Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Langmuir ; 39(42): 14935-14944, 2023 10 24.
Article En | MEDLINE | ID: mdl-37842927

Compared with a single semiconductor, the heterojunction formed by two different semiconductors usually has higher light utilization and better photoelectric performance. By using stable TiO2 nanotubes as the main subject, CdSe/TiO2NTs heterojunctions were synthesized by a hydrothermal method. XRD, TEM, SEM, PL, UV-vis, and EIS were used to characterize the fabricated CdSe/TiO2NTs. Under visible light irradiation, CdSe/TiO2NTs heterojunctions exhibited a higher absorption intensity and lower degree of photogenerated carrier recombination than TiO2. The electrons and holes were proven to be effectively separated in this heterojunction via theoretical calculation. Under CdSe/TiO2NTs' optimal conditions, the glucose concentrations (10-90 µM) had a linear relationship with the photocurrent value, and the detection limit was 3.1 µM. Moreover, the CdSe/TiO2NTs sensor exhibited good selectivity and stability. Based on the experimental data and theoretical calculations, its PEC sensing mechanism was also illuminated.


Cadmium Compounds , Selenium Compounds , Cadmium Compounds/chemistry , Selenium Compounds/chemistry , Titanium/chemistry , Glucose
2.
J Mol Cell Cardiol ; 173: 101-114, 2022 12.
Article En | MEDLINE | ID: mdl-36308866

Autophagy is an adaptation mechanism to keep cellular homeostasis, and its deregulation is implicated in various cardiovascular diseases. After vein grafting, hemodynamic factors play crucial roles in neointimal hyperplasia, but the mechanisms are poorly understood. Here, we investigated the impacts of arterial cyclic stretch on autophagy of venous smooth muscle cells (SMCs) and its role in neointima formation after vein grafting. Rat jugular vein graft were generated via the 'cuff' technique. Autophagic flux in venous SMCs is impaired in 3-day, 1-week and 2-week grafted veins. 10%-1.25 Hz cyclic stretch (arterial stretch) loaded with FX5000 stretch system on venous SMCs blocks cellular autophagic flux in vitro and shows no significant impact on activity of mTORC1 and AMPK. Microtubule depolymerization but not lysosome dysfunction nor autophagosome/amphisome-lysosomal membrane fusion blockade is involved in the impairment of autophagic flux. Microtubule stabilization, induced by paclitaxel treatment and external stents intervention respectively, restores venous SMC autophagy and ameliorates neointimal hyperplasia in vivo. Moreover, autophagy impairment causes accumulation of the cargo receptor p62, which sequesters keap1 to p62 aggregates and results in the stabilization and nuclear translocation of nrf2 to modulate its target antioxidative gene SLC7A11. p62 silencing abrogates the increases of nrf2 and slc7a11 protein expression, glutathione level and venous SMC proliferation triggered by arterial cyclic stretch in vitro, and further hinders nrf2 nuclear translocation, reduces neointimal thickness after vein grafting in vivo. p62 (T349A) mutation also inhibited venous SMC proliferation and alleviated neointimal formation in vivo. These findings suggest that stabilization of microtubules to rescue autophagic flux or direct silencing of p62 are potential therapeutic strategies for neointimal hyperplasia.


Muscle, Smooth, Vascular , Neointima , Rats , Animals , Neointima/pathology , Hyperplasia/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Muscle, Smooth, Vascular/pathology , NF-E2-Related Factor 2/metabolism , Cells, Cultured , Signal Transduction , Autophagy
3.
J Cell Sci ; 135(7)2022 04 01.
Article En | MEDLINE | ID: mdl-35297486

Vascular intimal injury initiates various cardiovascular disease processes. Exposure to subendothelial collagen can cause platelet activation, leading to collagen-activated platelet-derived microvesicles (aPMVs) secretion. In addition, vascular smooth muscle cells (VSMCs) exposed to large amounts of aPMVs undergo abnormal energy metabolism; they proliferate excessively and migrate after the loss of endothelium, eventually contributing to neointimal hyperplasia. However, the roles of aPMVs in VSMC energy metabolism are still unknown. Our carotid artery intimal injury model indicated that platelets adhered to injured blood vessels. In vitro, phosphorylated Pka (cAMP-dependent protein kinase) content was increased in aPMVs. We also found that aPMVs significantly reduced VSMC glycolysis and increased oxidative phosphorylation, and promoted VSMC migration and proliferation by upregulating phosphorylated PRKAA (α catalytic subunit of AMP-activated protein kinase) and phosphorylated FoxO1. Compound C, an inhibitor of PRKAA, effectively reversed the enhancement of cellular function and energy metabolism triggered by aPMVs in vitro and neointimal formation in vivo. We show that aPMVs can affect VSMC energy metabolism through the Pka-PRKAA-FoxO1 signaling pathway and this ultimately affects VSMC function, indicating that the shift in VSMC metabolic phenotype by aPMVs can be considered a potential target for the inhibition of hyperplasia. This provides a new perspective for regulating the abnormal activity of VSMCs after injury.


Carotid Artery Injuries , Muscle, Smooth, Vascular , AMP-Activated Protein Kinases/metabolism , Animals , Blood Platelets/metabolism , Carotid Artery Injuries/genetics , Carotid Artery Injuries/metabolism , Cell Movement , Cell Proliferation , Cells, Cultured , Cyclic AMP-Dependent Protein Kinases/metabolism , Disease Models, Animal , Energy Metabolism , Humans , Hyperplasia/complications , Hyperplasia/metabolism , Hyperplasia/pathology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Neointima/complications , Neointima/metabolism , Neointima/pathology
4.
Nanomaterials (Basel) ; 13(1)2022 Dec 20.
Article En | MEDLINE | ID: mdl-36615922

The formation of heterojunction structures can effectively prevent the recombination of photogenerated electron-hole pairs in semiconductors and result in the enhancement of photoelectric properties. Using TiO2 nanotubes (prepared using the hydrothermal-impregnation method) as carriers, CdS-TiO2NTs were fabricated as a photoelectrochemical (PEC) sensor, which can be used under visible light and can exhibit good PEC performance due to the existence of the heterojunction structure. The experimental results show that the prepared CdS-TiO2NTs electrode had a linear response to 2-16 mM glutathione (GSH). The sensor's sensitivity and detection limit (LOD) were 102.9 µA·mM-1 cm-2 and 27.7 µM, respectively. Moreover, the biosensor had good stability, indicating the potential application of this kind of heterojunction PEC biosensor.

...