Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int Immunopharmacol ; 142(Pt B): 113228, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39317054

RESUMEN

Acute lung injury (ALI) is a significant clinical problem associated with high morbidity and mortality. Inflammation induced by gram-positive bacterial pathogens, specifically Staphylococcus aureus (S. aureus), plays a major role in ALI development and other infectious diseases. Taurochenodeoxycholic acid (TCDCA) exhibits diverse biological activities and pharmacological effects. Nevertheless, the potential preventive and therapeutic effects of TCDCA and the underlying mechanism in the ALI induced by S. aureus infection remain poorly understood. Our results showed that the TCDCA (0.1 µg/g) had a beneficial effect on lung damage in mice infected with S. aureus. Specifically, TCDCA could lead to a reduction in pulmonary focal or diffuse oedema and a decrease in the infiltration of neutrophils in the S. aureus-infected lungs. We observed that TCDCA could significantly down-regulate the expression of HMGB1 in lung from S. aureus-infected mice. Furthermore, TCDCA could attenuate the production of inflammatory mediators in lungs and serum from S. aureus-infected mice. This finding further supported the notion that TCDCA potentially protects against tissue injury. In addition, TCDCA regulated the secretion of the proinflammatory cytokine, the activation of MAPK and NF-κB signaling pathways, and the activation of TLR2 in macrophages. Notably, TCDCA might reduce the secretion levels of inflammatory mediators and lung damage through the TLR2 in S. aureus-infected macrophages or mice. Altogether, TCDCA shows promise as a potential drug for preventing and treating ALI by modulating or inhibiting inflammatory mediators through TLR2.

2.
Int J Biol Macromol ; 278(Pt 4): 134840, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39217040

RESUMEN

Hen egg low-density lipoprotein (heLDL), as alternative of serum-derived LDL, was used as drug delivery system of ceftiofur (CEF). The CEF-loaded hen egg low-density lipoprotein (CEF-heLDL) with complete apolipoprotein structure and high drug loading rate was synthesized, possesses suitable particle size. CEF-heLDL undergoes cellular uptake and colocalizes with lysosomes in vitro. An intracellular infection model of the bovine endometrial epithelial cells and a coeliac-induced inflammation model of mice by Staphylococcus aureus (S. aureus) were established, and significantly lower intracellular S. aureus levels of CEF-heLDL group than CEF-free group (P < 0.001) was observed. The antibacterial efficacy was sustained for 24 h. Up to 400 mg/kg of CEF-heLDL, 20 times the clinical practice, were intraperitoneally administrated, and no significant toxicity signs on mice were observed. HeLDLs is an effective, safe, and cheap drug carrier, and could also be used for transmembrane delivering other antibiotics.


Asunto(s)
Antibacterianos , Cefalosporinas , Pollos , Lipoproteínas LDL , Staphylococcus aureus , Animales , Staphylococcus aureus/efectos de los fármacos , Lipoproteínas LDL/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Ratones , Cefalosporinas/farmacología , Cefalosporinas/farmacocinética , Cefalosporinas/química , Bovinos , Femenino , Portadores de Fármacos/química , Infecciones Estafilocócicas/tratamiento farmacológico , Huevos
3.
Anim Reprod Sci ; 266: 107513, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38843662

RESUMEN

Escherichia coli (E. coli), a Gram-negative bacterium, is the primary pathogen responsible for endometritis in dairy cattle. The outer membrane components of E. coli, namely lipopolysaccharide (LPS) and bacterial lipoprotein, have the capacity to trigger the host's innate immune response through pattern recognition receptors (PRRs). Tolerance to bacterial cell wall components, including LPS, may play a crucial role as an essential regulatory mechanism during bacterial infection. However, the precise role of Braun lipoprotein (BLP) tolerance in E. coli-induced endometritis in dairy cattle remains unclear. In this study, we aimed to investigate the impact of BLP on the regulation of E. coli infection-induced endometritis in dairy cattle. The presence of BLP was found to diminish the expression and release of proinflammatory cytokines (IL-8 and IL-6), while concurrently promoting the expression and release of the anti-inflammatory cytokine IL-10 in endometrial epithelial cells (EECs). Furthermore, BLP demonstrated the ability to impede the activation of MAPK (ERK and p38) and NF-κB (p65) signaling pathways, while simultaneously enhancing signaling through the STAT3 pathway in EECs. Notably, BLP exhibited a dual role, acting both as an activator of TLR2 and as a regulator of TLR2 activation in LPS- and E. coli-treated EECs. In E. coli-infected endometrial explants, the presence of BLP was noted to decrease the release of proinflammatory cytokines and the expression of HMGB1, while simultaneously enhancing the release of anti-inflammatory cytokines. Collectively, our findings provide evidence that the bacterial component BLP plays a protective role in E. coli-induced endometritis in dairy cattle.


Asunto(s)
Enfermedades de los Bovinos , Endometrio , Infecciones por Escherichia coli , Escherichia coli , Animales , Femenino , Bovinos , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/inmunología , Endometrio/metabolismo , Enfermedades de los Bovinos/microbiología , Enfermedades de los Bovinos/metabolismo , Enfermedades de los Bovinos/inmunología , Lipoproteínas/metabolismo , Endometritis/veterinaria , Endometritis/microbiología , Endometritis/metabolismo , Endometritis/inmunología , Citocinas/metabolismo , Citocinas/genética , Tolerancia Inmunológica
5.
Int Immunopharmacol ; 129: 111526, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38295545

RESUMEN

Staphylococcus aureus (S. aureus) is one of the most infamous and widespread bacterial pathogens, causing a hard-to-estimate number of uncomplicated skin infections and probably hundreds of thousands to millions of more severe, invasive infections globally per year. S. aureus may also be acquired from animals, especially in the livestock industry. The interaction mechanism of host and S. aureus has significance for finding ways to against S. aureus infection and control inflammatory response of host, while the molecular biological activities after S. aureus infection, particular in inflammatory and immune cells are not fully clear. The present study aimed to explore whether pattern recognition receptors (PRRs) mediate prostaglandin D2 (PGD2) synthesis and PGD2 participates in the regulation of inflammatory response in macrophages during S. aureus infection or synthetic bacterial lipopeptide (Pam2CSK4) stimulation. PGD2 secretion level was enhanced by mice peritoneal macrophages infected with the S. aureus. The results indicated that PGD2 secretion was impaired in S. aureus infected-macrophages from toll-like receptors 2 (TLR2)-deficient and NLR pyrin domain-containing 3 (NLRP3)-deficient mice. PGD2 synthetase (hematopoietic PGD synthase, HPGDS) inhibitors could reduce the activation of macrophage mitogen-activated protein kinase (MAPK)/nuclear factor-κ-gene binding (NF-κB) signaling pathways. HPGDS inhibition impaired cytokines (TNF-α, IL-1ß, IL-10 and RANTES) secretion and macrophage phagocytosis during S. aureus infection. In addition, inhibition of endogenous PGD2 synthesis was unable to affect the TLR2 and NLRP3 expression in S. aureus-infected macrophages. Taken together, macrophage PGD2 secretion after S. aureus infection depended on receptors TLR2 and NLRP3, and the induced PGD2 participated in the regulation of inflammatory response in S. aureus-infected macrophages. Interestingly, it was found that exogenous PGD2 down-regulated the cytokines secretion and had no effect on phagocytosis in the S. aureus-infected macrophages.


Asunto(s)
Staphylococcus aureus , Receptor Toll-Like 2 , Animales , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Macrófagos , FN-kappa B/metabolismo , Citocinas/metabolismo
7.
Prostaglandins Other Lipid Mediat ; 169: 106772, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37669705

RESUMEN

Prostaglandin D2 (PGD2) synthesis is closely associated with the innate immune response mediated by pattern recognition receptors (PPRs). We determined PGD2 synthesis whether mediated by Toll-like receptor 2 (TLR2), TLR4 and Nod-like receptor pyrin domain-containing protein 3 (NLRP3) in Escherichia coli (E. coli)-, lipopolysaccharide (LPS)- and Braun lipoprotein (BLP)-stimulated macrophages. Our data demonstrate that TLR2, TLR4, and NLRP3 could regulate the synthesis of PGD2 through cyclo-oxygenase-2 (COX-2) and hematopoietic PGD synthase (H-PGDS) in E. coli-, LPS- or BLP-stimulated macrophages, suggesting that TLR2, TLR4, and NLRP3 are critical in regulating PGD2 secretion by controlling PGD2 synthetase expression in E. coli-, LPS- or BLP-stimulated macrophages. The H-PGDS (a PGD2 specific synthase) inhibitor pre-treatment could down-regulate the secretion of TNF-α, RANTES and IL-10 in LPS- and E. coli-stimulated macrophage. Meanwhile, H-PGDS inhibitor could down-regulate the secretion of TNF-α, while up-regulated RANTES and IL-10 secretion in BLP-stimulated macrophages, suggesting that PGD2 could regulate the secretion of cytokines and chemokines in E. coli-, LPS- or BLP-stimulated macrophages. Furthermore, exogenous PGD2 regulates the secretion of cytokines and chemokines through activation of MAPK and NF-κB signaling pathways after E. coli-, LPS- or BLP stimulation in macrophages. Taken together, PGD2 is found able to regulate E. coli-induced inflammatory responses through TLR2, TLR4, and NLRP3 in macrophages.


Asunto(s)
Escherichia coli , Receptor Toll-Like 2 , Receptor Toll-Like 2/metabolismo , Escherichia coli/metabolismo , Receptor Toll-Like 4/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Interleucina-10/metabolismo , Lipopolisacáridos/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Prostaglandinas/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , FN-kappa B/metabolismo , Quimiocinas/metabolismo
8.
Gen Comp Endocrinol ; 344: 114384, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37722460

RESUMEN

Rabbit duodenum has been used for examining the ability of motilin to cause muscle contraction in vitro. A motilin-related peptide, ghrelin, is known to be involved in the regulation of gastrointestinal (GI) motility in various animals, but its ability to cause rabbit GI contraction have not been well examined. The aim of this study is to clarify the action of rat ghrelin and its interaction with motilin in the rabbit duodenum. The mRNA expression of ghrelin and motilin receptors was also examined using RT-PCR. Rat ghrelin (10-9-10-6 M) did not change the contractile activity of the duodenum measured by the mean muscle tonus and area under the curve of contraction waves. In agreement with this result, the distribution of ghrelin receptor mRNA in the rabbit GI tract varied depending on the GI region from which the samples were taken; the expression level in the duodenum was negligible, but that in the esophagus or stomach was significant. On the other hand, motilin (10-10-10-6 M) caused a concentration-dependent contraction by means of increased mean muscle tonus, and consistently, motilin receptor mRNA was expressed heterogeneously depending on the GI region (esophagus = stomach = colon = rectum < duodenum = jejunum = ileum < cecum). Expression level of motilin receptor was comparable to that of ghrelin receptor in the esophagus and stomach. Pretreatment with ghrelin (10-6 M) prior to motilin did not affect the contractile activity of motilin in the duodenum. In conclusion, ghrelin does not affect muscle contractility or motilin-induced contraction in the rabbit duodenum, which is due to the lack of ghrelin receptors. The present in vitro results suggest that ghrelin might not be a regulator of intestinal motility in rabbits.


Asunto(s)
Ghrelina , Motilina , Conejos , Ratas , Animales , Ghrelina/farmacología , Motilina/farmacología , Receptores de Ghrelina/genética , Duodeno , Motilidad Gastrointestinal , Contracción Muscular , ARN Mensajero
9.
Int Immunopharmacol ; 121: 110556, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37364329

RESUMEN

The host Toll-like Receptor-2 (TLR2) and Toll-like Receptor-4 (TLR4) play critical roles in defense against Escherichia coli (E. coli) infection is well-known. The NLR pyrin domain-containing 3 (NLRP3) inflammasome is also an important candidate during the host-recognized pathogen, while the roles of NLRP3 in the host inflammatory response to E. coli infection remains unclear. This study aimed to explore the roles of NLRP3 in regulating the inflammatory response in E. coli infection-induced mice. Our result indicated that compared to wild-type mice, the TLR2-deficient (TLR2-/-), TLR4-deficient (TLR4-/-), and NLRP3-deficient (NLRP3-/-) mice had significant decrease in liver damage after stimulation with Lipopolysaccharide (LPS, 1 µg/mL), Braun lipoprotein (BLP, 1 µg/mL), or infected by WT E. coli (1 × 107 CFU, MOI 5:1). Meanwhile, compared with wild-type mice, the TNF-α and IL-1ß production in serum decreased in TLR2-/-, TLR4-/-, and NLRP3-/- mice after LPS, BLP treatment, or WT E. coli infection. In macrophages from NLRP3-/- mice showed significantly reduced secretion of TNF-α and IL-1ß in response to stimulation with LPS, BLP, or WT E. coli infection compared with macrophages from wild-type mice. These results indicate that besides TLR2 and TLR4, NLRP3 also plays a critical role in host inflammatory responses to defense against E. coli infection, and might provide a therapeutic target in combating disease with bacterium infection.


Asunto(s)
Infecciones por Escherichia coli , Receptor Toll-Like 2 , Animales , Ratones , Escherichia coli , Lipopolisacáridos/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR , Receptor Toll-Like 4 , Factor de Necrosis Tumoral alfa
10.
Front Microbiol ; 14: 1157451, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37125171

RESUMEN

Background: Previous studies have implicated a vital association between gut microbiota/gut microbial metabolites and low back pain (LBP), but their causal relationship is still unclear. Therefore, we aim to comprehensively investigate their causal relationship and identify the effect of gut microbiota/gut microbial metabolites on risk of LBP using a two-sample Mendelian randomization (MR) study. Methods: Summary data from genome-wide association studies (GWAS) of gut microbiota (18,340 participants), gut microbial metabolites (2,076 participants) and LBP (FinnGen biobank) were separately obtained. The inverse variance-weighted (IVW) method was used as the main MR analysis. Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) and MR-Egger regression were conducted to evaluate the horizontal pleiotropy and to eliminate outlier single-nucleotide polymorphisms (SNPs). Cochran's Q-test was applied for heterogeneity detection. Besides, leave-one-out analysis was conducted to determine whether the causal association signals were driven by any single SNP. Finally, a reverse MR was performed to evaluate the possibility of reverse causation. Results: We discovered that 20 gut microbial taxa and 2 gut microbial metabolites were causally related to LBP (p < 0.05). Among them, the lower level of family Ruminococcaceae (OR: 0.771, 95% CI: 0.652-0.913, FDR-corrected p = 0.045) and Lactobacillaceae (OR: 0.875, 95% CI: 0.801-0.955, FDR-corrected p = 0.045) retained a strong causal relationship with higher risk of LBP after the Benjamini-Hochberg Corrected test. The Cochrane's Q test revealed no Heterogeneity (p > 0.05). Besides, MR-Egger and MR-PRESSO tests showed no significant horizontal pleiotropy (p > 0.05). Furthermore, leave-one-out analysis confirmed the robustness of MR results. After adding BMI to the multivariate MR analysis, the 17 gut microbial taxa exposure-outcome effect were significantly attenuated and tended to be null. Conclusion: Our findings confirm the the potential causal effect of specific gut microbiota and gut microbial metabolites on LBP, which offers new insights into the gut microbiota-mediated mechanism of LBP and provides the theoretical basis for further explorations of targeted prevention strategies.

11.
Front Microbiol ; 14: 1163261, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168122

RESUMEN

Introduction: In clinical settings, dairy cows are often attacked by pathogenic bacteria after delivery, especially Staphylococcus aureus (S. aureus). Neutrophils have long been regarded as essential for host defense against S. aureus. Prostaglandin E2 (PGE2) can additionally be used as an inflammatory mediator in pathological conditions to promote the repair of inflammatory injuries. However, whether S. aureus can promote the accumulation of PGE2 after the infection of neutrophils in cows and its mechanism remain unclear. Lipoprotein is an important immune bioactive ingredient of S. aureus. Methods: In this study, the changes in neutrophils were monitored in dairy cows infected with wild-type S. aureus (SA113) and an S. aureus lipoprotein-deficient strain (Δlgt); meanwhile, we established whether pattern recognition receptors mediate this process and whether S. aureus lipoproteins are necessary for causing the release of PGE2 from cow neutrophils. Results: The results showed that Δlgt was less effective than SA113 in inducing the production of IL-1ß, IL-6, IL-8, IL-10, and PGE2 within neutrophils; furthermore, TLR2, TLR4, and NLRP3 receptors were found to mediate the inducible effect of lipoprotein on the above inflammation mediators and cytokines, which depended on MAPK and Caspase-1 signaling pathways. In addition, TLR2, TLR4, and NLRP3 inhibitors significantly inhibited PGE2 and cytokine secretion, and PGE2 was involved in the interaction of S. aureus and neutrophils in dairy cows, which could be regulated by TLR2, TLR4, and NLRP3 receptors. We also found that S. aureus was more likely to be killed by neutrophils when it lacked lipoprotein and TLR2, TLR4, and NLRP3 were involved, but PGE2 seemed to have no effect. Discussion: Taken together, these results suggest that lipoprotein is a crucial component of S. aureus in inducing cytokine secretion by neutrophils as well as killing within neutrophils, which could be accomplished by the accumulation of PGE2 by activating MAPK and the Caspase-1 signaling pathways through TLR2, TLR4, and NLRP3 receptors. These results will contribute to a better understanding of the interaction between S. aureus and host immune cells in dairy cows.

12.
Microbiol Spectr ; : e0354122, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36916913

RESUMEN

Escherichia coli (E. coli), a Gram-negative bacterium, is an important pathogen that causes several mammalian diseases. The outer membrane components of E. coli, namely, lipopolysaccharide (LPS) and bacterial lipoprotein, can induce the host innate immune response through pattern recognition receptors (PRRs). However, the detailed roles of the E. coli Braun lipoprotein (BLP) in the regulation of host inflammatory response to E. coli infection remain unclear. In this study, we sought to determine the effects of BLP on E. coli-induced host inflammatory response and lethality using mouse models. Experiments using the E. coli DH5α strain (BLP-positive), E. coli JE5505 strain (BLP-negative), and E. coli JE5505 strain combined with BLP indicated that the presence of BLP could alleviate mortality and organ (liver and lung) damage and decrease proinflammatory cytokine (tumor necrosis factor alpha [TNF-α] and interleukin-1ß [IL-1ß]) and chemokine (regulated on activation normal T-cell expressed and secreted [RANTES]) production in mouse serum and organs. Conversely, E. coli JE5505, E. coli DH5α strain, and E. coli JE5505 combined with BLP treatment induce enhanced anti-inflammatory cytokine (interleukin 10 [IL-10]) production in mouse serum and organs. In addition, BLP could regulate the secretion of proinflammatory cytokines (TNF-α and IL-1ß), chemokines (RANTES), and anti-inflammatory factors (IL-10) through mitogen-activated protein kinase (MAPK) and nuclear factor-kappaB (NF-κB) signaling pathways in macrophages. Altogether, our results demonstrate that the bacterial component BLP plays crucial and protective roles in E. coli-infected mice, which may influence the outcome of inflammation in host response to E. coli infection. IMPORTANCE In this study, we investigated the roles of bacterial outer membrane component BLP in regulating inflammatory responses and lethality in mice that were induced by a ubiquitous and serious pathogen, Escherichia coli. BLP could alleviate the mortality of mice and organ damage, as well as decrease proinflammatory cytokines and chemokine production and enhance anti-inflammatory cytokine production in mouse serum and organs. Overall, our results demonstrate that the bacterial component BLP plays crucial and protective roles in E. coli-infected mice through regulating the production of an inflammatory mediator, which may influence the outcome of inflammation in host response to E. coli infection. Our findings provide new information about the basic biology involved in immune responses to E. coli and host-bacterial interactions, which have the potential to translate into novel approaches for the diagnosis and treatment of E. coli-related medical conditions, such as bacteremia and sepsis.

13.
Front Immunol ; 14: 1077088, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845101

RESUMEN

Background: Accumulating evidence has demonstrated that an association between chronic pain and autoimmune diseases (AIDs). Nevertheless, it is unclear whether these associations refer to a causal relationship. We used a two-sample Mendelian randomization (MR) method to determine the causal relationship between chronic pain and AIDs. Methods: We assessed genome-wide association study (GWAS) summary statistics for chronic pain [multisite chronic pain (MCP) and chronic widespread pain (CWP)], and eight common AIDs, namely, amyotrophic lateral sclerosis (ALS), celiac disease (CeD), inflammatory bowel disease (IBD), multiple sclerosis (MS), rheumatoid arthritis (RA), systemic lupus Erythematosus (SLE), type 1 diabetes (T1D) and psoriasis. Summary statistics data were from publicly available and relatively large-scale GWAS meta-analyses to date. The two-sample MR analyses were first performed to identify the causal effect of chronic pain on AIDs. The two-step MR and multivariable MR were used to determine if mediators (BMI and smoking) causally mediated any connection and to estimate the proportion of the association mediated by these factors combined. Results: With the utilization of MR analysis, multisite chronic pain was associated with a higher risk of MS [odds ratio (OR) = 1.59, 95% confidence interval (CI) = 1.01-2.49, P = 0.044] and RA (OR = 1.72, 95% CI = 1.06-2.77, P = 0.028). However, multisite chronic pain had no significant effect on ALS (OR = 1.26, 95% CI = 0.92-1.71, P = 0.150), CeD (OR = 0.24, 95% CI = 0.02-3.64, P = 0.303), IBD (OR = 0.46, 95% CI = 0.09-2.27, P = 0.338), SLE (OR = 1.78, 95% CI = 0.82-3.88, P = 0.144), T1D (OR = 1.15, 95% CI = 0.65-2.02, P = 0.627) or Psoriasis (OR = 1.59, 95% CI = 0.22-11.26, P = 0.644). We also found positive causal effects of MCP on BMI and causal effects of BMI on MS and RA. Moreover, there were no causal connections between genetically predicted chronic widespread pain and the risk of most types of AIDs disease. Conclusion: Our MR analysis implied a causal relationship between MCP and MS/RA, and the effect of MCP on MS and RA may be partially mediated by BMI.


Asunto(s)
Esclerosis Amiotrófica Lateral , Artritis Reumatoide , Dolor Crónico , Diabetes Mellitus Tipo 1 , Enfermedades Inflamatorias del Intestino , Lupus Eritematoso Sistémico , Esclerosis Múltiple , Psoriasis , Humanos , Diabetes Mellitus Tipo 1/complicaciones , Análisis de la Aleatorización Mendeliana/métodos , Estudio de Asociación del Genoma Completo , Dolor Crónico/epidemiología , Dolor Crónico/genética , Dolor Crónico/complicaciones , Polimorfismo de Nucleótido Simple , Artritis Reumatoide/epidemiología , Artritis Reumatoide/genética , Artritis Reumatoide/complicaciones , Lupus Eritematoso Sistémico/etiología , Esclerosis Múltiple/epidemiología , Esclerosis Múltiple/genética , Esclerosis Múltiple/complicaciones , Psoriasis/complicaciones , Enfermedades Inflamatorias del Intestino/epidemiología , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/complicaciones
14.
Gen Comp Endocrinol ; 330: 114140, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36228737

RESUMEN

The effects of newt motilin on the contractility of the isolated gastrointestinal (GI) tract from Japanese fire belly newts (newt) were examined to clarify whether motilin regulates GI motility in urodele amphibians. In addition, contractile responsiveness to motilins from seven species of vertebrates (human, chicken, turtle, alligator, axolotol, newt and zebrafish) were compared in GI preparations from three different animals (rabbit duodenum, chicken ileum and newt stomach) to determine the species-specific action of motilin. Newt motilin (10-10 M - 10-6 M) caused a contraction of cognate gastric strips, while the upper, middle, and lower intestinal strips were insensitive. The rank order of motilins for contractile activity in newt gastric strips was newt > alligator > axolotol > chicken > turtle > human ≫ zebrafish. On the other hand, newt motilin caused a weak contraction in the rabbit duodenum (human > alligator = chicken > turtle > newt ≧ axolotol > zebrafish), and it was ineffective in the chicken ileum (chicken > turtle > alligator > human ≫ newt, axolotol and zebrafish). This study demonstrates that motilin induces contraction in the GI tract of a urodele amphibian, the newt, in a region (stomach)-specific manner and further indicates that a ligand-receptor interaction of the motilin system is a species-specific manner probably due to differences in the amino acid sequence of motilin.


Asunto(s)
Motilidad Gastrointestinal , Tracto Gastrointestinal , Motilina , Contracción Muscular , Animales , Humanos , Conejos , Pollos , Tracto Gastrointestinal/fisiología , Motilina/química , Salamandridae , Estómago , Pez Cebra
15.
Front Nutr ; 10: 1233086, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38178976

RESUMEN

Background: Although well-documented, the causal relationships between diet-derived circulating antioxidants, oxidative stress, and osteoarthritis (OA) are equivocal. The objective of this study is to employ two-sample Mendelian randomization (MR) to investigate possible causal relationships among dietary-derived circulating antioxidants, oxidative stress damage indicators, and OA risk. Methods: Single-nucleotide polymorphisms for diet-derived circulating antioxidants (ascorbate, ß-carotene, lycopene, retinol, and α-and γ-tocopherol), assessed as absolute levels and metabolites, as well as oxidative stress injury biomarkers (GSH, GPX, CAT, SOD, albumin, and total bilirubin), were retrieved from the published data and were used as genetic instrumental variables. Summary statistics for gene-OA associations were obtained from publicly available and two relatively large-scale GWAS meta-analyses to date. The inverse-variance weighting method was utilized as the primary MR analysis. Moreover, multivariable MR was used to determine if mediators (BMI and smoking) causally mediated any connection. Furthermore, for each exposure, MR analyses were conducted per outcome database and then meta-analyzed. Results: Genetically predicted absolute retinol level was causally associated with hip OA risk [odds ratios (ORs) = 0.40, 95% confidence interval (CI) = 0.24-0.68, FDR-corrected p = 0.042]. Moreover, genetically predicted albumin level was causally associated with total OA risk (OR = 0.80, 95% CI = 0.75-0.86, FDR-corrected p = 2.20E-11), as well as the risk of hip OA (OR = 0.75, 95% CI = 0.68-0.84, FDR-corrected p = 1.38E-06) and knee OA (OR = 0.82, 95% CI = 0.76-0.89, FDR-corrected p = 4.49E-06). In addition, MVMR confirmed that the effect of albumin on hip OA is independent of smoking initiation, alcoholic drinks per week, and moderate-to-vigorous physical activity levels but may be influenced by BMI. Conclusion: Evidence from our study supports a potentially protective effect of high levels of retinol and albumin on OA risk.

16.
Anim Sci J ; 93(1): e13766, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36131609

RESUMEN

Prostaglandin E2 (PGE2 ) is able to induce the expression of several growth factors and enzymes in cattle endometria. However, the specific type of PGE2 receptors which mediates this effect is not fully clear. In this study, the role of prostaglandin E receptor 2 (PTGER2) in PGE2 -mediated induction of growth factors and enzymes expression in cattle endometrial explants and epithelial cells were investigated. PTGER2 was blocked by a PTGER2 antagonist, AH6809, before PGE2 treatment, then the mRNA and protein expression levels of several growth factors and enzymes were compared with that in PGE2 alone treatment group by real-time RT-PCR and Western blotting analysis in endometrial epithelial cells and explants. Results indicated that PGE2 significantly increased the mRNA and protein levels of these growth factors and enzymes, while the rates of increment in the expression of these growth factors and enzymes were inhibited by AH6809. In addition, a PTGER2 agonist, butaprost, significantly increased the expression levels of these growth factors and enzymes, and the effect could be blocked by AH6809. In conclusion, PTGER2 was found to be one dominant receptor mediating the inducible effects of PGE2 on the expression of these growth factors and enzymes in cattle endometrial explants and epithelial cells.


Asunto(s)
Endometrio , Subtipo EP2 de Receptores de Prostaglandina E , Animales , Bovinos , Dinoprostona/metabolismo , Endometrio/metabolismo , Células Epiteliales/metabolismo , Femenino , Péptidos y Proteínas de Señalización Intercelular/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Subtipo EP2 de Receptores de Prostaglandina E/genética , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo
17.
Food Funct ; 13(15): 7999-8011, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35818994

RESUMEN

Acute lung injury (ALI) is an inflammatory lung disease that is caused by bacterial infection. Lipopolysaccharide (LPS), a prototype pathogen-associated molecular pattern (PAMP) from Gram-negative bacteria such as Escherichia coli (E. coli), is an essential risk factor for ALI. LPS and E. coli induced the activation of mitogen-activated protein kinase (MAPK) and nuclear factor kappaB (NF-κB) signaling pathways, which led to the increasing immune molecule transcription, including pro-inflammatory cytokine and chemokine secretion. Codonopsis pilosula polysaccharides (CPPS) exhibit various biological activities and pharmacological effects. However, the effect of CPPS on ALI caused by LPS stimulation or E. coli infection remains unclear. Our results showed that CPPS (6.25, 12.5, 25, or 50 µg mL-1) could attenuate the secretion of TNF-α and IL-1ß and impair the phosphorylation of ERK, p38 and p65 in E. coli-infected macrophages without causing toxic reactions. In addition to regulating the secretion of pro-inflammatory cytokines and the activation of MAPK and NF-κB signaling pathways, CPPS could enhance bacterial phagocytosis and intracellular killing in macrophages, and inhibit the bacterial growth of E. coli. In vivo experiments showed that CPPS attenuated LPS- and E. coli-induced lung damage in mice, which was characterized by decreased pro-inflammatory cytokine (TNF-α, IL-1ß and IL-6) and chemokine (RANTES) production and production of the biomarkers of tissue damage (HABP2 and HMGB1) in the lungs. Altogether, this study demonstrated that CPPS have a protective effect on the lungs in LPS- and E. coli-induced ALI mouse models, suggesting that CPPS could be a potential drug for the treatment of ALI.


Asunto(s)
Lesión Pulmonar Aguda , Codonopsis , Infecciones por Escherichia coli , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Animales , Citocinas/metabolismo , Escherichia coli/metabolismo , Infecciones por Escherichia coli/tratamiento farmacológico , Lipopolisacáridos , Pulmón , Ratones , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismo
18.
Microb Pathog ; 169: 105671, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35811022

RESUMEN

Staphylococcus aureus (S. aureus) is a gram-positive pathogen that can cause infectious diseases in mammals. S. aureus-induced host innate immune responses have a relationship with Toll-like receptor 2 (TLR2), TLR4, and Nod-like receptor pyrin domain-containing protein 3 (NLRP3). However, the detailed roles of TLR2, TLR4, and NLRP3 in regulating the host inflammatory response to S. aureus infection remain unclear. Our data indicated that the S. aureus-induced mortality was aggravated by deficiency of TLR2, TLR4, and NLRP3 in mice. In the subsequent experiment, we found that during S. aureus infection, the roles of TLR2, TLR4, and NLRP3 seemed to be different at multiple timepoints. The deficiency of TLR2, TLR4, or NLRP3 attenuated the expression of High-mobility group box protein 1 (HMGB1) and Hyaluronic acid-binding protein 2 (HABP2), which is accompanied by decreased proinflammatory cytokine (TNF-α), chemokine (RANTES), and anti-inflammatory cytokine (IL-10) production in lungs and serum at 3 h and 6 h post-infection. However, with S. aureus infection prolonged (24 h post-infection), the trend was diametrically opposite. The results showed that deficiency of TLR2, TLR4, or NLRP3 aggravated HABP2 and HMGB1 expression, which is accompanied by enhanced proinflammatory cytokine (TNF-α), chemokine (RANTES), and anti-inflammatory cytokine (IL-10) production in lungs and serum. These results were consistent with the data observed in S. aureus-infected bone marrow-derived macrophages (BMDMs). All these results suggested that during S. aureus infection, TLR2, TLR4, and NLRP3 has time-dependent effect in regulating the balance between immune-driven resistance and tolerance.


Asunto(s)
Proteína HMGB1 , Infecciones Estafilocócicas , Animales , Quimiocina CCL5 , Citocinas , Interleucina-10 , Mamíferos/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Staphylococcus aureus/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
19.
Front Microbiol ; 13: 992111, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36620061

RESUMEN

Introduction: The unscientific and irrational use of antimicrobial drugs in dairy farms has led to the emergence of more serious drug resistance in Escherichia coli. Methods: In this study, cases of calf diarrhea in cattle farms around the Hohhot area were studied, and Escherichia coli were identified by PCR and biochemical methods, while the distribution of virulence and drug resistance genes of the isolates was analyzed. Results: The results showed that 21 strains of Escherichia coli were isolated from the diseased materials, and the isolation rate was 60%. The isolated strains belong to 15 ST types. The drug resistance levels of the isolated strains to 20 kinds of antimicrobial agent viz., penicillin, ampicillin, cefotaxime, cefepime, cefoxitin, and ceftriaxone were more than 50%. The resistance rate to meropenem was 10%. The resistance rates to tetracycline and doxycycline were 33% and 29%, to ciprofloxacin, levofloxacin and enrofloxacin were 48%, 33%, and 33%, to amikacin, kanamycin and gentamicin were 19%, 24% and 38%, to cotrimoxazole and erythromycin were 48% and 15%, to florfenicol, chloramphenicol and polymyxin B were 29%, 33%, and 5%. Nine strains of pathogenic calf diarrhea Escherichia coli were isolated by mouse pathogenicity test. The detection rates of virulence genes for the adhesion class were fimC (95%), IuxS (95%), eaeA (76%), fimA (62%), ompA (52%), and flu (24%). The detection rates for iron transporter protein like virulence genes were iroN (33%), iutA (19%), fyuA (14%), irp5 (9.5%), Iss (9.5%), and iucD (9.5%). The detection rates for toxin-like virulence genes were phoA (90%), Ecs3703 (57%), ropS (33%), hlyF (14%), and F17 (9.5%). The detection rates of tetracycline resistance genes in isolated strains were tetB (29%), tetA (19%) and tetD (14%). The detection rates for fluoroquinolone resistance genes were parC (Y305H, P333S, R355G) (9.5%), gyrA (S83L, D87N) (28%), qnrD (43%), and qnrS (9.5%). The detection rates for ß-lactam resistance genes were bla CTX-M (29%), bla TEM (29%), and bla SHV (9.5%). The detection rates for aminoglycoside resistance genes were strA-B (57%), aacC (33%), aac(3')-IIa (29%), and aadAI (24%). The detection rates of chloramphenicol resistance genes floR and sulfa resistance genes sul2 were 24 and 33%. Conclusion: Pathogenic Escherichia coli causing diarrhea in calves contain abundant virulence genes and antibiotic resistance genes.

20.
Artículo en Inglés | MEDLINE | ID: mdl-34740034

RESUMEN

It is known that prostaglandin E2 (PGE2) induces proliferation of epithelia in bovine endometrial explants, however, the detailed mechanism of regulation of PGE2 in inducing bovine endometrial epithelial cell (bEEC) proliferation is unclear. In this study, we determined whether proliferation of bEECs is promoted by PGE2-prostaglandin E receptor 2 (PTGER2) signaling activation through cell cycle regulation. The results demonstrated that bEECs proliferation was induced by treatment of PGE2 and PTGER2 agonist butaprost. These processes were down-regulated by PTGER2 antagonist AH6809 and CDK inhibitors (LEE011, CDK2 Inhibitor II and Ro 3306). PGE2 and butaprost induced cyclins (A, B1, D1, D3 and E2), cyclin-dependent kinases (CDKs, 1, 2, 4 and 6), and epidermal growth factor (EGF) expression were inhibited by AH6809 treatment in bEECs. Moreover, proliferating cell nuclear antigen (PCNA), cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), and PTGER2 expression in bEECs were up-regulated by PGE2 and butaprost treatment. Our data demonstrate that PGE2-PTGER2 signaling activation has a direct molecular association with cell cycle regulation and cell proliferation in bEECs. Collectively, these findings will improve our understanding of the roles for PGE2-PTGER2 signaling activation in the physiological and pharmacological processes of bovine endometrium.


Asunto(s)
Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Dinoprostona/metabolismo , Endometrio/citología , Células Epiteliales/metabolismo , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Transducción de Señal/efectos de los fármacos , Alprostadil/análogos & derivados , Alprostadil/farmacología , Aminopiridinas/farmacología , Animales , Bovinos , Células Cultivadas , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/metabolismo , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Dinoprostona/farmacología , Femenino , Antígeno Nuclear de Célula en Proliferación/metabolismo , Purinas/farmacología , Subtipo EP2 de Receptores de Prostaglandina E/agonistas , Subtipo EP2 de Receptores de Prostaglandina E/antagonistas & inhibidores , Regulación hacia Arriba/efectos de los fármacos , Xantonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA