Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.869
1.
Adv Colloid Interface Sci ; 328: 103175, 2024 May 03.
Article En | MEDLINE | ID: mdl-38723295

Gallium oxide (Ga2O3), as a new kind of ultra-wide band gap semiconductor material, is widely studied in many fields, such as power electronics, UV - blind photodetectors, solar cells and so on. Owing to the advantages of its excellent performance and broad application prospects in semiconductor technology, Ga2O3 materials have attracted extensive academic and technological attention. This review mainly focuses on introducing the main liquid-phase synthesis methods of Ga2O3 nanoparticles, such as direct-precipitation, chemical bath deposition, hydrothermal, solvothermal, and sol-gel method, including the characteristics in process and advantages and disadvantages of these methods. Then, the effects of reaction conditions, such as pH, capping agent, aging and calcination conditions, on the morphologies and sizes of the precursor and the final products were elucidated. Moreover, the applications of Ga2O3 particles in the fields of catalysis, gas sensors, and other devices in current research on Ga2O3 nanomaterials are discussed with the description of the basic working principle and influence factors.

3.
Nat Nanotechnol ; 2024 May 13.
Article En | MEDLINE | ID: mdl-38740936

Diabetic foot ulcers often become infected, leading to treatment complications and increased risk of loss of limb. Therapeutics to manage infection and simultaneously promote healing are needed. Here we report on the development of a Janus liposozyme that treats infections and promotes wound closure and re-epithelialization. The Janus liposozyme consists of liposome-like selenoenzymes for reactive oxygen species (ROS) scavenging to restore tissue redox and immune homeostasis. The liposozymes are used to encapsulate photosensitizers for photodynamic therapy of infections. We demonstrate application in methicillin-resistant Staphylococcus aureus-infected diabetic wounds showing high ROS levels for antibacterial function from the photosensitizer and nanozyme ROS scavenging from the liposozyme to restore redox and immune homeostasis. We demonstrate that the liposozyme can directly regulate macrophage polarization and induce a pro-regenerative response. By employing single-cell RNA sequencing, T cell-deficient Rag1-/- mice and skin-infiltrated immune cell analysis, we further reveal that IL-17-producing γδ T cells are critical for mediating M1/M2 macrophage transition. Manipulating the local immune homeostasis using the liposozyme is shown to be effective for skin wound repair and tissue regeneration in mice and mini pigs.

4.
J Org Chem ; 89(10): 6929-6936, 2024 May 17.
Article En | MEDLINE | ID: mdl-38717970

This study reports selective dual amino acylation and C-H bromination of aniline compounds enabled by Cu/O2 catalyst systems. This method involves crucial oxidation-induced C-CN bond cleavage of α-methylene nitriles to generate an acylcyanide intermediate that is facilely intercepted by anilines. After amino acylation, the Cu(II) precatalyst in combination with NBS generates Cu(III)-Br in situ that engages in selective electrophilic para- or ortho-C-H bromination. The substrate scope, mechanistic aspects, and late-stage functionalization of biologically active anilines are studied. This study shows the synthetic potential of oxidative C-CN bond activation of nitriles for the development of valuable reactions.

5.
Front Neurol ; 15: 1354311, 2024.
Article En | MEDLINE | ID: mdl-38694779

Background: Currently, the incidence of cerebral palsy is high in newborns. However, the current methods for diagnosing and treating patients with cerebral palsy are complex and poorly targeted. Moreover, these studies lack the support of bibliometric analysis results. Objective: Our study focused on a bibliometric analysis of published papers on the diagnosis and treatment of patients with cerebral palsy. This study identified the primary authors, institutions, and countries involved in analyzing the status and trends of research on the diagnosis and treatment of patients with cerebral palsy. Additionally, the study also involved screening pathways related to cerebral palsy. Methods: The PubMed database was searched for publications on the diagnosis and treatment of patients with cerebral palsy between 1990 and 2023. R v4.2.2 and VOSviewer v1.6.18 software tools were utilized to perform bibliometric analysis and visualization. Results: There were 1,965 publications on cerebral palsy diagnosis and 5,418 articles on the qualified treatment strategies, and the annual number of publications also increased. The United States dominated in this field of research. Gregory Y.H. Lip and Patrizio Lancellotti published the most number of papers. The Cleveland Clinic published the most number of papers in the field. According to the analysis of the co-occurrence of keywords, we found that the main research directions were age, sex, disease diagnosis, and treatment. Newly emerging research has focused mainly on heart failure, which is related to valvular heart disease. Conclusion: The findings presented in this study offer valuable insights into ongoing research and potential future directions pertaining to cerebral palsy. These insights can assist researchers in identifying suitable collaborators and enhancing their investigations aimed at identifying the underlying molecular mechanisms associated with cerebral palsy, encompassing its etiology, preventive measures, and therapeutic interventions.

6.
DNA Cell Biol ; 2024 May 03.
Article En | MEDLINE | ID: mdl-38700464

Megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome (MPPH), a type of overgrowth syndrome, is characterized by progressive megalencephaly, cortical brain malformations, and distal limb anomalies. Previous studies have revealed that the overactivity of the phosphatidylinositol 3-kinase-Protein kinase B pathway and the increased cyclin D2 (CCND2) expression were the main factors contributing to this disease. Here, we present the case of a patient who exhibited megalencephaly, polymicrogyria, abnormal neuronal migration, and developmental delay. Serum tandem mass spectrometry and chromosome examination did not detect any metabolic abnormalities or copy number variants. However, whole-exome sequencing and Sanger sequencing revealed a de novo nonsense mutation (NM_001759.3: c.829C>T; p.Gln277X) in the CCND2 gene of the patient. Bioinformatics analysis predicted that this mutation may disrupt the structure and surface charge of the CCND2 protein. This disruption could potentially prevent polyubiquitination of CCND2, leading to its resistance against degradation. Consequently, this could drive cell division and growth by altering the activity of key cell cycle regulatory nodes, ultimately contributing to the development of MPPH. This study not only presents a new case of MPPH and expands the mutation spectrum of CCND2 but also enhances our understanding of the mechanisms connecting CCND2 with overgrowth syndromes.

7.
Ecotoxicol Environ Saf ; 278: 116411, 2024 May 06.
Article En | MEDLINE | ID: mdl-38714085

Cadmium (Cd), a toxic element, often makes a serious threat to plant growth and development. Previous studies found that melatonin (Mel) reduced Cd accumulation and reestablished the redox balance to alleviate Cd stress in Medicago sativa L., however, the complex molecular mechanisms are still elusive. Here, comparative transcriptome analysis and biochemical experiments were conducted to explore the molecular mechanisms of Mel in enhancing Cd tolerance. Results showed that 7237 differentially expressed genes (DEGs) were regulated by Mel pretreatment to Cd stress compared to the control condition in roots of Medicago sativa L. Besides, in comparison with Cd stress alone, Mel upregulated 1081 DEGs, and downregulated 1085 DEGs. These DEGs were mainly involved in the transcription and translation of genes and folding, sorting and degradation of proteins, carbohydrate metabolism, and hormone signal network. Application of Mel regulated the expression of several genes encoding ribosomal protein and E3 ubiquitin-protein ligase involved in folding, sorting and degradation of proteins. Moreover, transcriptomic analyse suggested that Mel might regulate the expression of genes encoding pectin lyase, UDP-glucose dehydrogenase, sucrose-phosphate synthase, hexokinase-1, and protein phosphorylation in the sugar metabolism. Therefore, these could promote sucrose accumulation and subsequently alleviate the Cd damage. In conclusion, above findings provided the mining of important genes and molecular basis of Mel in mitigating Cd tolerance and genetic cultivation of Medicago sativa L.

8.
J Investig Med ; : 10815589241249991, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715217

Patients with heart failure with reduced ejection fraction (HFrEF) are at risk for chronic kidney disease (CKD). Elevated levels of circulating biomarkers soluble urokinase plasminogen activator receptor (suPAR), galectin-3, soluble suppression of tumorigenicity 2 (ST2), and N-terminal prohormone B-type natriuretic peptide (NT-proBNP) are associated with CKD progression and mortality. The predictive value of these biomarkers in a population with HFrEF and kidney disease is relatively unknown. We sought to determine whether these biomarkers were associated with longitudinal trajectory of eGFR in HFrEF and assess their association with mortality using a joint model to account for competing risks of ventricular assist device (VAD) implantation and heart transplantation. We included participants from the Registry Evaluation of Vital Information for Ventricular Assist Devices in Ambulatory Life with repeated eGFR measures over 2 years. Of 309 participants mean age was 59 years, median eGFR 60 ml/min/1.73m2, 45 participants died, 33 received VAD, and 25 received OHT. Higher baseline serum standardized suPAR [ß coefficient =-0.36 √(ml/min/1.73m2), 95% CI (-0.48, -0.24), P<0.001], standardized galectin-3 [-0.14 √(ml/min/1.73m2) (-0.27, -0.02), P=0.02], and log NT-proBNP [-0.23 √(ml/min/1.73m2) (-0.31, -0.15), P<0.001], were associated with eGFR decline. ST2 and log NT-proBNP were associated with mortality. Higher baseline suPAR, galectin-3, and NT-proBNP are associated with eGFR decline in patients with HFrEF. Only ST2 and NT-proBNP are associated with greater mortality after controlling for other factors including change in eGFR. These biomarkers may provide prognostic value for kidney disease progression in HFrEF and inform candidacy for advanced heart failure therapies.

9.
Mol Neurobiol ; 2024 May 07.
Article En | MEDLINE | ID: mdl-38713438

Microglia and astrocytes are key players in neuroinflammation and ischemic stroke. A1 astrocytes are a subtype of astrocytes that are extremely neurotoxic and quickly kill neurons. Although the detrimental A1 astrocytes are present in many neurodegenerative diseases and are considered to accelerate neurodegeneration, their role in the pathophysiology of ischemic stroke is poorly understood. Here, we combined RNA-seq, molecular and immunological techniques, and behavioral tests to investigate the role of A1 astrocytes in the pathophysiology of ischemic stroke. We found that astrocyte phenotypes change from a beneficial A2 type in the acute phase to a detrimental A1 type in the chronic phase following ischemic stroke. The activated microglial IL1α, TNF, and C1q prompt commitment of A1 astrocytes. Inhibition of A1 astrocytes induction attenuates reactive gliosis and ameliorates morphological and functional defects following ischemic stroke. The crosstalk between astrocytic C3 and microglial C3aR contributes to the formation of A1 astrocytes and morphological and functional defects. In addition, NF-κB is activated following ischemic stroke and governs the formation of A1 astrocytes via direct targeting of inflammatory cytokines and chemokines. Taken together, we discovered that A2 astrocytes and A1 astrocytes are enriched in the acute and chronic phases of ischemic stroke respectively, and that the C3/C3aR/NF-κB signaling leads to A1 astrocytes induction. Therefore, the C3/C3aR/NF-κB signaling is a novel therapeutic target for ischemic stroke treatment.

10.
Gen Psychiatr ; 37(2): e101173, 2024.
Article En | MEDLINE | ID: mdl-38562406

Background: Postoperative sleep disturbance (PSD) is a common and serious postoperative complication and is associated with poor postoperative outcomes. Aims: This study aimed to investigate the effect of transcranial direct current stimulation (tDCS) on PSD in older patients undergoing lower limb major arthroplasty. Methods: In this prospective, double-blind, pilot, randomised, sham-controlled trial, patients 65 years and over undergoing lower limb major arthroplasty were randomly assigned to receive active tDCS (a-tDCS) or sham tDCS (s-tDCS). The primary outcomes were the objective sleep measures on postoperative nights (N) 1 and N2. Results: 116 inpatients were assessed for eligibility, and a total of 92 patients were enrolled; 47 received a-tDCS and 45 received s-tDCS. tDCS improved PSD by altering the following sleep measures in the a-tDCS and s-tDCS groups; the respective comparisons were as follows: the promotion of rapid eye movement (REM) sleep time on N1 (64.5 (33.5-105.5) vs 19.0 (0.0, 45.0) min, F=20.10, p<0.001) and N2 (75.0 (36.0-120.8) vs 30.0 (1.3-59.3) min, F=12.55, p<0.001); the total sleep time on N1 (506.0 (408.0-561.0) vs 392.0 (243.0-483.5) min, F=14.13, p<0.001) and N2 (488.5 (455.5-548.5) vs 346.0 (286.5-517.5) min, F=7.36, p=0.007); the deep sleep time on N1 (130.0 (103.3-177.0) vs 42.5 (9.8-100.8) min, F=24.4, p<0.001) and N2 (103.5 (46.0-154.8) vs 57.5 (23.3-106.5) min, F=8.4, p=0.004); and the percentages of light sleep and REM sleep on N1 and N2 (p<0.05 for each). The postoperative depression and anxiety scores did not differ significantly between the two groups. No significant adverse events were reported. Conclusion: In older patients undergoing lower limb major arthroplasty, a single session of anodal tDCS over the left dorsolateral prefrontal cortex showed a potentially prophylactic effect in improving postoperative short-term objective sleep measures. However, this benefit was temporary and was not maintained over time.

11.
Appl Opt ; 63(10): 2562-2569, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38568537

This paper introduces a pixelwise calibration method designed for a structured light system utilizing a camera attached with a telecentric lens. In the calibration process, a white flat surface and a flat surface with circle dots serve as the calibration targets. After deriving the properties of the pinhole projector through a conventional camera calibration method using circle dots and determining the camera's attributes via 3D feature points estimation through iterative optimizations, the white surface calibration target was positioned at various poses and reconstructed with initial camera and projector calibration data. Each 3D reconstruction was fitted with a virtual ideal plane that was further used to create the pixelwise phase-to-coordinate mapping. To optimize the calibration accuracy, various angled poses of the calibration target are employed to refine the initial results. Experimental findings show that the proposed approach offers high calibration accuracy for a structured light system using a telecentric lens.

12.
Open Life Sci ; 19(1): 20220829, 2024.
Article En | MEDLINE | ID: mdl-38585626

Ischemic stroke remains a major cause of disability and death. Kaempferol (Kae) is a neuroprotective flavonoid compound. Thus, this study aimed to explore the impact of Kae on cerebral infarction. We generated the middle cerebral artery occlusion (MCAO) mouse model to study the effects of Kae on infarction volume and neurological function. The oxygen and glucose deprivation (OGD)/reoxygenation (R) model of neural stem cells (NSCs) was established to study the effects of Kae on cell viability, migration, and apoptosis. Cell processes were assessed by cell counting kit-8, Transwell assay, flow cytometry, and TUNEL analysis. The molecular mechanism was assessed using the Western blot. The results indicated that Kae attenuated MCAO-induced cerebral infarction and neurological injury. Besides, Kae promoted cell viability and migration and inhibited apoptosis of OGD/R-treated NSCs. Moreover, OGD/R suppressed total O-GlcNAcylation level and O-GlcNAcylation of ß-catenin, thereby suppressing the Wnt/ß-catenin pathway, whereas Kae reversed the suppression. Inactivation of the Wnt/ß-catenin pathway abrogated the biological functions of NSCs mediated by Kae. In conclusion, Kae suppressed cerebral infarction by facilitating NSC viability, migration, and inhibiting apoptosis. Mechanically, Kae promoted O-GlcNAcylation of ß-catenin to activate the Wnt/ß-catenin pathway. Kae may have a lessening effect on ischemic stroke.

13.
Electrochem Energ Rev ; 7(1): 14, 2024.
Article En | MEDLINE | ID: mdl-38586610

Developing electrochemical energy storage and conversion devices (e.g., water splitting, regenerative fuel cells and rechargeable metal-air batteries) driven by intermittent renewable energy sources holds a great potential to facilitate global energy transition and alleviate the associated environmental issues. However, the involved kinetically sluggish oxygen evolution reaction (OER) severely limits the entire reaction efficiency, thus designing high-performance materials toward efficient OER is of prime significance to remove this obstacle. Among various materials, cost-effective perovskite oxides have drawn particular attention due to their desirable catalytic activity, excellent stability and large reserves. To date, substantial efforts have been dedicated with varying degrees of success to promoting OER on perovskite oxides, which have generated multiple reviews from various perspectives, e.g., electronic structure modulation and heteroatom doping and various applications. Nonetheless, the reviews that comprehensively and systematically focus on the latest intellectual design strategies of perovskite oxides toward efficient OER are quite limited. To bridge the gap, this review thus emphatically concentrates on this very topic with broader coverages, more comparative discussions and deeper insights into the synthetic modulation, doping, surface engineering, structure mutation and hybrids. More specifically, this review elucidates, in details, the underlying causality between the being-tuned physiochemical properties [e.g., electronic structure, metal-oxygen (M-O) bonding configuration, adsorption capacity of oxygenated species and electrical conductivity] of the intellectually designed perovskite oxides and the resulting OER performances, coupled with perspectives and potential challenges on future research. It is our sincere hope for this review to provide the scientific community with more insights for developing advanced perovskite oxides with high OER catalytic efficiency and further stimulate more exciting applications.

14.
Glob Med Genet ; 11(2): 142-149, 2024 Jun.
Article En | MEDLINE | ID: mdl-38606422

Objectives This study aimed to identify the association between lactate dehydrogenase (LDH) levels and 30-day mortality in patients with intracranial hemorrhage (ICH) with acute leukemia during the induction phase. Methods This cohort study included patients with acute leukemia with ICH during induction. We evaluated serum LDH levels upon admission. Multivariable Cox regression analyzed the LDH 30-day mortality association. Interaction and stratified analyses based on factors like age, sex, albumin, white blood cell count, hemoglobin level, and platelet count were conducted. Results We selected 91 patients diagnosed with acute leukemia and ICH. The overall 30-day mortality rate was 61.5%, with 56 of the 91 patients succumbing. Among those with LDH levels ≥ 570 U/L, the mortality rate was 74.4% (32 out of 43), which was higher than the 50% mortality rate of the LDH < 570 U/L group (24 out of 48) ( p = 0.017). In our multivariate regression models, the hazard ratios and their corresponding 95% confidence intervals for Log2 and twice the upper limit of normal LDH were 1.27 (1.01, 1.58) and 2.2 (1.05, 4.58), respectively. Interaction analysis revealed no significant interactive effect on the relationship between LDH levels and 30-day mortality. Conclusions Serum LDH level was associated with 30-day mortality, especially in patients with LDH ≥ 570 U/L.

15.
Adv Sci (Weinh) ; : e2306671, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38639383

Cancer metastasis is the leading cause of mortality in patients with hepatocellular carcinoma (HCC). To meet the rapid malignant growth and transformation, tumor cells dramatically increase the consumption of nutrients, such as amino acids. Peptide transporter 1 (PEPT1), a key transporter for small peptides, has been found to be an effective and energy-saving intracellular source of amino acids that are required for the growth of tumor cells. Here, the role of PEPT1 in HCC metastasis and its underlying mechanisms is explored. PEPT1 is upregulated in HCC cells and tissues, and high PEPT1 expression is associated with poor prognosis in patients with HCC. PEPT1 overexpression dramatically promoted HCC cell migration, invasion, and lung metastasis, whereas its knockdown abolished these effects both in vitro and in vivo. Mechanistic analysis revealed that high PEPT1 expression increased cellular dipeptides in HCC cells that are responsible for activating the MAP4K4/G3BP2 signaling pathway, ultimately facilitating the phosphorylation of G3BP2 at Thr227 and enhancing HCC metastasis. Taken together, these findings suggest that PEPT1 acts as an oncogene in promoting HCC metastasis through dipeptide-induced MAP4K4/G3BP2 signaling and that the PEPT1/MAP4K4/G3BP2 axis can serve as a promising therapeutic target for metastatic HCC.

16.
N Engl J Med ; 390(13): 1196-1206, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38598574

BACKGROUND: Despite the availability of effective therapies for patients with chronic kidney disease, type 2 diabetes, and hypertension (the kidney-dysfunction triad), the results of large-scale trials examining the implementation of guideline-directed therapy to reduce the risk of death and complications in this population are lacking. METHODS: In this open-label, cluster-randomized trial, we assigned 11,182 patients with the kidney-dysfunction triad who were being treated at 141 primary care clinics either to receive an intervention that used a personalized algorithm (based on the patient's electronic health record [EHR]) to identify patients and practice facilitators to assist providers in delivering guideline-based interventions or to receive usual care. The primary outcome was hospitalization for any cause at 1 year. Secondary outcomes included emergency department visits, readmissions, cardiovascular events, dialysis, and death. RESULTS: We assigned 71 practices (enrolling 5690 patients) to the intervention group and 70 practices (enrolling 5492 patients) to the usual-care group. The hospitalization rate at 1 year was 20.7% (95% confidence interval [CI], 19.7 to 21.8) in the intervention group and 21.1% (95% CI, 20.1 to 22.2) in the usual-care group (between-group difference, 0.4 percentage points; P = 0.58). The risks of emergency department visits, readmissions, cardiovascular events, dialysis, or death from any cause were similar in the two groups. The risk of adverse events was also similar in the trial groups, except for acute kidney injury, which was observed in more patients in the intervention group (12.7% vs. 11.3%). CONCLUSIONS: In this pragmatic trial involving patients with the triad of chronic kidney disease, type 2 diabetes, and hypertension, the use of an EHR-based algorithm and practice facilitators embedded in primary care clinics did not translate into reduced hospitalization at 1 year. (Funded by the National Institutes of Health and others; ICD-Pieces ClinicalTrials.gov number, NCT02587936.).


Diabetes Mellitus, Type 2 , Hospitalization , Hypertension , Renal Insufficiency, Chronic , Humans , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/therapy , Hospitalization/statistics & numerical data , Hypertension/epidemiology , Hypertension/therapy , Renal Dialysis , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/therapy , Precision Medicine , Electronic Health Records , Algorithms , Primary Health Care/statistics & numerical data
17.
J Chem Phys ; 160(15)2024 Apr 21.
Article En | MEDLINE | ID: mdl-38619455

In this work, the ultrafast intramolecular rotation behavior of 1,1,2,3,4,5-hexaphenylsilole has been investigated in several solutions with different viscosities using femtosecond transient absorption spectroscopy combined with density functional theory and time-dependent density functional theory calculations. It is demonstrated that the nonradiative process, which competes with radiative decay, involves two main stages, namely the restricted intramolecular rotation and internal conversion processes. The intramolecular rotation depends on viscosity and presents a significant restriction. The restricted rotational rate is determined to be dozens of picoseconds. The following nonradiative process is strongly dominated by intramolecular rotation. The nonradiative decay rate will decrease with the increase in viscosity, leading to a rise in the radiative probability and photoluminous yield. These results have borne out the mechanism of ultrafast restricted intramolecular rotation of aggregation induced emission and provided a detailed photophysical picture of nonradiative processes.

18.
Nano Lett ; 24(15): 4336-4345, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38567915

This study demonstrates the conceptual design and fabrication of a vertically integrated monolithic (VIM) neuromorphic device. The device comprises an n-type SnO2 nanowire bottom channel connected by a shared gate to a p-type P3HT nanowire top channel. This architecture establishes two distinct neural pathways with different response behaviors. The device generates excitatory and inhibitory postsynaptic currents, mimicking the corelease mechanism of bilingual synapses. To enhance the signal processing efficiency, we employed a bipolar spike encoding strategy to convert fluctuating sensory signals to spike trains containing positive and negative pulses. Utilizing the neuromorphic platform for synaptic processing, physiological signals featuring bidirectional fluctuations, including electrocardiogram and breathing signals, can be classified with an accuracy of over 90%. The VIM device holds considerable promise as a solution for developing highly integrated neuromorphic hardware for healthcare and edge intelligence applications.


Nanowires , Synapses
19.
Polymers (Basel) ; 16(7)2024 Apr 05.
Article En | MEDLINE | ID: mdl-38611253

Chitin and chitosan are important structural macromolecules for most fungi and marine crustaceans. The functions and application areas of the two molecules are also adjacent beyond their similar molecular structure, such as tissue engineering and food safety where solution systems are involved. However, the elasticities of chitin and chitosan in solution lack comparison at the molecular level. In this study, the single-molecule elasticities of chitin and chitosan in different solutions are investigated via atomic force microscope (AFM) based single-molecule spectroscopy (SMFS). The results manifest that the two macromolecules share the similar inherent elasticity in DOSM due to their same chain backbone. However, obvious elastic deviations can be observed in aqueous conditions. Especially, a lower pH value (acid environment) is helpful to increase the elasticity of both chitin and chitosan. On the contrary, the tendency of elastic variation of chitin and chitosan in a larger pH value (alkaline environment) shows obvious diversity, which is mainly determined by the side groups. This basic study may produce enlightenment for the design of intelligent chitin and chitosan food packaging and biomedical materials.

20.
JAMA Netw Open ; 7(4): e246589, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38635271

Importance: Perioperative anxiety is prevalent among patients undergoing surgical treatment of cancer and often influences their prognosis. Transcranial direct current stimulation (tDCS) has shown potential in the treatment of various anxiety-related disorders, but data on the impact of tDCS on perioperative anxiety are limited. Objective: To evaluate the effect of tDCS in reducing perioperative anxiety among patients undergoing laparoscopic colorectal cancer (CRC) resection. Design, Setting, And Participants: This randomized clinical trial was conducted from March to August 2023 at the Affiliated Hospital of Xuzhou Medical University. Patients aged 18 years or older undergoing elective laparoscopic radical resection for CRC were randomly assigned to either the active tDCS group or the sham tDCS group. Intention-to-treat data analysis was performed in September 2023. Interventions: Patients were randomly assigned to receive 2 sessions of either active tDCS or sham tDCS over the left dorsolateral prefrontal cortex on the afternoon of the day before the operation and in the morning of the day of operation. Main Outcomes and Measures: The main outcome was the incidence of perioperative anxiety from the day of the operation up to 3 days after the procedure, as measured using the Hospital Anxiety and Depression Scale-Anxiety (HADS-A) subscale (range: 0-21, with higher scores indicating more anxiety). Secondary outcomes included postoperative delirium (assessed by the Confusion Assessment Method or Confusion Assessment Method intensive care unit scale); pain (assessed by the 10-point Numeric Rating Scale [NRS], with scores ranging from 0 [no pain] to 10 [worst pain]); frailty (assessed by the Fatigue, Resistance, Ambulation, Illness and Loss of Weight [FRAIL] Index, with scores ranging from 0 [most robust] to 5 [most frail]; and sleep quality (assessed by the Pittsburgh Sleep Quality Index [PSQI], with scores ranging from 0 to 21 and higher scores indicating worse sleep quality) after the 2 sessions of the tDCS intervention. Results: A total of 196 patients (mean [SD] age, 63.5 [11.0] years; 124 [63.3%] men) were recruited and randomly assigned to the active tDCS group (98 patients) or the sham tDCS group (98 patients). After the second tDCS intervention on the day of the operation, the incidence of perioperative anxiety was 38.8% in the active tDCS group and 70.4% in the sham tDCS group (relative risk, 0.55 [95% CI, 0.42-0.73]; P < .001). Patients in the active tDCS group vs the sham tDCS group were less likely to have postoperative delirium (8.2% vs 25.5%) and, at 3 days after the operation, had lower median (IQR) pain scores (NRS, 1.0 [1.0-1.0] vs 2.0 [2.0-2.0]), better median (IQR) sleep quality scores (PSQI, 10.5 [10.0-11.0] vs 12.0 [11.0-13.0]), and lower median (IQR) FRAIL Index (2.0 [1.0-2.0] vs 2.0 [2.0-3.0]). Conclusions and Relevance: Findings of this randomized clinical trial indicate that administration of 2 preoperative sessions of tDCS was associated with a decreased incidence of perioperative anxiety in patients undergoing elective CRC resection. Active tDCS was also associated with better anxiety scores, pain levels, and sleep quality as well as reduced postoperative delirium and frailty. The findings suggest that tDCS may be a novel strategy for improving perioperative anxiety in patients undergoing CRC resection. Trial Registration: Chinese Clinical Trial Register Identifier: ChiCTR2300068859.


Colorectal Neoplasms , Emergence Delirium , Frailty , Laparoscopy , Transcranial Direct Current Stimulation , Female , Humans , Male , Middle Aged , Anxiety , Fatigue , Pain , Aged
...