Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotech Histochem ; 98(7): 501-507, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37501577

RESUMEN

Glioma is the most common type of primary brain tumor; it exhibits great invasive capacity, morbidity and mortality. Protein kinase Cε (PKCε), a serine/threonine kinase, contributes to the development and progression of many cancers. We investigated whether knockdown of PKCε could affect the mitochondrial membrane potential of human glioma cell lines, U251 and U87, and the growth of U251 cell-derived tumors in nude mice. We found that the expression of PKCε was greater in human glioma tissues than in human normal brain tissues. Knockdown of PKCε reduced mitochondrial membrane potential in U251 and U87 cells. Knockdown of PKCε also suppressed the growth of tumors derived from U251 cells and induced apoptosis of U251 cells in vivo. Our findings indicate that PKCε is important for development and progression of glioma and may be a potential therapeutic target for glioma treatment.


Asunto(s)
Glioma , Proteína Quinasa C-epsilon , Animales , Ratones , Humanos , Proteína Quinasa C-epsilon/metabolismo , Proteína Quinasa C-epsilon/farmacología , Ratones Desnudos , Potencial de la Membrana Mitocondrial , Proliferación Celular , Glioma/genética , Glioma/tratamiento farmacológico , Glioma/metabolismo , Apoptosis , Línea Celular Tumoral
2.
Protein Sci ; 31(12): e4506, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36369672

RESUMEN

Epilepsy is the results from the imbalance between inhibition and excitation in neural circuits, which is mainly treated by some chemical drugs with side effects. Gain-of-function of BK channels or knockout of its ß4 subunit associates with spontaneous epilepsy. Currently, few reports were published about the efficacy of BK(α + ß4) channel modulators in epilepsy prevention. Charybdotoxin is a non-specific inhibitor of BK and other K+ channels. Here, by nuclear magnetic resonance (NMR) and other biochemical techniques, we found that charybdotoxin might interact with the extracellular loop of human ß4 subunit (i.e., hß4-loop) of BK(α + ß4) channel at a molar ratio 4:1 (hß4-loop vs. charybdotoxin). Charybdotoxin enhanced its ability to prevent K+ current of BK(α + ß4 H101Y) channel. The charybdotoxin Q18F variant selectively reduced the neuronal spiking frequency and increased interspike intervals of BK(α + ß4) channel by π-π stacking interactions between its residue Phe18 and residue His101 of hß4-loop. Moreover, intrahippocampal infusion of charybdotoxin Q18F variant significantly increased latency time of seizure, reduced seizure duration and seizure numbers on pentylenetetrazole-induced pre-sensitized rats, inhibited hippocampal hyperexcitability and c-Fos expression, and displayed neuroprotective effects on hippocampal neurons. These results implied that charybdotoxin Q18F variant could be potentially used for intractable epilepsy treatment by therapeutically targeting BK(α + ß4) channel.


Asunto(s)
Caribdotoxina , Epilepsia , Canales de Potasio de Gran Conductancia Activados por el Calcio , Animales , Humanos , Ratas , Caribdotoxina/química , Caribdotoxina/farmacología , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Neuronas/metabolismo , Péptidos/metabolismo , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo
4.
J Med Chem ; 63(1): 216-230, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31838846

RESUMEN

Gain-of-function of BK channels or knockout of their ß4 subunit is associated with spontaneous epilepsy. Currently, efficacy of BK (α + ß4) channel modulators in preventing epilepsy was never reported. Here, we show that martentoxin selectively inhibits BK (α + ß4) channels by interaction with the extracellular loop of the BK ß4 subunit (hß4-loop) at a molar ratio 4:1 (hß4-loop vs martentoxin). Residues Glu104, Glu122, Gln124, Lys125, and Glu128 of the hß4-loop form hydrogen bonds with residues Asp5, Glu13, Lys20, Ser24, Gln26, Lys28, and Arg35 of martentoxin, by which martentoxin reduces the neuronal spiking frequency and increases interspike intervals. Intrahippocampal infusion of martentoxin significantly increases the latency time of seizure, reduces seizure duration and seizure numbers on pentylenetetrazole-induced presensitized rats, inhibits hippocampal hyperexcitability and c-Fos expression, and displays neuroprotective effects on hippocampal neurons. These results suggest that the BK (α + ß4) channel is a novel therapeutic target of intractable epilepsy and martentoxin contributes to the rational drug design for epilepsy treatment.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Bloqueadores de los Canales de Potasio/uso terapéutico , Venenos de Escorpión/uso terapéutico , Convulsiones/prevención & control , Animales , Anticonvulsivantes/metabolismo , Antagonistas de Receptores de GABA-A/farmacología , Humanos , Masculino , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Pentilenotetrazol/farmacología , Bloqueadores de los Canales de Potasio/metabolismo , Unión Proteica , Ratas Sprague-Dawley , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapéutico , Venenos de Escorpión/metabolismo
5.
Neurosci Bull ; 36(1): 11-24, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31372899

RESUMEN

Genetic mutants of voltage-gated sodium channels (VGSCs) are considered to be responsible for the increasing number of epilepsy syndromes. Previous research has indicated that mutations of one of the VGSC genes, SCN9A (Nav1.7), result in febrile seizures and Dravet syndrome in humans. Despite these recent efforts, the electrophysiological basis of SCN9A mutations remains unclear. Here, we performed a genetic screen of patients with febrile seizures and identified a novel missense mutation of SCN9A (W1150R). Electrophysiological characterization of different SCN9A mutants in HEK293T cells, the previously-reported N641Y and K655R variants, as well as the newly-found W1150R variant, revealed that the current density of the W1150R and N641Y variants was significantly larger than that of the wild-type (WT) channel. The time constants of recovery from fast inactivation of the N641Y and K655R variants were markedly lower than in the WT channel. The W1150R variant caused a negative shift of the G-V curve in the voltage dependence of steady-state activation. All mutants displayed persistent currents larger than the WT channel. In addition, we found that oxcarbazepine (OXC), one of the antiepileptic drugs targeting VGSCs, caused a significant shift to more negative potential for the activation and inactivation in WT and mutant channels. OXC-induced inhibition of currents was weaker in the W1150R variant than in the WT. Furthermore, with administering OXC the time constant of the N641Y variant was longer than those of the other two SCN9A mutants. In all, our results indicated that the point mutation W1150R resulted in a novel gain-of-function variant. These findings indicated that SCN9A mutants contribute to an increase in seizure, and show distinct sensitivity to OXC.


Asunto(s)
Mutación con Ganancia de Función/fisiología , Canal de Sodio Activado por Voltaje NAV1.7/genética , Oxcarbazepina/farmacología , Convulsiones Febriles/genética , Canales de Sodio Activados por Voltaje/genética , Células HEK293 , Humanos , Mutación Missense , Proteínas del Tejido Nervioso/genética , Fenotipo , Bloqueadores de los Canales de Sodio/farmacología , Temperatura
6.
Artículo en Inglés | MEDLINE | ID: mdl-31011358

RESUMEN

Dingxian pill has been used as an antiepilepsy agent in China from ancient to modern times, of which the concrete pharmacological characterization and the underlying molecular mechanism remain unclear. The present study was undertaken to investigate them by animal behavior, electroencephalogram (EEG), Morris water maze, immunohistochemistry, transcriptomics, and real-time PCR. In our results, the treatment of Dingxian pill dose-dependently inhibited PTZ-induced seizure-like behavior and reduced the seizure grades, LFP power spectral density, and brain wave of the epileptiform EEG component induced by PTZ. In Morris water maze tests, the learning and memory ability of kindled epileptic rats could be attenuated more efficiently by Dingxian pill. For the immediate early gene c-fos, the expression was reduced after Dingxian pill treatment, and the difference was significant between the treatment and the model group. Through the transcriptome analysis of the gene expression in hippocampus, Egr3, Nrg, Arc, and Ptgs2, closely related to epilepsy, had been proved to be downregulated by application of Dingxian pill. All of the results not only highlight the antiepileptic effects of Dingxian pill and its molecular mechanism, but also provide a modern validity theory for the clinical application of traditional Chinese medicine (TCM).

7.
CNS Neurol Disord Drug Targets ; 18(4): 266-272, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30370865

RESUMEN

BACKGROUND & OBJECTIVE: Voltage-gated sodium channels (VGSCs) are responsible for the generation and propagation of action potentials in most excitable cells. In general, a VGSC consists of one pore-forming α subunit and two auxiliary ß subunits. Genetic alterations in VGSCs genes, including both α and ß subunits, are considered to be associated with epileptogenesis as well as seizures. This review aims to summarize the mutations in VGSC α subunits in epilepsy, particularly the pathophysiological and pharmacological properties of relevant VGSC mutants. CONCLUSION: The review of epilepsy-associated VGSC α subunits mutants may not only contribute to the understanding of disease mechanism and genetic modifiers, but also provide potential theoretical targets for the precision and individualized medicine for epilepsy.


Asunto(s)
Epilepsia/genética , Genotipo , Mutación , Fenotipo , Canales de Sodio Activados por Voltaje/genética , Potenciales de Acción/genética , Animales , Humanos
8.
Front Neurosci ; 13: 1393, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31992966

RESUMEN

It remains a challenge for the effective treatment of neuroinflammatory disease, including multiple sclerosis (MS), stroke, epilepsy, and Alzheimer's and Parkinson's disease. The voltage-gated potassium Kv1.3 channel is of interest, which is considered as a novel therapeutic target for treating neuroinflammatory disorders due to its crucial role in subsets of T lymphocytes as well as microglial cells. Toxic animals, such as sea anemones, scorpions, spiders, snakes, and cone snails, can produce a variety of toxins that act on the Kv1.3 channel. The Stichodactyla helianthus K+ channel blocking toxin (ShK) from the sea anemone S. helianthus is proved as a classical blocker of Kv1.3. One of the synthetic analogs ShK-186, being developed as a therapeutic for autoimmune diseases, has successfully completed first-in-man Phase 1 trials. In addition to addressing the recent progress on the studies underlying the pharmacological characterizations of ShK on MS, the review will also explore the possibility for clinical treatment of ShK-like Kv1.3 blocking polypeptides on other neuroinflammatory diseases.

9.
CNS Neurol Disord Drug Targets ; 17(4): 272-279, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29437015

RESUMEN

BACKGROUND & OBJECTIVE: The large conductance calcium-activated potassium (BK) channel, extensively distributed in the central nervous system (CNS), is considered as a vital player in the pathogenesis of epilepsy, with evidence implicating derangement of K+ as well as regulating action potential shape and duration. However, unlike other channels implicated in epilepsy whose function in neurons could clearly be labeled "excitatory" or "inhibitory", the unique physiological behavior of the BK channel allows it to both augment and decrease the excitability of neurons. Thus, the role of BK in epilepsy is controversial so far, and a growing area of intense investigation. CONCLUSION: Here, this review aims to highlight recent discoveries on the dichotomous role of BK channels in epilepsy, focusing on relevant BK-dependent pro- as well as antiepileptic pathways, and discuss the potential of BK specific modulators for the treatment of epilepsy.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Anticonvulsivantes/uso terapéutico , Epilepsia/tratamiento farmacológico , Canales de Potasio de Gran Conductancia Activados por el Calcio/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Epilepsia/fisiopatología , Humanos , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA