Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 182
1.
Bioresour Technol ; 405: 130926, 2024 Aug.
Article En | MEDLINE | ID: mdl-38824970

Volatile organic compounds emitted from landfills posed adverse effect on health. In this study, gaseous benzene was biologically treated using an in-situ biofilter without air pump. Its performance was investigated and the removal efficiency of benzene reached over 90 %. The decrease in the average benzene concentration was consistent with first-order reaction kinetics. Mycolicibacterium dominated the bacterial consortium (41-57 %) throughout the degradation. Annotation of genes by metagenomic analysis helped to deduce the degradation pathways (benzene degradation, catechol ortho-cleavage and meta-cleavage) and to reveal the contribution of different species to the degradation process. In total, 21 kinds of key genes and 13 enzymes were involved in the three modules of benzene transformation. Mycolicibacter icosiumassiliensis and Sphingobium sp. SCG-1 carried multiple functional genes critically involved in benzene biodegradation. These findings provide technical and theoretical support for the in-situ bioremediation of benzene-contaminated soil and waste gas reduction in landfills.


Benzene , Biodegradation, Environmental , Polyurethanes , Benzene/metabolism , Polyurethanes/chemistry , Filtration , Gases
2.
Carbohydr Polym ; 339: 122240, 2024 Sep 01.
Article En | MEDLINE | ID: mdl-38823910

Creating multiple-reusable PBAT/TPS (PT) films presents a novel solution to reduce carbon emissions from disposable packaging, addressing challenges like the high creep of PBAT and the glycerol migration of TPS. Consequently, adopting reactive extrusion to fabricate reversible cross-linking TPS with high shape memory performance, low migration, and homogeneous dispersion in PBAT matrix was a fascinating strategy. Herein, starch, glycerol and CaCl2 (calcium chloride) were extruded to fabricate TPS-Ca with Ca2+ heterodentate coordination structure and confirmed by XPS, 1H NMR and temperature-dependent FTIR. The results of DMA, dynamic rheology, flow activation energy and SEM revealed that TPS-Ca exhibited significant temperature-sensitive reversible properties and robust melt flow capability, enabling micro-nano scale dispersion in PBAT. Noteworthy, PBAT/TPS-Ca (PT-Ca) would recover 100 % length within 20 s by microwave heating after being loaded under the hygrothermal environment. Meanwhile, the migration weight of glycerol decreased from 2.5 % to 1.2 % for the heat-moisture-treated PBAT/TPS (HPT) and PBAT/TPS-Ca (HPTCa). Remarkably, the tensile strength and elongation at the break of HPT-Ca increased to 20.0 MPa and 924 %, respectively, due to reduced stress concentration sites in the phase interface. In summary, our study provides a streamlined strategy for fabricating multiple-reusable PT, offering a sustainable solution to eliminate carbon emissions linked to disposable plastic.

3.
Biophys Rep ; 10(2): 102-110, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38774355

The lipid droplet (LD) is a conserved organelle that exists in almost all organisms, ranging from bacteria to mammals. Dysfunctions in LDs are linked to a range of human metabolic syndromes. The formation of protein complexes on LDs is crucial for maintaining their function. Investigating how proteins interact on LDs is essential for understanding the role of LDs. We have developed an effective method to uncover protein-protein interactions and protein complexes specifically on LDs. In this method, we conduct co-immunoprecipitation (co-IP) experiments using LD proteins extracted directly from isolated LDs, rather than utilizing proteins from cell lysates. To elaborate, we begin by purifying LDs with high-quality and extracting LD-associated proteins. Subsequently, the co-IP experiment is performed on these LD-associated proteins directly, which would enhance the co-IP experiment specificity of LD-associated proteins. This method enables researchers to directly unveil protein complexes on LDs and gain deeper insights into the functional roles of proteins associated with LDs.

4.
Sci Total Environ ; 938: 173385, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38796010

Internalization of chemicals and the forage risks of ryegrass under the combined exposure to PAHs and Cd at environmental concentrations were studied here. The effect of soil pH was also concerned due to the widely occurred soil acidification and general alkali remediation for acidification soil. Unexpectedly, as same as the acid-treated group (pH 6.77), the alkali-treatment (pH 8.83) increased Cd uptake compared with original soil pH group (pH 7.92) for the reason of CdOH+ and CdHCO3+ formed in alkali-treated group. Co-exposure to PAHs induced more oxidative stress than Cd exposure alone due to PAHs aggregated in young root regions, such as root tips, and consequently, affecting the expression of Cd-transporters, destroying the basic structure of plant cells, inhibiting the energy supply for the transporters, even triggering programmed cell death, and finally resulting in decreased Cd uptake. Even under environmental concentrations, combined exposure caused potential risks derived from both PAHs and Cd. Especially, ryegrass grown in alkali-treated soil experienced an increased forage risks despite the soil meeting the national standards for Cd at safe levels. These comprehensive results reveal the mechanism of PAHs inhibiting Cd uptake, improve the understanding of bioavailability of Cd based on different forms, provide a theoretical basis to formulate the safety criteria, and guide the application of actual soil management.


Cadmium , Lolium , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Soil , Lolium/drug effects , Cadmium/toxicity , Soil Pollutants/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Soil/chemistry , Risk Assessment
5.
mSystems ; : e0131223, 2024 May 07.
Article En | MEDLINE | ID: mdl-38712927

Gut dysbiosis has been associated with impaired outcomes in liver and kidney transplant recipients, but the gut microbiome of lung transplant recipients has not been extensively explored. We assessed the gut microbiome in 64 fecal samples from end-stage lung disease patients before transplantation and 219 samples from lung transplant recipients after transplantation using metagenomic sequencing. To identify dysbiotic microbial signatures, we analyzed 243 fecal samples from age-, sex-, and BMI-matched healthy controls. By unsupervised clustering, we identified five groups of lung transplant recipients using different combinations of immunosuppressants and antibiotics and analyzed them in relation to the gut microbiome. Finally, we investigated the gut microbiome of lung transplant recipients in different chronic lung allograft dysfunction (CLAD) stages and longitudinal gut microbiome changes after transplantation. We found 108 species (58.1%) in end-stage lung disease patients and 139 species (74.7%) in lung transplant recipients that were differentially abundant compared with healthy controls, with several species exhibiting sharp longitudinal increases from before to after transplantation. Different combinations of immunosuppressants and antibiotics were associated with specific gut microbial signatures. We found that the gut microbiome of lung transplant recipients in CLAD stage 0 was more similar to healthy controls compared to those in CLAD stage 1. Finally, the gut microbial diversity of lung transplant recipients remained lower than the average gut microbial diversity of healthy controls up to more than 20 years post-transplantation. Gut dysbiosis, already present before lung transplantation was exacerbated following lung transplantation.IMPORTANCEThis study provides extensive insights into the gut microbiome of end-stage lung disease patients and lung transplant recipients, which warrants further investigation before the gut microbiome can be used for microbiome-targeted interventions that could improve the outcome of lung transplantation.

6.
Materials (Basel) ; 17(7)2024 Mar 29.
Article En | MEDLINE | ID: mdl-38612096

A single body-centered cubic (BCC)-structured AlCoFeNi medium-entropy alloy (MEA) was prepared by the selective laser melting (SLM) technique. The hardness of the as-built sample was around 32.5 HRC. The ultimate tensile strength (UTS) was around 1211 MPa, the yield strength (YS) was around 1023 MPa, and the elongation (El) was around 10.8%. A novel BCC + B2 + face-centered cubic (FCC) structure was formed after aging. With an increase in aging temperature and duration, the number of fine grains increased, and more precipitates were observed. After aging at 450 °C for 4 h, the formed complex polyphase structure significantly improved the mechanical properties. Its hardness, UTS, YS, and El were around 45.7 HRC, 1535 MPa, 1489 MPa, and 8.5%, respectively. The improvement in mechanical properties was mainly due to Hall-Petch strengthening, which was caused by fine grains, and precipitation strengthening, which was caused by an increase in precipitates after aging. Meanwhile, the FCC precipitates made the alloy have good toughness. The complex interaction of multiple strengthening mechanisms leads to a good combination of strength, hardness, and toughness.

7.
Vet Parasitol ; : 110175, 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38614824

As an intracellular parasitic nematode, Trichinella spiralis (T. spiralis) can induce the formation of nurse cells (NC) in host muscles and keep it to survive within the NC for an extended period. The formation of NC is similar to muscle cell injury and repair which lead to the arrest of satellite cells in the G2/M phase and build a suitable parasitic environment for the muscle larvae of T. spiralis. However, the molecular mechanisms involved in skeletal muscle repair through skeletal muscle satellite cells (SMSC) and the host immune response during T. spiralis infection have not been fully elucidated. In this study, histopathological examination revealed that the severity of damage increased as the infection progressed in the soleus muscle. SMSCs were isolated from BALB/c mice infected with T. spiralis at 4, 21 and 35 days post-infection (dpi). The immunological characteristics of these cells were analyzed by real-time PCR and flow cytometry (FCM). FCM analysis revealed a notable increase in the expression of B7 homolog 1 (B7-H1) in SMSCs following T. spiralis infection, while conversely, the expression of inducible costimulatory ligand (ICOSL) significantly decreased. Furthermore, real-time PCR results showed that toll like receptor 3 (TLR3) expression in SMSCs of the infected mice was upregulated at 21 dpi. The expression levels of three subtypes (PPARα, PPARß and PPARγ) of peroxisome proliferator-activated receptors (PPARs) also increased in the cells. This study highlights the immunological regulation significance of SMSCs host during T. spiralis infection and suggests that SMSCs actively participant in the local immune response to T. spiralis by regulating the interaction between the parasite and the host.

8.
Front Mol Biosci ; 11: 1366020, 2024.
Article En | MEDLINE | ID: mdl-38633216

Objective: Diabetic retinopathy (DR) is a severe diabetic complication that leads to severe visual impairment or blindness. He-Ying-Qing-Re formula (HF), a traditional Chinese medicinal concoction, has been identified as an efficient therapy for DR with retinal vascular dysfunction for decades and has been experimentally reported to ameliorate retinal conditions in diabetic mice. This study endeavors to explore the therapeutic potential of HF with key ingredients in DR and its underlying novel mechanisms. Methods: Co-expression gene modules and hub genes were calculated by weighted gene co-expression network analysis (WGCNA) based on transcriptome sequencing data from high-glucose-treated adult retinal pigment epithelial cell line-19 (ARPE-19). The chromatographic fingerprint of HF was established by ultra-performance liquid chromatography coupled with high-resolution mass spectrometry (UPLC-Q-TOF-MS). The molecular affinity of the herbal compound was measured by molecular docking. Reactive oxygen species (ROS) was measured by a DCFDA/H2DCFDA assay. Apoptosis was detected using the TUNEL Assay Kit, while ELISA, Western blot, and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used for detecting the cytokine, protein, and mRNA expressions, respectively. Results: Key compounds in HF were identified as luteolin, paeoniflorin, and nobiletin. For WGCNA, ME-salmon ("protein deacetylation") was negatively correlated with ME-purple ("oxidative impairment") in high-glucose-treated ARPE-19. Luteolin has a high affinity for SIRT1 and P53, as indicated by molecular docking. Luteolin has a hypoglycemic effect on type I diabetic mice. Moreover, HF and luteolin suppress oxidative stress production (ROS and MDA), inflammatory factor expression (IL-6, TNF-α, IL1-ß, and MCP-1), and apoptosis, as shown in the in vivo and in vitro experiments. Concurrently, treatment with HF and luteolin led to an upregulation of SIRT1 and a corresponding downregulation of P53. Conclusion: Using HF and its active compound luteolin as therapeutic agents offers a promising approach to diabetic retinopathy treatment. It primarily suppressed protein acetylation and oxidative stress via the SIRT1/P53 pathway in retinal pigment epithelial cells.

9.
Food Chem X ; 22: 101390, 2024 Jun 30.
Article En | MEDLINE | ID: mdl-38665630

This work investigated and compared the structural and emulsifying properties of peanut globulin fractions (conarachin and arachin) after ultrasonication (US) and pH2.5-shifting treatments, singly and in combination. Results showed that pH2.5-shifting was more effective in degrading peanut protein subunits and unfolding their structures than US treatment. Conarachin tended to aggregate during US and pH2.5-shifting treatments possibly due to higher free sulfhydryl content, while high molecular weight arachin tended to disaggregate during these treatments. pH2.5-shifting or US+pH2.5-shifting treatments significantly increased the surface hydrophobicity of conarachin (from 72 to 314) and arachin (from 336 to 888), which may be responsible for the enhancement of protein emulsifying activity. All treatments significantly improved the physical stability of arachin-stabilized emulsions with higher absolute potentials but lowered that of conarachin-stabilized emulsions. However, pH2.5-shifting or US+pH2.5-shifting treatments could improve the stability of conarachin-stabilized emulsions in the presence of salts.

10.
Phytomedicine ; 128: 155411, 2024 Jun.
Article En | MEDLINE | ID: mdl-38518638

BACKGROUND: Emodin-8-O-ß-D-glucopyranoside (Em8G) is an active ingredient of traditional Chinese medicine Rhei Radix et Rhizoma and Polygonum multiflorum Thunb.. And it caused hepatotoxicity, while the underlying mechanism was not clear yet. PURPOSE: We aimed to explore the detrimental effects of Em8G on the zebrafish liver through the metabolome and transcriptome integrated analysis. STUDY DESIGN AND METHODS: In this study, zebrafish larvae were used in acute toxicity tests to reveal the hepatotoxicity of Em8G. Adult zebrafish were then used to evaluate the gender differences in hepatotoxicity induced by Em8G. Integration of transcriptomic and metabolomic analysis was used further to explore the molecular mechanisms underlying gender differences in hepatotoxicity. RESULTS: Our results showed that under non-lethal concentration exposure conditions, hepatotoxicity was observed in Em8G-treated zebrafish larvae, including changes in liver transmittance, liver area, hepatocyte apoptosis and hepatocyte vacuolation. Male adult zebrafish displayed a higher Em8G-induced hepatotoxicity than female zebrafish, as demonstrated by the higher mortality and histopathological alterations. The results of transcriptomics combined with metabolomics showed that Em8G mainly affected carbohydrate metabolism (such as TCA cycle) in male zebrafish and amino acid metabolism (such as arginine and proline metabolism) in females, suggesting that the difference of energy metabolism disorder may be the potential mechanism of male and female liver toxicity induced by Em8G. CONCLUSIONS: This study provided the direct evidence for the hepatotoxicity of Em8G to zebrafish models in vivo, and brought a new insight into the molecular mechanisms of Em8G hepatotoxicity, which can guide the rational application of this phytotoxin. In addition, our findings revealed gender differences in the hepatotoxicity of Em8G to zebrafish, which is related to energy metabolism and provided a methodological reference for evaluating hepatotoxic drugs with gender differences.


Chemical and Drug Induced Liver Injury , Liver , Metabolomics , Zebrafish , Animals , Male , Female , Liver/drug effects , Liver/metabolism , Transcriptome/drug effects , Glucosides/toxicity , Glucosides/pharmacology , Sex Factors , Emodin/analogs & derivatives , Emodin/toxicity , Emodin/pharmacology , Larva/drug effects , Anthraquinones/toxicity , Toxicity Tests, Acute , Drugs, Chinese Herbal/toxicity
11.
Aging (Albany NY) ; 16(6): 5288-5310, 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38461439

INTRODUCTION: Regulatory T cells (Tregs) play important roles in tumor immunosuppression and immune escape. The aim of the present study was to construct a novel Tregs-associated biomarker for the prediction of tumour immune microenvironment (TIME), clinical outcomes, and individualised treatment in hepatocellular carcinoma (HCC). METHODS: Single-cell sequencing data were obtained from the three independent cohorts. Cox and LASSO regression were utilised to develop the Tregs Related Scoring System (TRSSys). GSE140520, ICGC-LIRI and CHCC cohorts were used for the validation of TRSSys. Kaplan-Meier, ROC, and Cox regression were utilised for the evaluation of TRSSys. The ESTIMATE, TIMER 2.0, and ssGSEA algorithm were utilised to determine the value of TRSSys in predicting the TIME. GSVA, GO, KEGG, and TMB analyses were used for mechanistic exploration. Finally, the value of TRSSys in predicting drug sensitivity was evaluated based on the oncoPredict algorithm. RESULTS: Comprehensive validation showed that TRSSys had good prognostic predictive efficacy and applicability. Additionally, ssGSEA, TIMER and ESTIMATE algorithm suggested that TRSSys could help to distinguish different TIME subtypes and determine the beneficiary population of immunotherapy. Finally, the oncoPredict algorithm suggests that TRSSys provides a basis for individualised treatment. CONCLUSIONS: TRSSys constructed in the current study is a novel HCC prognostic prediction biomarker with good predictive efficacy and stability. Additionally, risk stratification based on TRSSys can help to identify the TIME landscape subtypes and provide a basis for individualized treatment options.


Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/therapy , T-Lymphocytes, Regulatory , Liver Neoplasms/therapy , Prognosis , Tumor Microenvironment , Biomarkers
12.
Exp Ther Med ; 27(4): 136, 2024 Apr.
Article En | MEDLINE | ID: mdl-38476884

[This retracts the article DOI: 10.3892/etm.2020.8623.].

13.
Adv Sci (Weinh) ; 11(17): e2302988, 2024 May.
Article En | MEDLINE | ID: mdl-38430538

Peripheral nerve injury (PNI) remains a challenging area in regenerative medicine. Nerve guide conduit (NGC) transplantation is a common treatment for PNI, but the prognosis of NGC treatment is unsatisfactory due to 1) neuromechanical unmatching and 2) the intra-conduit inflammatory microenvironment (IME) resulting from Schwann cell pyroptosis and inflammatory-polarized macrophages. A neuromechanically matched NGC composed of regenerated silk fibroin (RSF) loaded with poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (P:P) and dimethyl fumarate (DMF) are designed, which exhibits a matched elastic modulus (25.1 ± 3.5 MPa) for the peripheral nerve and the highest 80% elongation at break, better than most protein-based conduits. Moreover, the NGC can gradually regulate the intra-conduit IME by releasing DMF and monitoring sciatic nerve movements via piezoresistive sensing. The combination of NGC and electrical stimulation modulates the IME to support PNI regeneration by synergistically inhibiting Schwann cell pyroptosis and reducing inflammatory factor release, shifting macrophage polarization from the inflammatory M1 phenotype to the tissue regenerative M2 phenotype and resulting in functional recovery of neurons. In a rat sciatic nerve crush model, NGC promoted remyelination and functional and structural regeneration. Generally, the DMF/RSF/P:P conduit provides a new potential therapeutic approach to promote nerve repair in future clinical treatments.


Fibroins , Nerve Regeneration , Peripheral Nerve Injuries , Animals , Nerve Regeneration/drug effects , Nerve Regeneration/physiology , Rats , Peripheral Nerve Injuries/therapy , Fibroins/chemistry , Fibroins/pharmacology , Disease Models, Animal , Rats, Sprague-Dawley , Schwann Cells/metabolism , Guided Tissue Regeneration/methods , Inflammation , Tissue Scaffolds/chemistry , Sciatic Nerve/injuries
14.
Sensors (Basel) ; 24(1)2024 Jan 03.
Article En | MEDLINE | ID: mdl-38203137

Structural health monitoring (SHM) of fatigue cracks is essential for ensuring the safe operation of engineering equipment. The acoustic emission (AE) technique is one of the SHM techniques that is capable of monitoring fatigue-crack growth (FCG) in real time. In this study, fatigue-damage evolution of Hadfield steel was characterized using acoustic emission (AE) and machine learning-based methods. The AE signals generated from the entire fatigue-load process were acquired and correlated with fatigue-damage evolution. The AE-source mechanisms were discussed based on waveform characteristics and bispectrum analysis. Moreover, multiple machine learning algorithms were used to classify fatigue sub-stages, and the results show the effectiveness of classification of fatigue sub-stages using machine learning algorithms. The novelty of this research lies in the use of machine learning algorithms for the classification of fatigue sub-stages, unlike the existing methodology, which requires prior knowledge of AE-loading history and calculation of ∆K.

15.
RSC Adv ; 14(5): 3599-3610, 2024 Jan 17.
Article En | MEDLINE | ID: mdl-38264270

Breast cancer is a prevalent form of cancer worldwide, and the current standard screening method, mammography, often requires invasive biopsy procedures for further assessment. Recent research has explored microRNAs (miRNAs) in circulating blood as potential biomarkers for early breast cancer diagnosis. In this study, we employed a multi-modal spectroscopy approach, combining attenuated total reflection Fourier transform infrared (ATR-FTIR) and surface-enhanced Raman scattering (SERS) to comprehensively characterize the full-spectrum fingerprints of RNA biomarkers in the blood serum of breast cancer patients. The sensitivity of conventional FTIR and Raman spectroscopy was enhanced by ATR-FTIR and SERS through the utilization of a diamond ATR crystal and silver-coated silicon nanopillars, respectively. Moreover, a wider measurement wavelength range was achieved with the multi-modal approach than with a single spectroscopic method alone. We have shown the results on 91 clinical samples, which comprised 44 malignant and 47 benign cases. Principal component analysis (PCA) was performed on the ATR-FTIR, SERS, and multi-modal data. From the peak analysis, we gained insights into biomolecular absorption and scattering-related features, which aid in the differentiation of malignant and benign samples. Applying 32 machine learning algorithms to the PCA results, we identified key molecular fingerprints and demonstrated that the multi-modal approach outperforms individual techniques, achieving higher average validation accuracy (95.1%), blind test accuracy (91.6%), specificity (94.7%), sensitivity (95.5%), and F-score (94.8%). The support vector machine (SVM) model showed the best area under the curve (AUC) characterization value of 0.9979, indicating excellent performance. These findings highlight the potential of the multi-modal spectroscopy approach as an accurate, reliable, and rapid method for distinguishing between malignant and benign breast tumors in women. Such a label-free approach holds promise for improving early breast cancer diagnosis and patient outcomes.

16.
BMC Plant Biol ; 24(1): 23, 2024 Jan 03.
Article En | MEDLINE | ID: mdl-38166728

BACKGROUND: Spiraea L. is a genus comprising approximately 90 species that are distributed throughout the northern temperate regions. China is recognized as the center of species diversity for this genus, hosting more than 70 species, including 47 endemic species. While Spiraea is well-known for its ornamental value, its taxonomic and phylogenetic studies have been insufficient. RESULTS: In this study, we conducted sequencing and assembly of the plastid genomes (plastomes) of 34 Asiatic Spiraea accessions (representing 27 Asiatic Spiraea species) from China and neighboring regions. The Spiraea plastid genome exhibits typical quadripartite structures and encodes 113-114 genes, including 78-79 protein-coding genes (PCGs), 30 tRNA genes, and 4 rRNA genes. Linear regression analysis revealed a significant correlation between genome size and the length of the SC region. By the sliding windows method, we identified several hypervariable hotspots within the Spiraea plastome, all of which were localized in the SC regions. Our phylogenomic analysis successfully established a robust phylogenetic framework for Spiraea, but it did not support the current defined section boundaries. Additionally, we discovered that the genus underwent diversification after the Early Oligocene (~ 30 Ma), followed by a rapid speciation process during the Pliocene and Pleistocene periods. CONCLUSIONS: The plastomes of Spiraea provided us invaluable insights into its phylogenetic relationships and evolutionary history. In conjunction with plastome data, further investigations utilizing other genomes, such as the nuclear genome, are urgently needed to enhance our understanding of the evolutionary history of this genus.


Genome, Chloroplast , Genome, Plastid , Rosaceae , Spiraea , Phylogeny , Evolution, Molecular , Genome, Chloroplast/genetics
17.
Nat Commun ; 14(1): 7968, 2023 Dec 02.
Article En | MEDLINE | ID: mdl-38042820

Kidney transplant recipients (KTR) have impaired health-related quality of life (HRQoL) and suffer from intestinal dysbiosis. Increasing evidence shows that gut health and HRQoL are tightly related in the general population. Here, we investigate the association between the gut microbiome and HRQoL in KTR, using metagenomic sequencing data from fecal samples collected from 507 KTR. Multiple bacterial species are associated with lower HRQoL, many of which have previously been associated with adverse health conditions. Gut microbiome distance to the general population is highest among KTR with an impaired physical HRQoL (R = -0.20, P = 2.3 × 10-65) and mental HRQoL (R = -0.14, P = 1.3 × 10-3). Physical and mental HRQoL explain a significant part of variance in the gut microbiome (R2 = 0.58%, FDR = 5.43 × 10-4 and R2 = 0.37%, FDR = 1.38 × 10-3, respectively). Additionally, multiple metabolic and neuroactive pathways (gut brain modules) are associated with lower HRQoL. While the observational design of our study does not allow us to analyze causality, we provide a comprehensive overview of the associations between the gut microbiome and HRQoL while controlling for confounders.


Gastrointestinal Microbiome , Kidney Transplantation , Humans , Quality of Life , Gastrointestinal Microbiome/genetics , Kidney Transplantation/adverse effects , Feces/microbiology , Dysbiosis/microbiology
18.
Sci Rep ; 13(1): 22261, 2023 12 14.
Article En | MEDLINE | ID: mdl-38097653

Traditional methods for assessing plant health often lack the necessary attributes for continuous and non-destructive monitoring. In this pilot study, we present a novel technique utilizing a customized fiber optic probe based on attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) with a contact force control unit for non-invasive and continuous plant health monitoring. We also developed a normalized difference mid-infrared reflectance index through statistical analysis of spectral features, enabling differentiation of drought and age conditions in plants. Our research aims to characterize phytochemicals and plant endogenous status optically, addressing the need for improved analytical measurement methods for in situ plant health assessment. The probe configuration was optimized with a triple-loop tip and a 3 N contact force, allowing sensitive measurements while minimizing leaf damage. By combining polycrystalline and chalcogenide fiber probes, a comprehensive wavenumber range analysis (4000-900 cm-1) was achieved. Results revealed significant variations in phytochemical composition among plant species, for example, red spinach with the highest polyphenolic content and green kale with the highest lignin content. Petioles displayed higher lignin and cellulose absorbance values compared to veins. The technique effectively monitored drought stress on potted green bok choy plants in situ, facilitating the quantification of changes in water content, antioxidant activity, lignin, and cellulose levels. This research represents the first demonstration of the potential of fiber optic ATR-FTIR probes for non-invasive and rapid plant health measurements, providing insights into plant health and advancements in quantitative monitoring for indoor farming practices, bioanalytical chemistry, and environmental sciences.


Brassica , Lignin , Pilot Projects , Cellulose , Spectroscopy, Fourier Transform Infrared/methods
19.
Biophys Rep ; 9(3): 120-133, 2023 Jun 30.
Article En | MEDLINE | ID: mdl-38028150

Lipid droplets (LDs) are a neutral lipid storage organelle that is conserved in almost all species. Excessive storage of neutral lipids in LDs is directly associated with many metabolic syndromes. Zebrafish is a better model animal for the study of LD biology due to its transparent embryonic stage compared to other organisms. However, the study of LDs in fish has been difficult due to the lack of specific LD marker proteins and the limitation of purification technology. In this paper, the purification and proteomic analysis of liver LDs of fish including zebrafish and Carassius auratus were performed for the first time. 259 and 267 proteins were identified respectively. Besides most of the identified proteins were reported in previous LD proteomes of mammals, indicating the similarity between mammal and fish LDs. We also identified many unique proteins of liver LDs in fish that are involved in the regulation of LD dynamics. Through morphological and biochemical analysis, we found that the marker protein Plin2 of zebrafish LD was located on LDs in Huh7 cells. These results will facilitate further study of LDs in fish and liver metabolic diseases using fish as a model animal.

20.
Environ Sci Technol ; 57(48): 20261-20271, 2023 Dec 05.
Article En | MEDLINE | ID: mdl-37992251

Quantum dots (QDs) are widely applied and inevitably released into the environment. The biotransformation of Se in typical CdSe/ZnS QDs coated with glutathione (CdSe/ZnS-GSH) to volatile alkyl selenides and the fate of alkyl selenides in the hydroponically grown rice system were investigated herein. After a 10-day exposure to CdSe/ZnS-GSH (100 nmol L-1), seven alkyl selenides, dimethyl selenide (DMSe), dimethyl diselenide (DMDSe), methyl selenol (MSeH), ethylmethyl selenide (EMSe), ethylmethyl diselenide (EMDSe), dimethyl selenenyl sulfide (DMSeS), and ethylmethyl selenenyl sulfide (EMSeS), were detected in the exposure system using the suspect screening strategy. CdSe/ZnS-GSH was first biotransformed to DMSe and DMDSe by plant and microorganisms. The generated DMSe was volatilized to the gas phase, adsorbed and absorbed by leaves and stems, downward transported, and released into the hydroponic solution, whereas DMDSe tended to be adsorbed/absorbed by roots and upward transported to stems. The airborne DMSe and DMDSe also partitioned from the gas phase to the hydroponic solution. DMSe and DMDSe in the exposure system were further transformed to DMSeS, EMSeS, EMSe, EMDSe, and MSeH. This study gives a comprehensive understanding on the behaviors of Se in CdSe/ZnS-GSH in a rice plant system and provides new insights into the environmental fate of CdSe/ZnS QDs.


Cadmium Compounds , Oryza , Quantum Dots , Selenium Compounds , Seedlings , Zinc Compounds , Sulfides , Biotransformation
...