Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 99
1.
Chem Sci ; 15(21): 8106-8111, 2024 May 29.
Article En | MEDLINE | ID: mdl-38817588

Efficient electron-transporting materials (ETMs) are critical to achieving excellent performance of organic light-emitting diodes (OLEDs), yet developing such materials remains a major long-term challenge, particularly ETMs with high electron mobilities (µeles). Herein, we report a short conjugated ETM molecule (PICN) with a dipolar phenanthroimidazole group, which exhibits an electron mobility of up to 1.52 × 10-4 cm2 (V-1 s-1). The origin of this high µele is long-ranged, regulated special cage-like interactions with C-H⋯N radii, which are also favorable for the excellent efficiency stability and operational stability in OLEDs. It is worth noting that the green phosphorescent OLED operation half-lifetimes can reach up to 630 h under unencapsulation, which is 20 times longer than that based on the commonly used commercial ETM TPBi.

2.
ACS Appl Mater Interfaces ; 16(21): 27360-27367, 2024 May 29.
Article En | MEDLINE | ID: mdl-38755957

Efficient and economical separation of C2H6/C2H4 is an imperative and extremely challenging process in the petrochemical industry. The C2H6-selective adsorbents with high working capacity and high selectivity are highly desirable from a practical application standpoint. In this study, we constructed a database of fluorinated ionic liquid@covalent organic frameworks (FIL@COFs) and screened out the high-performing FIL@COFs for C2H6-selective separation. Utilizing the optimal machine learning (ML) algorithm (XGBoost) and hyperparameters, we further revealed the key factors influencing the separation performance. The multiscale simulation not only validated the prediction accuracy of ML but also demonstrated that adjusting the largest cavity diameter of COFs with FILs could yield FIL@COFs with high performance for C2H6-selective separation. Our work provides essential guidance for designing new FIL@COF adsorbents for value-added gas purification.

3.
Colloids Surf B Biointerfaces ; 238: 113925, 2024 Jun.
Article En | MEDLINE | ID: mdl-38657556

Antibiotic-loaded calcium phosphate cement (CPC) has emerged as a promising biomaterial for drug delivery in orthopedics. However, there are problems such as the burst release of antibiotics, low cumulative release ratio, inappropriate release cycle, inferior mechanical strength, and poor anti-collapse properties. In this research, montmorillonite-gentamicin (MMT-GS) was fabricated by solution intercalation method and served as the drug release pathways in CPC to avoid burst release of GS, achieving promoted cumulative release ratios and a release cycle matched the time of inflammatory response. The results indicated that the highest cumulative release ratio and release concentration of GS in CPC/MMT-GS was 94.1 ± 2.8 % and 1183.05 µg/mL, and the release cycle was up to 504 h. In addition, the hierarchical GS delivery system was divided into three stages, and the kinetics followed the Korsmeyer-Peppas model, the zero-order model, and the diffusion-dissolution model, respectively. Meanwhile, the compressive strength of CPC/MMT-GS was up to 51.33 ± 3.62 MPa. Antibacterial results demonstrated that CPC/MMT-GS exhibited excellent in vitro long-lasting antibacterial properties to E. coli and S. aureus. Furthermore, CPC/MMT-GS promoted osteoblast proliferation and exhibited excellent in vivo histocompatibility. Therefore, CPC/MMT-GS has favorable application prospects in the treatment of bone defects with bacterial infections and inflammatory reactions.


Anti-Bacterial Agents , Bentonite , Bone Cements , Calcium Phosphates , Drug Delivery Systems , Drug Liberation , Escherichia coli , Gentamicins , Staphylococcus aureus , Bentonite/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gentamicins/pharmacology , Gentamicins/chemistry , Gentamicins/administration & dosage , Gentamicins/pharmacokinetics , Calcium Phosphates/chemistry , Bone Cements/chemistry , Bone Cements/pharmacology , Animals , Escherichia coli/drug effects , Mice , Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Particle Size
4.
Chem Sci ; 15(15): 5589-5595, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38638218

Organic deep-red (DR) and near-infrared (NIR) emitters with high photoluminescence quantum yield (PLQY) are rare due to the strong non-radiative (knr) decay. Here, we report two DR/NIR emitters with high PLQY, TPANZPyPI and TPANZ3PI. Interestingly, the TPANZPyPI film exhibits 46.5% PLQY at 699 nm. Theoretical calculations indicate that TPANZPyPI can achieve this high PLQY in the near-infrared emission region due to its small S1 to S0 internal conversion (IC) rate. Meanwhile, research has found that, compared to TPANZ3PI, TPANZPyPI with a more rigid structure can effectively suppress the T2 to T1 IC process, which is conducive to higher exciton utilization efficiency (EUE). TPANZPyPI's non-doped OLED shows NIR emission with 4.6% @ 684 nm maximum external quantum efficiency (EQEmax). Its doped OLEDs radiate DR with an EQEmax of 6.9% @ 666 nm. These EQEs are among the highest values for hybridized local charge transfer state materials emitting more than 640 nm. This work demonstrates for the first time, based on a combination of theory and experiment, that increasing the molecular rigidity can inhibit the excited state IC process in addition to the S1 to S0 IC, realizing efficient electroluminescence.

5.
J Diabetes ; 16(4): e13537, 2024 Apr.
Article En | MEDLINE | ID: mdl-38599855

AIM: Hydrogels with excellent biocompatibility and biodegradability can be used as the desirable dressings for the therapy of diabetic foot ulcer (DFU). This review aimed to summarize the biological functions of hydrogels, combining with the pathogenesis of DFU. METHODS: The studies in the last 10 years were searched and summarized from the online database PubMed using a combination of keywords such as hydrogel and diabetes. The biological functions of hydrogels and their healing mechanism on DFU were elaborated. RESULTS: In this review, hydrogels were classified by their active substances such as drugs, cytokines, photosensitizers, and biomimetic peptide. Based on this, the biological functions of hydrogels were summarized by associating the pathogenesis of DFU, including oxidative stress, chronic inflammation, cell phenotype change, vasculopathy, and infection. This review also pointed out some of the shortcomings of hydrogels in present researches. CONCLUSIONS: Hydrogels were classified into carrier hydrogels and self-functioning hydrogels in this review. Besides, the functions and components of existing hydrogels were clarified to provide assistance for future researches and clinical applications.


Diabetes Mellitus , Diabetic Foot , Humans , Diabetic Foot/drug therapy , Hydrogels/therapeutic use , Wound Healing , Cytokines
7.
J Phys Chem Lett ; 15(10): 2690-2696, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38427379

A cocrystallization strategy is used through incorporation of 1,2,4,5-tetracyanobenzene (TCNB) as an acceptor with halogen-substituent thioxanthone (TX) derivatives as donors. The resulting cocrystals TT-R (R = H, F, Cl, Br, or I) transform the thermally activated delayed fluorescence emission in the TT-H, TT-F, and TT-Cl cocrystals to room-temperature phosphorescence in the TT-Br and TT-I cocrystals. Definite crystal packing structures demonstrate a 1:1 alternative donor-acceptor stacking in the TT-H cocrystal, a 2:1 alternative donor-acceptor stacking in the TT-F and TT-Cl cocrystals, and a separate stacking of donor and acceptor in the TT-Br and TT-I cocrystals. A transformation law can be revealed that with an increase in atomic number from H, F, Cl, Br, to I, the cocrystals show the structural transformation of the number of aggregated TX-R molecules from monomers to dimers and finally to multimers. This work will facilitate an understanding of the effect of halogen substituents on the crystal packing structure and luminescence properties in the cocrystals.

8.
J Environ Manage ; 352: 120079, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38242028

Concerns over supply risks of critical metals used in electric vehicle (EV) batteries are frequently underscored as impediments to the widespread development of EVs. With the progress to achieve carbon neutrality by 2060 for China, projecting the critical metals demand for EV batteries and formulating strategies, especially circular economy strategies, to mitigate the risks of demand-supply imbalance in response to potential obstacles are necessary. However, the development scale of EVs in the transport sector to achieve China's carbon neutrality is unclear, and it remains uncertain to what extent circular economy strategies might contribute to the reduction of primary raw materials extraction. Consequently, we explore the future quantity of EVs in China required to achieve carbon neutrality and quantify the primary supply security levels of critical metals with the effort of battery cascade utilization, technology substitutions, recycling efficiency improvement, and novel business models, by integrating dynamic material flow analysis and national energy technology model. This study reveals that although 18%-30% of lithium and 20%-41% of cobalt, nickel, and manganese can be supplied to EVs through the reuse and recycling of end-of-life batteries, sustainable circular economy strategies alone are insufficient to obviate critical metals shortages for China's EV development. However, the supplementary capacity offered by second-life EV batteries, which refers to the use of batteries after they have reached the end of their first intended life, may prove adequate for China's prospective novel energy storage applications. The cumulative primary demand for lithium, cobalt, and nickel from 2021 to 2060 would reach 5-7 times, 23-114 times, and 4-19 times the corresponding mineral reserves in China. Substantial reduction of metals supply risks apart from lithium can be achieved by the cobalt-free battery technology developments combined with efficient recycling systems, where secondary supply can satisfy the demand as early as 2054.


Lithium , Nickel , Carbon , Prospective Studies , Metals , Recycling , Cobalt , Electric Power Supplies , China
10.
Adv Mater ; 36(3): e2306784, 2024 Jan.
Article En | MEDLINE | ID: mdl-37781967

A rational molecular design strategy facilitates the development of a purely organic room-temperature phosphorescence (RTP) material system with precisely regulated luminescence properties, which surely promotes its functional integration and intelligent application. Here, a functional unit combination strategy is proposed to design novel RTP molecules combining a folding unit with diverse luminescent cores. The different luminescent cores are mainly responsible for tunable RTP properties, while the folding unit contributes to the spin-orbit coupling (SOC) enhancement, which makes the RTP material design as workable as the building block principle. By this strategy, a series of color/lifetime-tunable RTP materials is achieved with unique photo-responsive RTP enhancement when subjected to UV irradiation, which expands their application scenarios in reusable privacy tags, advanced "4D" encryption, and phase separation analysis of blended polymers. This work suggests a simple and effective strategy to design purely organic RTP materials with tunable color and lifetime, and also provides new application options for photo-responsive dynamic RTP materials.

11.
J Chem Inf Model ; 63(23): 7476-7486, 2023 Dec 11.
Article En | MEDLINE | ID: mdl-37997637

With the rapid development of metal-organic framework (MOF) membranes for separation applications, computational screening of their separation performance has attracted increasing interest in the design and fabrication of such materials. Although bulk crystal models in MOF databases are often used to represent MOF membrane structures, membrane models in slab geometries are still essential for researchers to simulate the separation performance, particularly to understand the effects of the surface/interface structure, pore sieving, and exposed lattice plane on guest permeability. However, to date, no database or method has been established to provide researchers with numerous membrane models, restricting the further development of related theoretical studies. Herein, we propose an algorithm and develop a tool called the "MOF-membrane constructor" to realize the high-throughput construction of membrane models based on the MOF crystal structures. Using this tool, membrane models can be generated with desired sizes, reasonable surface terminations, and assigned exposed crystal planes. The tool can also deduce the most prominent surface in the Bravais-Friedel-Donnay-Harker morphology or identify the pores in MOF crystals and automatically determine an exposed plane for each membrane model. Thus, an MOF-membrane database can be established rapidly according to user simulation requirements. This study can considerably improve the efficiency of building MOF membrane models and may be beneficial for the future development of simulation studies on MOF membranes.


Metal-Organic Frameworks , Algorithms , Computer Simulation , Databases, Factual , Permeability
12.
Microsyst Nanoeng ; 9: 142, 2023.
Article En | MEDLINE | ID: mdl-37954039

Traditional light sources cannot emit an electromagnetic (EM) field with an orbital angular momentum (OAM), limiting their applications in modern optics. The recent development of the OAM laser, mainly based on micro- and nanostructures, can satisfy the increasing requirements for on-chip photonics and information capacities. Nevertheless, the photonic structures have fixed parameters that prevent these OAM lasers from being dynamically tuned. Here, we propose tunable vortex lasing from a microring cavity integrated by a phase change material, Ge2Sb2Te5 (GST225). By modulating the complex refractive index to create an exceptional point (EP) to break the degeneracy of whispering gallery modes with opposite orientations, the microlaser working at the EP can impart an artificial angular momentum, thus emitting vortex beams with well-defined OAM. The grating scatter on the edge of the microring can provide efficient vertical radiation. The vortex laser wavelength from the GST225/InGaAsP dual-layered microring cavity can be dynamically tuned by switching the state of GST225 between amorphous and crystalline without changing the microring geometry. We construct an electric-thermal model to show the tuning range of operating wavelengths (EPs) from 1544.5 to 1565.9 nm in ~25 ns. Our study on high-speed tunable PT-symmetry vortex lasers facilitates the next generation of integrated optoelectronic devices for optical computing and communications in both classical and quantum regions.

13.
J Mech Behav Biomed Mater ; 147: 106149, 2023 11.
Article En | MEDLINE | ID: mdl-37782989

Polymethylmethacrylate (PMMA) bone cement has been widely used as a critical material for fixing prostheses and filling bone defects. The shrinkage of PMMA bone cement was addressed by the additives, however, the uneven integral water absorption and expansion performance as well as the deteriorated mechanical properties of the modified bone cement after immersion in phosphate buffered saline (PBS) and simulation body fluid (SBF) affected the long-term stability after implantation. Calcium phosphate cement (CPC) is a biomaterial with promising applications in orthopedics, whose hydration reaction provides an important driving force for the transfer of water. Besides, the mechanical properties of CPC can be enhanced with the curing process. In this study, CPC was utilized to modify the poly(methyl methacrylate-acrylic acid) [P(MMA-AA)] bone cement. The results demonstrated the successful construction of interconnected CPC water delivery networks in the P(MMA-AA)/CPC composite, the water absorption ratio and expansion ratio of the composite were up to 131.18 ± 9.14% and 168.19 ± 5.44%, respectively. Meanwhile, the transformation of CPC water delivery networks into rigid mechanical support networks as well as the chelation interaction between organic-inorganic enhanced the mechanical properties of the composite after immersion, the compressive strength after immersion reached 62.97 ± 0.97 MPa, which was 27.65% higher than that before immersion. The degradation ratio of the composite was up to 13.76 ± 0.23% after 9 days of immersion, which was 16.4% higher than that of CPC. Furthermore, composites exhibited superior biocompatibility as the release of Ca2+. Therefore, P(MMA-AA)/CPC composite serves as a promising medical filling material for clinical use.


Bone Cements , Polymethyl Methacrylate , Methylmethacrylate , Water , Calcium Phosphates , Methacrylates , Materials Testing
14.
Sci Total Environ ; 904: 166664, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37659557

Iron (Fe) isotope is a potential tool for tracking redox process and geochemical cycling in terrestrial environment. In this study, Fe concentration and its isotopic composition (δ56Fe) in two typical Gleysol profiles (M1 and M2) were investigated to distinguish the processes which influence the variation of Fe isotopic composition during redox regimes in the Mun River Basin (MRB). Under oxidizing condition, Fe(II) was oxidized and re-precipitated to form Fe(III) (hydr)oxides zone (Fe nodule-containing zone) in two Gleysol profiles, leading to extremely light Fe isotopes in these zones. The results revealed that the lowest δ56Fe value in Fe(III) (hydr)oxides zone was derived from the migration of light Fe isotopes in upper zone, and Fe(II) was retained and oxidized to Fe(III) (hydr)oxides. Proton-promoted dissolution and leaching were two critical factors leading to a decrease in Fe concentration, which were accompanied by the accumulation of heavy Fe isotopes in the upper zone of M1 profile. In M2 profile, light Fe induced by soil organic matter was accumulated in the topsoil with abundant organic matter. These findings provide comprehensive information of Fe isotopic fractionation and Fe cycling in soil profiles, which would contribute to the understanding of biogeochemical elemental cycling in terrestrial ecosystems.

15.
Chem Sci ; 14(36): 9733-9743, 2023 Sep 20.
Article En | MEDLINE | ID: mdl-37736641

Red room-temperature phosphorescence (RTP) materials based on non-metallic organic compounds are less reported compared to the commonly found green RTP materials. Here, we propose a novel approach to obtain red RTP materials by integrating and combining two functional units, resembling a jigsaw puzzle. In this approach, benzo[c][2,1,3]thiadiazole (BZT) serves as the red RTP unit, while a folding unit containing sulphur/oxygen is responsible for enhancing spin-orbit coupling (SOC) to accelerate the intersystem crossing (ISC) process. Three new molecules (SS-BZT, SO-BZT, and OO-BZT) were designed and synthesized, among which SS-BZT and SO-BZT with folded geometries demonstrate enhanced red RTP in their monodisperse films compared to the parent BZT. Meanwhile, the SS-BZT film shows a dual emission consisting of blue fluorescence and red RTP, with a significant spectral separation of approximately 150 nm, which makes the SS-BZT film highly suitable for applications in optical oxygen sensing and ratiometric detection. Within the oxygen concentration range of 0-1.31%, the SS-BZT film demonstrates a quenching constant of 2.66 kPa-1 and a quenching efficiency of 94.24%, indicating that this probe has the potential to accurately detect oxygen in a hypoxic environment.

16.
Front Immunol ; 14: 1222425, 2023.
Article En | MEDLINE | ID: mdl-37662915

Cell migration-inducing protein (CEMIP), also known as KIAA1199 and hyaluronan-binding protein involved in hyaluronan depolymerization, is a new member of the hyaluronidase family that degrades hyaluronic acid (HA) and remodels the extracellular matrix. In recent years, some studies have reported that CEMIP can promote the proliferation, invasion, and adhesion of various tumor cells and can play an important role in bacterial infection and arthritis. This review focuses on the pathological mechanism of CEMIP in a variety of diseases and expounds the function of CEMIP from the aspects of inhibiting cell apoptosis, promoting HA degradation, inducing inflammatory responses and related phosphorylation, adjusting cellular microenvironment, and regulating tissue fibrosis. The diagnosis and treatment strategies targeting CEMIP are also summarized. The various functions of CEMIP show its great potential application value.


Arthritis , Hyaluronic Acid , Humans , Hyaluronoglucosaminidase , Apoptosis , Cell Movement
17.
Colloids Surf B Biointerfaces ; 230: 113485, 2023 Oct.
Article En | MEDLINE | ID: mdl-37556884

Oxidative stress is one of the factors that promote melanogenesis. Trivalent iron ions play a key role in regulating the iron-catalysed oxidative stress response. A novel SERS flexible membrane sensor based on tannic acid with good sensitivity and uniformity was prepared by green in situ reduction of gold nanoparticles on bacterial cellulose membrane(BCM)with a simple and highly selective method to detect Fe3+. Under alkaline conditions, Fe3+ is adsorbed on the BCM-TA@Au NPs flexible membrane by tannic acid (TA) through chelation, thus enabling the detection of Fe3+. Furthermore, this simple detection system has a wide linear detection range and high sensitivity to effortlessly evaluate Fe3+ at concentrations up to 10-7 M. More importantly, the proposed SERS flexible substrate performed well in determining Fe3+ concentrations in B16 melanocytes, providing new insights into the factors affecting the melanin synthesis pathway and providing a potential biomarker for melanoma treatment.


Metal Nanoparticles , Gold , Iron , Oxidation-Reduction , Tannins , Spectrum Analysis, Raman/methods
18.
Angew Chem Int Ed Engl ; 62(34): e202306475, 2023 Aug 21.
Article En | MEDLINE | ID: mdl-37367201

In recent years, pure organic room-temperature phosphorescence (RTP) with highly efficient and long-persistent afterglow has drawn substantial awareness. Commonly, spin-orbit coupling can be improved by introducing heavy atoms into pure-organic molecules. However, this strategy will simultaneously increase the radiative and non-radiative transition rate, further resulting in dramatic decreases in the excited state lifetime and afterglow duration. Here in this work, a highly symmetric bird-like structure tetraphenylene (TeP), and its three symmetrical halogenated derivatives (TeP-F, TeP-Cl and TeP-Br) are synthesized, while their RTP properties and mechanisms are systematically investigated by both theoretical and experimental approaches. As the results, the rigid, highly twisted conformation of TeP restricts the non-radiative processes of RTP and gives rise to the enhancement of electron-exchange, which can contribute to the RTP radiation process. Despite the faint RTP of the bromine and chlorine-substituted ones (TeP-Br, TeP-Cl), the fluoro-substituted TeP-F exhibited a long phosphorescent lifetime up to 890 ms, corresponding to an extremely long RTP afterglow over 8 s, which could be incorporated into the best series of non-heavy-atom RTP materials reported in previous literature.

19.
Nanomaterials (Basel) ; 13(9)2023 May 03.
Article En | MEDLINE | ID: mdl-37177077

Radon (Rn) and its decay products are the primary sources of natural ionizing radiation exposure for the public, posing significant health risks, including being a leading cause of lung cancer. Porous material-based adsorbents offer a feasible and efficient solution for controlling Rn concentrations in various scenes to achieve safe levels. However, due to competitive adsorption between Rn and water, finding candidates with a higher affinity and capacity for capturing Rn in humid air remains a significant challenge. Here, we conducted high-throughput computational screening of 8641 two-dimensional covalent organic frameworks (2D COFs) in moist air using grand canonical Monte Carlo simulations. We identified the top five candidates and revealed the structure-performance relationship. Our findings suggest that a well-defined cavity with an approximate spherical inner space, with a diameter matching that of Rn, is the structural basis for a proper Rn capturing site. This is because the excellent steric match between the cavity and Rn maximizes their van der Waals dispersion interactions. Additionally, the significant polarization electrostatic potential surface of the cavity can regulate the adsorption energy of water and ultimately impact Rn selectivity. Our study offers a potential route for Rn management using 2D COFs in moist air and provides a scientific basis for further experimentation.

20.
Foods ; 12(8)2023 Apr 19.
Article En | MEDLINE | ID: mdl-37107500

The quality and safety of sufu fermented using Mucor racemosa M2 was studied and compared with naturally fermented sufu. After 90 days post-fermentation, both naturally fermented and inoculated fermented sufu reached the maturity standard of sufu, and the degree of protein hydrolysis of natural sufu (WP/TP: 34% ± 1%; AAN/TN: 33% ± 1%) was slightly higher than that of the inoculated sufu (WP/TP: 28.2% ± 0.4%; AAN/TN: 27% ± 1%). The hardness and adhesiveness of inoculated sufu (Hadness: 1063 g ± 211 g; Adhesiveness: -80 g ± 47 g) were significantly greater than those of natural sufu (Hadness: 790 g ± 57 g; Adhesiveness: -23 g ± 28 g), and the internal structure of natural sufu was denser and more uniform than that of inoculated sufu. A total of 50 aroma compounds were detected in natural and inoculated sufu. The total number of bacterial colonies in naturally fermented sufu was significantly higher than that in inoculated sufu, and the pathogenic bacteria in both types of fermented sufu were lower than the limit of pathogenic bacteria required in fermented soybean products. The content of biogenic amines in sufu was determined by high performance liquid chromatography (HPLC), and the results showed that the content of biogenic amines (Putrescine, Cadaverine, Histamine, Tyramine, etc.) in naturally fermented sufu was significantly higher than that in inoculated fermented sufu. Especially the histamine content, after 90 days of fermentation, was found to be 64.95 ± 4.55 for inoculated fertilization and 44.24 ± 0.71 for natural fertilization. Overall, the quality of inoculated sufu was somewhat better than that of natural sufu, and the M2 strain can be used to ferment sufu.

...