Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 587, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32001680

RESUMEN

Various quantum applications can be reduced to estimating expectation values, which are inevitably deviated by operational and environmental errors. Although errors can be tackled by quantum error correction, the overheads are far from being affordable for near-term technologies. To alleviate the detrimental effects of errors on the estimation of expectation values, quantum error mitigation techniques have been proposed, which require no additional qubit resources. Here we benchmark the performance of a quantum error mitigation technique based on probabilistic error cancellation in a trapped-ion system. Our results clearly show that effective gate fidelities exceed physical fidelities, i.e., we surpass the break-even point of eliminating gate errors, by programming quantum circuits. The error rates are effectively reduced from (1.10 ± 0.12) × 10-3 to (1.44 ± 5.28) × 10-5 and from (0.99 ± 0.06) × 10-2 to (0.96 ± 0.10) × 10-3 for single- and two-qubit gates, respectively. Our demonstration opens up the possibility of implementing high-fidelity computations on a near-term noisy quantum device.

2.
Nat Commun ; 10(1): 4692, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31619670

RESUMEN

Modern computation relies crucially on modular architectures, breaking a complex algorithm into self-contained subroutines. A client can then call upon a remote server to implement parts of the computation independently via an application programming interface (API). Present APIs relay only classical information. Here we implement a quantum API that enables a client to estimate the absolute value of the trace of a server-provided unitary operation [Formula: see text]. We demonstrate that the algorithm functions correctly irrespective of what unitary [Formula: see text] the server implements or how the server specifically realizes [Formula: see text]. Our experiment involves pioneering techniques to coherently swap qubits encoded within the motional states of a trapped [Formula: see text] ion, controlled on its hyperfine state. This constitutes the first demonstration of modular computation in the quantum regime, providing a step towards scalable, parallelization of quantum computation.

3.
Nature ; 572(7769): 363-367, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31341282

RESUMEN

Quantum computers can efficiently solve classically intractable problems, such as the factorization of a large number1 and the simulation of quantum many-body systems2,3. Universal quantum computation can be simplified by decomposing circuits into single- and two-qubit entangling gates4, but such decomposition is not necessarily efficient. It has been suggested that polynomial or exponential speedups can be obtained with global N-qubit (N greater than two) entangling gates5-9. Such global gates involve all-to-all connectivity, which emerges among trapped-ion qubits when using laser-driven collective motional modes10-14, and have been implemented for a single motional mode15,16. However, the single-mode approach is difficult to scale up because isolating single modes becomes challenging as the number of ions increases in a single crystal, and multi-mode schemes are scalable17,18 but limited to pairwise gates19-23. Here we propose and implement a scalable scheme for realizing global entangling gates on multiple 171Yb+ ion qubits by coupling to multiple motional modes through modulated laser fields. Because such global gates require decoupling multiple modes and balancing all pairwise coupling strengths during the gate, we develop a system with fully independent control capability on each ion14. To demonstrate the usefulness and flexibility of these global gates, we generate a Greenberger-Horne-Zeilinger state with up to four qubits using a single global operation. Our approach realizes global entangling gates as scalable building blocks for universal quantum computation, motivating future research in scalable global methods for quantum information processing.

4.
Chem Sci ; 9(4): 836-840, 2018 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-29629150

RESUMEN

Molecules are one of the most demanding quantum systems to be simulated by quantum computers due to their complexity and the emergent role of quantum nature. The recent theoretical proposal of Huh et al. (Nature Photon., 9, 615 (2015)) showed that a multi-photon network with a Gaussian input state can simulate a molecular spectroscopic process. Here, we present the first quantum device that generates a molecular spectroscopic signal with the phonons in a trapped ion system, using SO2 as an example. In order to perform reliable Gaussian sampling, we develop the essential experimental technology with phonons, which includes the phase-coherent manipulation of displacement, squeezing, and rotation operations with multiple modes in a single realization. The required quantum optical operations are implemented through Raman laser beams. The molecular spectroscopic signal is reconstructed from the collective projection measurements for the two-phonon-mode. Our experimental demonstration will pave the way to large-scale molecular quantum simulations, which are classically intractable, but would be easily verifiable by real molecular spectroscopy.

5.
Nat Commun ; 9(1): 195, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29335446

RESUMEN

Quantum field theories describe a variety of fundamental phenomena in physics. However, their study often involves cumbersome numerical simulations. Quantum simulators, on the other hand, may outperform classical computational capacities due to their potential scalability. Here we report an experimental realization of a quantum simulation of fermion-antifermion scattering mediated by bosonic modes, using a multilevel trapped ion, which is a simplified model of fermion scattering in both perturbative and non-perturbative quantum electrodynamics. The simulated model exhibits prototypical features in quantum field theory including particle pair creation and annihilation, as well as self-energy interactions. These are experimentally observed by manipulating four internal levels of a 171Yb+ trapped ion, where we encode the fermionic modes, and two motional degrees of freedom that simulate the bosonic modes. Our experiment establishes an avenue towards the efficient implementation of field modes, which may prove useful in studies of quantum field theories including non-perturbative regimes.

6.
Proc Natl Acad Sci U S A ; 114(5): 891-896, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28077456

RESUMEN

A standard method to obtain information on a quantum state is to measure marginal distributions along many different axes in phase space, which forms a basis of quantum-state tomography. We theoretically propose and experimentally demonstrate a general framework to manifest nonclassicality by observing a single marginal distribution only, which provides a unique insight into nonclassicality and a practical applicability to various quantum systems. Our approach maps the 1D marginal distribution into a factorized 2D distribution by multiplying the measured distribution or the vacuum-state distribution along an orthogonal axis. The resulting fictitious Wigner function becomes unphysical only for a nonclassical state; thus the negativity of the corresponding density operator provides evidence of nonclassicality. Furthermore, the negativity measured this way yields a lower bound for entanglement potential-a measure of entanglement generated using a nonclassical state with a beam-splitter setting that is a prototypical model to produce continuous-variable (CV) entangled states. Our approach detects both Gaussian and non-Gaussian nonclassical states in a reliable and efficient manner. Remarkably, it works regardless of measurement axis for all non-Gaussian states in finite-dimensional Fock space of any size, also extending to infinite-dimensional states of experimental relevance for CV quantum informatics. We experimentally illustrate the power of our criterion for motional states of a trapped ion, confirming their nonclassicality in a measurement-axis-independent manner. We also address an extension of our approach combined with phase-shift operations, which leads to a stronger test of nonclassicality, that is, detection of genuine non-Gaussianity under a CV measurement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...