the polyethylene microplastics. The accumulated microplastics are as much as 0.027% of body weight upon high-dose exposure, causing an abnormal body-bending phenotype that limits the locomotion capability of amphioxus. Mechanistic insight reveals that microplastics can bring about histological damages in gill, intestine and hepatic cecum; In-depth assay of relevant biomarkers including superoxide dismutase, catalase, glutathione, pyruvic acid and total cholesterol indicates the occurrence of oxidative damage and metabolic disorder; Further, microplastics exposure depresses the activity of acetylcholinesterase while allowing the level of acetylcholine to rise in muscle, suggesting the emergence of neurotoxicity. These consequences eventually contribute to the muscle dysfunction of amphioxus. This study rationalizes the abnormal response of the vulnerable notochord to microplastics, signifying the dilemma suffered by the ancient lineage under the emerging threat. Given the enrichment of microplastics through marine food chains, this study also raises significant concerns on the impact of microplastics to other marine organisms, and eventually human beings.


Lancelets , Microplastics , Water Pollutants, Chemical , Acetylcholinesterase , Animals , Lancelets/drug effects , Microplastics/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
9.
Fish Physiol Biochem ; 48(4): 1057-1073, 2022 Aug.
Article En | MEDLINE | ID: mdl-35834112

Krill oil (KO) extracted from Antarctic krill (Euphausia superba) mainly comprises phospholipids and triglycerides. KO has been shown to prolong the median lifespan of the nematode Caenorhabditis elegans, but to shorten the lifespan of long-lived F1 mice; therefore, it remains controversial over the life-extending property of KO. In this study, we clearly demonstrated that dietary intake of KO extended both the mean and maximum lifespans of aged male Nothobranchius guentheri (p < 0.05), reduced the accumulation of lipofuscin (LF) (p < 0.05) in the gills and senescence-associated ß-galactosidase (SA-ß-Gal) (p < 0.05) in the caudal fins, and lowered the levels of protein oxidation (p < 0.05), lipid peroxidation (p < 0.01), and reactive oxygen species (ROS) (p < 0.01) in the muscles and livers, indicating that KO possesses rejuvenation and anti-aging activity. We also showed that KO enhanced the activities of antioxidant enzymes catalase (CAT) (p < 0.05), superoxide dismutase (SOD) (p < 0.05), and glutathione peroxidase (GPX) (p < 0.05) in aged male N. guentheri. In addition, KO administration effectively reversed histological lesions including inflammatory cell infiltration and structural collapse in the muscles and livers of aged N. guentheri and suppressed the nuclear factor kappa-B (NF-κB) signaling pathway (p < 0.05), a master regulator of inflammation. Altogether, our study indicates that KO has anti-aging and rejuvenation property. It also suggests that KO exerts its anti-aging and rejuvenation effects via enhancement of the antioxidant system and suppression of the NF-κB signaling pathway.


Cyprinodontiformes , Euphausiacea , Longevity , Animals , Antioxidants/metabolism , Cyprinodontiformes/physiology , Euphausiacea/chemistry , Longevity/drug effects , Male , NF-kappa B/metabolism
10.
Mar Biotechnol (NY) ; 24(3): 614-625, 2022 Jun.
Article En | MEDLINE | ID: mdl-35610324

With the emergence of antifungal resistance, systematic infections with Aspergillus are becoming the major cause of the clinical morbidity. The development of novel antifungal agents with high efficacy, low drug tolerance, and few side effects is urgent. In response to that need, we have identified NP20. Here we demonstrate clearly that NP20 has antifungal activity, capable of killing the spores of Aspergillus niger and Aspergillus fumigatus as well as causing direct damage to the surface, membrane, cytoplasm, organelle, and nucleus of the fungal spores. Interestingly, NP20 is active under temperature stress and a wide range of pH. Subsequently, MTT assay, assay for binding of NP20 to fungal cell wall components, membrane depolarization assay, confocal microscopy, ROS assay, DNA replication, and protein synthesis assay are performed to clarify the mechanisms underlying NP20 against Aspergillus. The results show that NP20 can bind with and pass through the fungal cell wall, and then interfere with the lipid membrane. Moreover, NP20 can induce intracellular ROS production, DNA fragmentation, and protein synthesis inhibition of the fungal cells. These together indicate that NP20 is a novel antifungal peptide, which has considerable potential for future development as novel peptide antibiotics against Aspergillus.


Aspergillus fumigatus , Lancelets , Animals , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Aspergillus , Aspergillus fumigatus/metabolism , Aspergillus niger/metabolism , Carrier Proteins , Cytokines , Midkine/metabolism , Midkine/pharmacology , Reactive Oxygen Species/metabolism
11.
Biogerontology ; 23(3): 341-362, 2022 06.
Article En | MEDLINE | ID: mdl-35604508

Current studies have generated controversy over the age-related change in concentration of growth differentiation factor 11 (GDF11) and its role in the genesis of rejuvenation conditions. In this study, we displayed rGDF11 on the surface of Yarrowic Lipolytica (Y. lipolytica), and proved the bioavailability of the yeast-displayed rGDF11 by oral delivery in aged male mice. On the basis of these findings, we started to explore the anti-aging activity and underlying mechanisms of displayed rGDF11. It was found that dietary intake of displayed rGDF11 had little influence on the body weight and biochemical parameters of aged male mice, but delayed the occurrence and development of age-related biomarkers such as lipofuscin (LF) and senescence-associated-ß-galactosidase, and to some extent, prolonged the lifespan of aged male mice. Moreover, we demonstrated once again that dietary intake of displayed rGDF11 enhanced the activity of anti-oxidant enzymes, including catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPX), reduced the reactive oxygen species (ROS) level, and slowed down the protein oxidation and lipid peroxidation. Importantly, we showed for the first time that rGDF11 enhanced the activity of CAT, SOD and GPX through activation of the Smad2/3 signaling pathway. Our study also provided a simple and safe route for delivery of recombinant GDF11, facilitating its therapeutic application in the future.


Antioxidants , Growth Differentiation Factors , Aging/metabolism , Animals , Biomarkers , Bone Morphogenetic Proteins , Catalase/metabolism , Eating , Glutathione Peroxidase/metabolism , Growth Differentiation Factors/metabolism , Male , Mice , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Superoxide Dismutase/metabolism
12.
Eur J Pharmacol ; 920: 174833, 2022 Apr 05.
Article En | MEDLINE | ID: mdl-35183532

The closure of skin wounds is indispensable for resistance against pathogens, and fibroblast plays a critical role in skin wound healing. Our previous study demonstrates that the phosvitin-derived small peptide Pt5-1c not only possesses broad-spectrum antimicrobial activity but also exhibits synergistic effect and antibiofilm activity with traditional antibiotics against bacteria, including multi-drug resistant (MDR) strains. Here we provided the first evidence that Pt5-1c promoted the wound closure of surrogate scratch "wounds" of fibroblasts in vitro, and speeded up the healing and re-epithelialization of murine dermal wounds in vivo. We also showed that Pt5-1c activated migration of fibroblasts via a combined action of inducing migratory phenotype and trans-activating epidermal growth factor receptor (EGFR). Moreover, Pt5-1c accelerated attachment and proliferation of fibroblasts in vitro. Interestingly, Pt5-1c was able to promote collagen contraction through activation/differentiation of fibroblasts into myofibroblasts. These data together suggest that Pt5-1c is a promising candidate with therapeutic potential to promote wound healing.


Phosvitin , Wound Healing , Animals , Cell Movement , Cell Proliferation , Fibroblasts , Mice , Myofibroblasts , Peptides/pharmacology , Phosvitin/metabolism , Phosvitin/pharmacology , Skin
13.
Biogerontology ; 23(2): 201-213, 2022 04.
Article En | MEDLINE | ID: mdl-35102470

Oxidative stress including DNA damage, increased lipid and protein oxidation, is an important feature of aging. Diosgenin (DG) has been shown to have diverse biological effects, including amelioration of aging-related cognition deficits, but the anti-aging activity of DG has not been tested before in animal models. In the present study, we clearly demonstrated that dietary intake of DG extended both mean and maximum lifespans of the male fish Nothobranchius guentheri by approximately 3.23 and 3.67 weeks, respectively, reduced the accumulation of lipofuscin (LF) in the gills and senescence-associated-ß-galactosidase (SA-ß-Gal) in the caudal fins, and lowered the levels of protein oxidation, lipid peroxidation and reactive oxygen species (ROS) in the muscles, indicating that DG possesses rejuvenation and anti-aging property. We also showed that DG enhanced the activity of antioxidant enzymes, including catalase, superoxide dismutase and glutathione peroxidase, promoted the proteolytic activity of the ubiquitin-proteasome pathway, and suppressed the phosphatidylinositol 3-kinase/protein kinase/molecular target of rapamycin (PI3K/AKT/mTOR) signaling pathway. Altogether, this study highlights for the first time the rejuvenation and anti-aging property of the naturally occurring steroidal sapogenin DG. It also suggests that DG exerts its rejuvenation and anti-aging activity through modulation of multiple signaling pathways that play prominent roles in ROS production.


Cyprinodontiformes , Diosgenin , Aging/metabolism , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Diosgenin/pharmacology , Eating , Male , Oxidative Stress , Phosphatidylinositol 3-Kinases , Reactive Oxygen Species/metabolism
14.
Biogerontology ; 23(1): 99-114, 2022 02.
Article En | MEDLINE | ID: mdl-34988750

Isthmin 1 (Ism1) has been shown to play roles in multiple biological processes including morphogenesis, hematopoiesis, antiviral immune response and suppression of tumor growth. However, it remains unknown if it plays any role in aging process. Here we showed for the first time that Ism1 was a new age-related biomarker, which decreased with age in fish, mice and humans. Interestingly, Ism1 was also useful to measure the "rejuvenated" age of fish Nothobranchius guentheri reversed by salidroside treatment and temperature reduction, providing additional evidence that Ism1 was an aging biomarker. In addition, we clearly showed that dietary intake of recombinant Ism1 had little effects on the body length and weight of aging N. guentheri, but it retarded the onset of age-related biomarkers and prolonged both the maximum and median lifespan of the fish. We also showed that Ism1 exerted its rejuvenation activity via the enhancement of antioxidant system. Collectively, our results indicate that Ism1 is not only is a novel biomarker of aging but also a potential rejuvenation factor capable of reversing aging of N. guentheri.


Cyprinodontiformes , Rejuvenation , Aging , Animals , Biomarkers , Intercellular Signaling Peptides and Proteins , Longevity , Mice , Rejuvenation/physiology
15.
Dev Comp Immunol ; 126: 104238, 2022 01.
Article En | MEDLINE | ID: mdl-34428528

Previous studies have shown that protein disulfide isomerase (PDI), a member of the thioredoxin (TRX) superfamily, are broadly associated with immune responses in a variety of animals. However, it remains largely unknown about the direct roles of PDIs during a bacterial infection. In this study, we identified the presence of a single pdi gene in the amphioxus Branchiostoma japonicum, Bjpdi. The deduced protein BjPDI is structurally characterized by the presence of four Trx-like domains in the order of a, b, b' and a' and a short acidic C-terminal tail, that are characteristic of PDIs. We demonstrated that rBjPDI displayed both thiol reductase and disulfide bond isomerase activities, indicating comparability of BjPDI with PDIs in term of enzymatic activities. We also showed that rBjPDI induced bacterial agglutination and exhibited a lectin-like activity capable of binding both bacteria (E. coli and S. aureus) and their signature molecules LPS and LTA. Furthermore, BjPDI could kill S. aureus via inducing membrane depolarization and intracellular ROS production in vitro, and treatment of amphioxus with a blocking anti-PDI antibody in vivo markedly reduced the survival rate of amphioxus following attack by S. aureus. Collectively, our study demonstrates that amphioxus protein disulfide isomerase acts as both an enzyme and an immunocompotent factor, and reports the specific function and mode of action of PDIs in immune responses.


Lancelets , Protein Disulfide-Isomerases , Animals , Escherichia coli/metabolism , Lancelets/genetics , Lancelets/metabolism , Protein Disulfide-Isomerases/genetics , Protein Disulfide-Isomerases/metabolism , Staphylococcus aureus , Thioredoxins
16.
Dev Comp Immunol ; 127: 104281, 2022 02.
Article En | MEDLINE | ID: mdl-34601007

Cofilin-1 (Cfl1), a member of the ADF/cofilin family, has been identified as one of differentially expressed proteins in human dendritic cells challenged with lipopolysaccharide (LPS), suggesting that it may be involved in immune response. Here we showed that zebrafish cfl1 was markedly up-regulated by LPS and LTA treatment. We also showed that zebrafish recombinant Cfl1 (rCfl1) not only bound to the Gram-negative and positive bacteria A. hydrophila and S. aureus as well as their signature molecules LPS and LTA but also inhibited the growth of the bacteria. Moreover, we found that the heparin-binding motif-containing regions of Cfl1, i.e., Cfl19-25, Cfl134-51 and Cfl1108-125, like rCfl1, were also able to bind to LPS and LTA and to inhibit the bacterial growth. rCfl1, Cfl19-25, Cfl134-51, and Cfl1108-125 were all able to cause bacterial cell destruction, to induce membrane depolarization, and to stimulate intracellular ROS production. Finally, we showed that zebrafish Cfl1 could protect developing embryos/larvae against attack by the potential pathogen A. hydrophila. These data together indicate that zebrafish Cfl1 plays an immune-relevant role as a newly-characterized antimicrobial protein.


Cofilin 1 , Zebrafish Proteins , Zebrafish , Actin Depolymerizing Factors , Animals , Anti-Bacterial Agents , Cofilin 1/genetics , Cofilin 1/metabolism , Staphylococcus aureus , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
17.
J Gerontol A Biol Sci Med Sci ; 77(5): 892-901, 2022 05 05.
Article En | MEDLINE | ID: mdl-34791251

Growth differentiation factor 11 (GDF11), also known as bone morphogenetic protein 11, has been shown to have rejuvenation and antiaging properties, but little information is available regarding the role of GDF11 in reproductive system to date. In this study, we first confirmed the bioavailability of recombinant GDF11 (rGDF11) by oral delivery in mice. We also showed that dietary intake of rGDF11 had little influence on body and gonadal (ovary/testis) weights of recipient mice, indicating their general condition and physiology were not affected. Based on these findings, we started to test the function of rGDF11 in ovary and testis of mice and to explore the underlying mechanisms. It was found that to some extent, rGDF11 could attenuate the senescence of ovarian and testicular cells, and contribute to the recovery of ovarian and testicular endocrine functions. Moreover, rGDF11 could rescue the diminished ovarian reserve in female mice and enhance the activities of marker enzymes of testicular function (sorbitol dehydrogenase and glucose-6-phosphate dehydrogenase) in male mice, suggesting a potential improvement of fertility. Notably, rGDF11 markedly promoted the activities of antioxidant enzymes in the ovary and testis, and remarkably reduced the levels of lipid peroxidation, protein oxidation, and reactive oxygen species (ROS) in the ovary and testis. Collectively, these results suggest that GDF11 can protect ovarian and testicular functions of aged mice via slowing down the generation of ROS through enhancing activities of antioxidant enzymes.


Antioxidants , Rejuvenation , Animals , Bone Morphogenetic Proteins , Female , Growth Differentiation Factors , Male , Reactive Oxygen Species , Rejuvenation/physiology
18.
Fish Shellfish Immunol ; 118: 147-154, 2021 Nov.
Article En | MEDLINE | ID: mdl-34487827

Previous studies show that some ribosomal proteins perform immune effector functions via killing bacteria directly. However, it remains largely unknown about other effector functions of ribosomal proteins during a bacterial infection. In this study, we expressed and purified four ribosomal proteins of the amphioxus Branchiostoma japonicum, termed rBjRPS15, rBjRPS18, rBjRPS19 and rBjRPS30-precursor (rBjRPS30P). They all exhibited bactericidal activity against Gram-positive Staphylococcus aureus, and with the exception of rBjRPS19 and rBjRPS30P, were capable of killing Gram-negative Escherichia coli. Importantly, rBjRPS15, rBjRPS19 and rBjRPS30P were able to agglutinate S. aureus in the presence of Mg2+, but none of them could agglutinate E. coli even in the presence of Mg2+ or Ca2+. Moreover, the S. aureus agglutination was achieved by the binding of these three proteins to the peptidoglycan component of the bacterial cell wall. This is the first report showing that some ribosomal proteins possess bacterial agglutinating activity, and these data provide a new angle to the roles of ribosomal proteins in immune defense.


Lancelets , Animals , Bacteria , Escherichia coli , Homicide , Lancelets/genetics , Ribosomal Proteins/genetics , Staphylococcus aureus
19.
Dev Comp Immunol ; 125: 104210, 2021 12.
Article En | MEDLINE | ID: mdl-34302859

Isthmin1 (Ism1), first identified as a secreted protein in Xenopus embryos in 2002, has been shown to perform multiple biological functions, but little is known currently regarding its role in immunity. Here we show that the expression of ism1 is inducible by challenge with Grass carp reovirus (GCRV) in zebrafish, suggesting involvement of Ism1 in antiviral response. We then demonstrate that recombinant Ism1 (rIsm1) reduces the cytopathic effect in the cells infected by GCRV, promotes the expression of type I IFN gene and IFN-inducible antiviral protein Mxa gene, and reduces the virus quantity in virus-infected cells and host. We also show that rIsm1 promotes the expression of tbk1, irf3 and irf7, suggesting it promotes the expression of type I IFN gene and Mxa gene via induction of Tbk1-Irf3-Ifn pathway. These data together indicate that Ism1 is a new immune-relevant factor functioning in antiviral immune response, and provides a target for controlling viral infection.


Zebrafish/metabolism , Animals , Antiviral Agents , Carps/metabolism , Fish Diseases/immunology , Fish Proteins/genetics , Immunity, Innate , Interferon Regulatory Factor-3 , Interferon Regulatory Factor-7 , Phosphorylation , Protein Serine-Threonine Kinases , Reoviridae/physiology , Signal Transduction , Virus Diseases , Viruses/metabolism
20.
Microb Pathog ; 158: 105056, 2021 Sep.
Article En | MEDLINE | ID: mdl-34153416

Combined treatment of AMPs with classical antibiotics has gained interest because it often results in a synergistic antibacterial effect. We demonstrated here that Pt5-1c, an AMP derived from phosvitin, had antibacterial activity against the MDR bacteria (S. aureus USA500, E. coli 577 and K. pneumoniae 2182) in the presence of serum. On this basis, we showed that Pt5-1c was synergistically active with traditional antibiotics (oxacillin, vancomycin, streptomycin and azithromycin) against the three MDR bacteria growing as biofilms in vitro and in vivo. Moreover, Pt5-1c restored sensitivity of S. aureus USA500 to oxacillin and vancomycin, E. coli 577 to streptomycin and K. pneumoniae 2182 to azithromycin. Importantly, long-term exposure to Pt5-1c did not give rise to antimicrobial resistance. Collectively, these data not only suggest a promising combinatorial therapy strategy to combat antibiotics-tolerant infections but also present a possibility of Pt5-1c being used to prolong the application of antibiotics including oxacillin, vancomycin, streptomycin and azithromycin, that are under threat of becoming ineffective due to antibiotic resistance.


Anti-Bacterial Agents , Antimicrobial Cationic Peptides , Biofilms , Drug Resistance, Multiple, Bacterial , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Escherichia coli , Humans , Klebsiella pneumoniae , Microbial Sensitivity Tests , Pore Forming Cytotoxic Proteins , Staphylococcus aureus
...