Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
4.
Nat Commun ; 14(1): 4978, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591871

RESUMEN

Skeletal muscle stem cells (also called satellite cells, SCs) are important for maintaining muscle tissue homeostasis and damage-induced regeneration. However, it remains poorly understood how SCs enter cell cycle to become activated upon injury. Here we report that AP-1 family member ATF3 (Activating Transcription Factor 3) prevents SC premature activation. Atf3 is rapidly and transiently induced in SCs upon activation. Short-term deletion of Atf3 in SCs accelerates acute injury-induced regeneration, however, its long-term deletion exhausts the SC pool and thus impairs muscle regeneration. The Atf3 loss also provokes SC activation during voluntary exercise and enhances the activation during endurance exercise. Mechanistically, ATF3 directly activates the transcription of Histone 2B genes, whose reduction accelerates nucleosome displacement and gene transcription required for SC activation. Finally, the ATF3-dependent H2B expression also prevents genome instability and replicative senescence in SCs. Therefore, this study has revealed a previously unknown mechanism for preserving the SC population by actively suppressing precocious activation, in which ATF3 is a key regulator.


Asunto(s)
Factor de Transcripción Activador 3 , Fibras Musculares Esqueléticas , Factor de Transcripción Activador 3/genética , Ciclo Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Células Madre
5.
Aging Cell ; 21(8): e13673, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35851988

RESUMEN

Muscle satellite cells (SCs) are responsible for muscle homeostasis and regeneration and lncRNAs play important roles in regulating SC activities. Here, in this study, we identify PAM (Pax7 Associated Muscle lncRNA) that is induced in activated/proliferating SCs upon injury to promote SC proliferation as myoblast cells. PAM is generated from a myoblast-specific super-enhancer (SE); as a seRNA it binds with a number of target genomic loci predominantly in trans. Further studies demonstrate that it interacts with Ddx5 to tether PAM SE to its inter-chromosomal targets Timp2 and Vim to activate the gene expression. Lastly, we show that PAM expression is increased in aging SCs, which leads to enhanced inter-chromosomal interaction and target genes upregulation. Altogether, our findings identify PAM as a previously unknown lncRNA that regulates both SC proliferation and aging through its trans gene regulatory activity.


Asunto(s)
ARN Largo no Codificante , Células Satélite del Músculo Esquelético , Diferenciación Celular/genética , Proliferación Celular/genética , Músculo Esquelético/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Células Satélite del Músculo Esquelético/metabolismo
6.
Cell Rep ; 39(10): 110927, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35675771

RESUMEN

Adult muscle stem cells, also known as satellite cells (SCs), play pivotal roles in muscle regeneration, and long non-coding RNA (lncRNA) functions in SCs remain largely unknown. Here, we identify a lncRNA, Lockd, which is induced in activated SCs upon acute muscle injury. We demonstrate that Lockd promotes SC proliferation; deletion of Lockd leads to cell-cycle arrest, and in vivo repression of Lockd in mouse muscles hinders regeneration process. Mechanistically, we show that Lockd directly interacts with RNA helicase DHX36 and the 5'end of Lockd possesses the strongest binding with DHX36. Furthermore, we demonstrate that Lockd stabilizes the interaction between DHX36 and EIF3B proteins; synergistically, this complex unwinds the RNA G-quadruplex (rG4) structure formed at Anp32e mRNA 5' UTR and promotes the translation of ANP32E protein, which is required for myoblast proliferation. Altogether, our findings identify a regulatory Lockd/DHX36/Anp32e axis that promotes myoblast proliferation and acute-injury-induced muscle regeneration.


Asunto(s)
ARN Helicasas DEAD-box , G-Cuádruplex , Chaperonas Moleculares , Desarrollo de Músculos , Mioblastos , ARN Largo no Codificante , Regiones no Traducidas 5' , Animales , Proliferación Celular , ARN Helicasas DEAD-box/metabolismo , Ratones , Chaperonas Moleculares/metabolismo , Músculos/metabolismo , Mioblastos/citología , ARN Largo no Codificante/metabolismo , Regeneración
7.
Acta Trop ; 221: 106003, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34118205

RESUMEN

In this study, 196 strains of actinomycetes isolated from marshland soil samples were tested for molluscicidal activity against Oncomelania hupensis. Five strains demonstrated molluscicidal activity, of which the molluscicidal efficiency of Actinomycetes strain A183 was the maximum. After the fermentation supernatant of actinomycetes A183 was extracted with ethyl acetate (EWEA), the LC50 of the EWEA after leaching for 48 h and 72 h were 0.2688 and 0.2195 mg/L, respectively. The effect of EWEA on the key points of energy metabolism was determined. We noted that 1 mg/L of EWEA (A813) significantly reduced the activity of mitochondrial respiratory chain complex I (P < 0.05), while no significant changes were observed in the activities of complexes II, III, and IV. In addition, EWEA (A813) could decrease the membrane potential of O. hupensis purified mitochondria in vitro. The LC50 of the 3 uncoupler (FCCP, DNP, and Tyrphostin A9) after immersion for 24 h were 0.065, 0.135, and 0.110 mg/L, respectively; LC50 after 48 h treatment was 0.064, 0.124, and 0.082 mg/L, respectively; LC50 after 72 h treatment was 0.063, 0.129, and 0.061 mg/L, respectively, and all uncoupler showed strong molluscicidal activities, demonstrating that the mitochondrial membrane potential uncoupling is a potential target for molluscicides against O. hupensis. Moreover, the molluscicidal active substance of strain A183 needs to be further isolated, purified, and structurally characterized considering its promising potential applications.


Asunto(s)
Schistosoma japonicum , Animales , Metabolismo Energético , Gastrópodos , Moluscocidas/farmacología , Caracoles
8.
Science ; 371(6526): 305-309, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33446560

RESUMEN

To initiate cotranscriptional splicing, RNA polymerase II (Pol II) recruits the U1 small nuclear ribonucleoprotein particle (U1 snRNP) to nascent precursor messenger RNA (pre-mRNA). Here, we report the cryo-electron microscopy structure of a mammalian transcribing Pol II-U1 snRNP complex. The structure reveals that Pol II and U1 snRNP interact directly. This interaction positions the pre-mRNA 5' splice site near the RNA exit site of Pol II. Extension of pre-mRNA retains the 5' splice site, leading to the formation of a "growing intron loop." Loop formation may facilitate scanning of nascent pre-mRNA for the 3' splice site, functional pairing of distant intron ends, and prespliceosome assembly. Our results provide a starting point for a mechanistic analysis of cotranscriptional spliceosome assembly and the biogenesis of mRNA isoforms by alternative splicing.


Asunto(s)
Empalme Alternativo , ARN Polimerasa II/química , ARN Mensajero/biosíntesis , Ribonucleoproteína Nuclear Pequeña U1/química , Empalmosomas/química , Animales , Microscopía por Crioelectrón , Humanos , Intrones , Conformación de Ácido Nucleico , Unión Proteica , Dominios Proteicos , Precursores del ARN/química , ARN Mensajero/química , Empalmosomas/metabolismo , Sus scrofa , Transcripción Genética
9.
Nat Commun ; 11(1): 2725, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32483152

RESUMEN

The functional study of lncRNAs in skeletal muscle satellite cells (SCs) remains at the infancy stage. Here we identify SAM (Sugt1 asssociated muscle) lncRNA that is enriched in the proliferating myoblasts. Global deletion of SAM has no overt effect on mice but impairs adult muscle regeneration following acute damage; it also exacerbates the chronic injury-induced dystrophic phenotype in mdx mice. Consistently, inducible deletion of SAM in SCs leads to deficiency in muscle regeneration. Further examination reveals that SAM loss results in a cell-autonomous defect in the proliferative expansion of myoblasts. Mechanistically, we find SAM interacts and stabilizes Sugt1, a co-chaperon protein key to kinetochore assembly during cell division. Loss of SAM or Sugt1 both disrupts kinetochore assembly in mitotic cells due to the mislocalization of two components: Dsn1 and Hec1. Altogether, our findings identify SAM as a regulator of SC proliferation through facilitating Sugt1 mediated kinetochore assembly during cell division.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Ciclo Celular/genética , Proliferación Celular/genética , Cinetocoros/metabolismo , Mioblastos/metabolismo , ARN Largo no Codificante/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Células Cultivadas , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mioblastos/citología , Estabilidad Proteica , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo
10.
Nat Commun ; 10(1): 3863, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31455778

RESUMEN

The anaphase-promoting complex/cyclosome (APC/C) orchestrates cell cycle progression by controlling the temporal degradation of specific cell cycle regulators. Although cyclin A2 and cyclin B1 are both targeted for degradation by the APC/C, during the spindle assembly checkpoint (SAC), the mitotic checkpoint complex (MCC) represses APC/C's activity towards cyclin B1, but not cyclin A2. Through structural, biochemical and in vivo analysis, we identify a non-canonical D box (D2) that is critical for cyclin A2 ubiquitination in vitro and degradation in vivo. During the SAC, cyclin A2 is ubiquitinated by the repressed APC/C-MCC, mediated by the cooperative engagement of its KEN and D2 boxes, ABBA motif, and the cofactor Cks. Once the SAC is satisfied, cyclin A2 binds APC/C-Cdc20 through two mutually exclusive binding modes, resulting in differential ubiquitination efficiency. Our findings reveal that a single substrate can engage an E3 ligase through multiple binding modes, affecting its degradation timing and efficiency.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Ciclina A2/metabolismo , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Ubiquitinación/fisiología , Secuencias de Aminoácidos/fisiología , Ciclosoma-Complejo Promotor de la Anafase/ultraestructura , Quinasas CDC2-CDC28/metabolismo , Quinasas CDC2-CDC28/ultraestructura , Proteínas Cdc20/metabolismo , Proteínas Cdc20/ultraestructura , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestructura , Microscopía por Crioelectrón , Ciclina A2/ultraestructura , Células HEK293 , Humanos , Microscopía Intravital , Modelos Moleculares , Unión Proteica/fisiología , Proteolisis , Huso Acromático/metabolismo , Especificidad por Sustrato/fisiología
11.
Open Biol ; 7(11)2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29167309

RESUMEN

The anaphase promoting complex or cyclosome (APC/C) is a large multi-subunit E3 ubiquitin ligase that orchestrates cell cycle progression by mediating the degradation of important cell cycle regulators. During the two decades since its discovery, much has been learnt concerning its role in recognizing and ubiquitinating specific proteins in a cell-cycle-dependent manner, the mechanisms governing substrate specificity, the catalytic process of assembling polyubiquitin chains on its target proteins, and its regulation by phosphorylation and the spindle assembly checkpoint. The past few years have witnessed significant progress in understanding the quantitative mechanisms underlying these varied APC/C functions. This review integrates the overall functions and properties of the APC/C with mechanistic insights gained from recent cryo-electron microscopy (cryo-EM) studies of reconstituted human APC/C complexes.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/química , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Modelos Biológicos
12.
Nucleic Acids Res ; 45(15): 8785-8805, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28575289

RESUMEN

Super-enhancers (SEs) are cis-regulatory elements enriching lineage specific key transcription factors (TFs) to form hotspots. A paucity of identification and functional dissection promoted us to investigate SEs during myoblast differentiation. ChIP-seq analysis of histone marks leads to the uncovering of SEs which remodel progressively during the course of differentiation. Further analyses of TF ChIP-seq enable the definition of SE hotspots co-bound by the master TF, MyoD and other TFs, among which we perform in-depth dissection for MyoD/FoxO3 interaction in driving the hotspots formation and SE activation. Furthermore, using Myogenin as a model locus, we elucidate the hierarchical and complex interactions among hotspots during the differentiation, demonstrating SE function is propelled by the physical and functional cooperation among hotspots. Finally, we show MyoD and FoxO3 are key in orchestrating the Myogenin hotspots interaction and activation. Altogether our results identify muscle-specific SEs and provide mechanistic insights into the functionality of SE.


Asunto(s)
Diferenciación Celular/genética , Elementos de Facilitación Genéticos/fisiología , Proteína Forkhead Box O3/fisiología , Desarrollo de Músculos/genética , Proteína MioD/fisiología , Animales , Células Cultivadas , Proteína Forkhead Box O3/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Ratones , Proteína MioD/metabolismo , Mioblastos/fisiología , Miogenina/genética , Miogenina/metabolismo , Unión Proteica
13.
Nucleic Acids Res ; 45(12): e108, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28379566

RESUMEN

Long noncoding RNAs (lncRNAs) are key regulators of diverse cellular processes. Recent advances in high-throughput sequencing have allowed for an unprecedented discovery of novel lncRNAs. To identify functional lncRNAs from thousands of candidates for further functional validation is still a challenging task. Here, we present a novel computational framework, lncFunNet (lncRNA Functional inference through integrated Network) that integrates ChIP-seq, CLIP-seq and RNA-seq data to predict, prioritize and annotate lncRNA functions. In mouse embryonic stem cells (mESCs), using lncFunNet we not only recovered most of the functional lncRNAs known to maintain mESC pluripotency but also predicted a plethora of novel functional lncRNAs. Similarly, in mouse myoblast C2C12 cells, applying lncFunNet led to prediction of reservoirs of functional lncRNAs in both proliferating myoblasts (MBs) and differentiating myotubes (MTs). Further analyses demonstrated that these lncRNAs are frequently bound by key transcription factors, interact with miRNAs and constitute key nodes in biological network motifs. Further experimentations validated their dynamic expression profiles and functionality during myoblast differentiation. Collectively, our studies demonstrate the use of lncFunNet to annotate and identify functional lncRNAs in a given biological system.


Asunto(s)
MicroARNs/genética , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , ARN Largo no Codificante/genética , Programas Informáticos , Factores de Transcripción/genética , Algoritmos , Animales , Diferenciación Celular , Regulación de la Expresión Génica , Ratones , MicroARNs/metabolismo , Anotación de Secuencia Molecular , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Fibras Musculares Esqueléticas/citología , Mioblastos/citología , Motivos de Nucleótidos , Unión Proteica , ARN Largo no Codificante/metabolismo , Factores de Transcripción/metabolismo
14.
Cell Discov ; 3: 17002, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28326190

RESUMEN

Malat1 is one of the most abundant long non-coding RNAs in various cell types; its exact cellular function is still a matter of intense investigation. In this study we characterized the function of Malat1 in skeletal muscle cells and muscle regeneration. Utilizing both in vitro and in vivo assays, we demonstrate that Malat1 has a role in regulating gene expression during myogenic differentiation of myoblast cells. Specifically, we found that knockdown of Malat1 accelerates the myogenic differentiation in cultured cells. Consistently, Malat1 knockout mice display enhanced muscle regeneration after injury and deletion of Malat1 in dystrophic mdx mice also improves the muscle regeneration. Mechanistically, in the proliferating myoblasts, Malat1 recruits Suv39h1 to MyoD-binding loci, causing trimethylation of histone 3 lysine 9 (H3K9me3), which suppresses the target gene expression. Upon differentiation, the pro-myogenic miR-181a is increased and targets the nuclear Malat1 transcripts for degradation through Ago2-dependent nuclear RNA-induced silencing complex machinery; the Malat1 decrease subsequently leads to the destabilization of Suv39h1/HP1ß/HDAC1-repressive complex and displacement by a Set7-containing activating complex, which allows MyoD trans-activation to occur. Together, our findings identify a regulatory axis of miR-181a-Malat1-MyoD/Suv39h1 in myogenesis and uncover a previously unknown molecular mechanism of Malat1 action in gene regulation.

15.
Sci Rep ; 6: 24229, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27068805

RESUMEN

Although piwi-interacting RNAs (piRNAs) play pivotal roles in spermatogenesis, little is known about piRNAs in the seminal plasma of infertile males. In this study, we systematically investigated the profiles of seminal plasma piRNAs in infertile males to identify piRNAs that are altered during infertility and evaluate their diagnostic value. Seminal plasma samples were obtained from 211 infertile patients (asthenozoospermia and azoospermia) and 91 fertile controls. High-throughput sequencing technology was employed to screen piRNA profiles in seminal plasma samples pooled from healthy controls and infertile patients. The results identified 61 markedly altered piRNAs in infertile patient groups compared with control group. Next, a quantitative RT-PCR assay was conducted in the training and validation sets to measure and confirm the concentrations of altered piRNAs. The results identified a panel of 5 piRNAs that were significantly decreased in seminal plasma of infertile patients compared with healthy controls. ROC curve analysis and risk score analysis revealed that the diagnostic potential of these 5 piRNAs to distinguish asthenozoospermic and azoospermic individuals from healthy controls was high. In summary, this study identifies a panel of piRNAs that can accurately distinguish fertile from infertile males. This finding may provide pathophysiological clues about the development of infertility.


Asunto(s)
Biomarcadores/análisis , Pruebas Diagnósticas de Rutina/métodos , Infertilidad Masculina/diagnóstico , Infertilidad Masculina/patología , ARN Interferente Pequeño/análisis , Semen/química , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , ARN Interferente Pequeño/genética , Curva ROC , Reacción en Cadena en Tiempo Real de la Polimerasa
16.
Nature ; 533(7602): 260-264, 2016 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-27120157

RESUMEN

In eukaryotes, the anaphase-promoting complex (APC/C, also known as the cyclosome) regulates the ubiquitin-dependent proteolysis of specific cell-cycle proteins to coordinate chromosome segregation in mitosis and entry into the G1 phase. The catalytic activity of the APC/C and its ability to specify the destruction of particular proteins at different phases of the cell cycle are controlled by its interaction with two structurally related coactivator subunits, Cdc20 and Cdh1. Coactivators recognize substrate degrons, and enhance the affinity of the APC/C for its cognate E2 (refs 4-6). During mitosis, cyclin-dependent kinase (Cdk) and polo-like kinase (Plk) control Cdc20- and Cdh1-mediated activation of the APC/C. Hyperphosphorylation of APC/C subunits, notably Apc1 and Apc3, is required for Cdc20 to activate the APC/C, whereas phosphorylation of Cdh1 prevents its association with the APC/C. Since both coactivators associate with the APC/C through their common C-box and Ile-Arg tail motifs, the mechanism underlying this differential regulation is unclear, as is the role of specific APC/C phosphorylation sites. Here, using cryo-electron microscopy and biochemical analysis, we define the molecular basis of how phosphorylation of human APC/C allows for its control by Cdc20. An auto-inhibitory segment of Apc1 acts as a molecular switch that in apo unphosphorylated APC/C interacts with the C-box binding site and obstructs engagement of Cdc20. Phosphorylation of the auto-inhibitory segment displaces it from the C-box-binding site. Efficient phosphorylation of the auto-inhibitory segment, and thus relief of auto-inhibition, requires the recruitment of Cdk-cyclin in complex with a Cdk regulatory subunit (Cks) to a hyperphosphorylated loop of Apc3. We also find that the small-molecule inhibitor, tosyl-l-arginine methyl ester, preferentially suppresses APC/C(Cdc20) rather than APC/C(Cdh1), and interacts with the binding sites of both the C-box and Ile-Arg tail motifs. Our results reveal the mechanism for the regulation of mitotic APC/C by phosphorylation and provide a rationale for the development of selective inhibitors of this state.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Mitosis , Fosfoproteínas/metabolismo , Secuencias de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase/química , Ciclosoma-Complejo Promotor de la Anafase/ultraestructura , Antígenos CD , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/química , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Subunidad Apc3 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Apoenzimas/metabolismo , Sitios de Unión , Cadherinas/química , Cadherinas/metabolismo , Cadherinas/ultraestructura , Proteínas Cdc20/antagonistas & inhibidores , Proteínas Cdc20/química , Proteínas Cdc20/metabolismo , Proteínas Cdc20/ultraestructura , Microscopía por Crioelectrón , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Activación Enzimática , Humanos , Modelos Moleculares , Fosfoproteínas/química , Fosfoproteínas/ultraestructura , Fosforilación , Unión Proteica , Conformación Proteica , Tosilarginina Metil Éster/farmacología
17.
Nat Commun ; 6: 10026, 2015 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-26658965

RESUMEN

Little is known how lincRNAs are involved in skeletal myogenesis. Here we describe the discovery of Linc-YY1 from the promoter of the transcription factor (TF) Yin Yang 1 (YY1) gene. We demonstrate that Linc-YY1 is dynamically regulated during myogenesis in vitro and in vivo. Gain or loss of function of Linc-YY1 in C2C12 myoblasts or muscle satellite cells alters myogenic differentiation and in injured muscles has an impact on the course of regeneration. Linc-YY1 interacts with YY1 through its middle domain, to evict YY1/Polycomb repressive complex (PRC2) from target promoters, thus activating the gene expression in trans. In addition, Linc-YY1 also regulates PRC2-independent function of YY1. Finally, we identify a human Linc-YY1 orthologue with conserved function and show that many human and mouse TF genes are associated with lincRNAs that may modulate their activity. Altogether, we show that Linc-YY1 regulates skeletal myogenesis and uncover a previously unappreciated mechanism of gene regulation by lincRNA.


Asunto(s)
Desarrollo de Músculos/fisiología , ARN Largo no Codificante/metabolismo , Factor de Transcripción YY1/metabolismo , Animales , Línea Celular , Embrión de Mamíferos , Regulación de la Expresión Génica/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos mdx , ARN Largo no Codificante/genética , Regeneración/fisiología , Factor de Transcripción YY1/genética
18.
BMC Cancer ; 15: 448, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-26031775

RESUMEN

BACKGROUND: Although human cancers have heterogeneous combinations of altered oncogenes, some crucial genes are universally dysregulated in most cancers. One such gene, FEAT (faint expression in normal tissues, aberrant overexpression in tumors), is uniformly overexpressed in a variety of human cancers and plays an important role in tumorigenesis by suppressing apoptosis. However, the precise molecular mechanism through which FEAT is upregulated during tumorigenesis remains largely unknown. METHODS: In this study, we used bioinformatic analyses to search for miRNAs that potentially target FEAT. We examined the expression of FEAT protein level by western blotting and miR-16 level by qRT-PCR assay. Cancer cell lines (A549, MCF-7 and Huh-7) with miR-16 upregulation and FEAT silencing were established and the effects on apoptosis of cancer cells in vitro were assessed. Luciferase reporter assay was also performed to investigate the interaction between miR-16 and FEAT. RESULTS: We identified a specific target site for miR-16 in the 3'-untranslated region (3'-UTR) of FEAT. Consistent with the bioinformatic analyses, we identified an inverse correlation between the miR-16 and FEAT protein levels in lung cancer, breast cancer, and hepatocellular cancer tissues. We then experimentally validated miR-16 as a direct regulator of FEAT using cell transfection and luciferase assays. Finally, we demonstrated that the repression of FEAT by miR-16 promoted the apoptosis of cancer cells. CONCLUSIONS: Our findings provide the first clues regarding the role of miR-16 as a tumor suppressor in cancer cells through the inhibition of FEAT translation.


Asunto(s)
Neoplasias de la Mama/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Pulmonares/metabolismo , Metiltransferasas/metabolismo , MicroARNs/metabolismo , Regiones no Traducidas 3' , Apoptosis , Neoplasias de la Mama/genética , Carcinoma Hepatocelular/genética , Biología Computacional , Humanos , Neoplasias Hepáticas/genética , Neoplasias Pulmonares/genética , Células MCF-7 , Metiltransferasas/genética , MicroARNs/genética , ARN Interferente Pequeño , Regulación hacia Arriba
19.
RNA Biol ; 12(3): 276-89, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25826661

RESUMEN

MicroRNA-200b and microRNA-200c (miR-200b/c) are 2 of the most frequently upregulated oncomiRs in colorectal cancer cells. The role of miR-200b/c during colorectal tumorigenesis, however, remains unclear. In the present study, we report that miR-200b/c can promote colorectal cancer cell proliferation via targeting the reversion-inducing cysteine-rich protein with Kazal motifs (RECK). Firstly, bioinformatics analysis predicted RECK as a conserved target of miR-200b/c. By overexpressing or knocking down miR-200b/c in colorectal cancer cells, we experimentally validated that miR-200b/c are direct regulators of RECK. Secondly, an inverse correlation between the levels of miR-200b/c and RECK protein was found in human colorectal cancer tissues and cell lines. Thirdly, we demonstrated that repression of RECK by miR-200b/c consequently triggered SKP2 (S-phase kinase-associated protein 2) elevation and p27(Kip1) (also known as cyclin-dependent kinase inhibitor 1B) degradation in colorectal cancer cells, which eventually promotes cancer cell proliferation. Finally, promoting tumor cell growth by miR-200b/c-targeting RECK was also observed in the xenograft mouse model. Taken together, our results demonstrate that miR-200b/c play a critical role in promoting colorectal tumorigenesis through inhibiting RECK expression and subsequently triggering SKP2 elevation and p27(Kip1) degradation.


Asunto(s)
Carcinogénesis/genética , Neoplasias Colorrectales/genética , Proteínas Ligadas a GPI/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Animales , Células CACO-2 , Carcinogénesis/metabolismo , Carcinogénesis/patología , Proliferación Celular , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas Ligadas a GPI/metabolismo , Células HT29 , Humanos , Ratones , MicroARNs/antagonistas & inhibidores , MicroARNs/metabolismo , Trasplante de Neoplasias , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Transducción de Señal , Transfección
20.
J Nutr Biochem ; 26(5): 505-12, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25704478

RESUMEN

The detection of exogenous plant microRNAs in human/animal plasma/sera lies at the foundation of exploring their cross-kingdom regulatory functions. It is necessary to establish a standard operation procedure to promote study in this nascent field. In this study, 18 plant miRNAs were assessed in watermelon juice and mixed fruits by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). CT values, no-template controls and standard curves for each miRNA were used to evaluate the specificity and sensitivity of qRT-PCR and to obtain concentrations. Sixteen miRNAs were selected and measured in human plasma from volunteers after drinking juice. The CT values of 6 plant miRNAs in human plasma fell outside the linear ranges of their standard curves. The remaining 10 miRNAs were present at high basal levels, and 6 of them showed a dynamic physiological pattern in plasma (absorption rates of 0.04% to 1.31%). Northern blotting was used to confirm the qRT-PCR results. Critical issues such as RNA extraction and internal controls were also addressed.


Asunto(s)
MicroARNs/sangre , Plantas/genética , ARN de Planta/sangre , Northern Blotting , Humanos , MicroARNs/administración & dosificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...