Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 592
Filtrar
1.
Genetics ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984710

RESUMEN

Centromeric localization of evolutionarily conserved CENP-A (Cse4 in Saccharomyces cerevisiae) is essential for chromosomal stability. Mislocalization of overexpressed CENP-A to non-centromeric regions contributes to chromosomal instability (CIN) in yeasts, flies, and humans. Overexpression and mislocalization of CENP-A observed in many cancers is associated with poor prognosis. Previous studies have shown that F-box proteins, Cdc4 and Met30 of the Skp, Cullin, F-box (SCF) ubiquitin ligase cooperatively regulate proteolysis of Cse4 to prevent Cse4 mislocalization and CIN under normal physiological conditions. Mck1-mediated phosphorylation of SCF-Cdc4 substrates such as Cdc6 and Rcn1 enhances the interaction of the substrates with Cdc4. Here, we report that Mck1 interacts with Cse4, and Mck1-mediated proteolysis of Cse4 prevents Cse4 mislocalization for chromosomal stability. Our results showed that mck1Δ strain overexpressing CSE4 (GAL-CSE4) exhibits lethality, defects in ubiquitin-mediated proteolysis of Cse4, mislocalization of Cse4 and reduced Cse4-Cdc4 interaction. Strain expressing GAL-cse4-3A with mutations in three potential Mck1 phosphorylation consensus site (S10, S16, and T166) also exhibits growth defects, increased stability with mislocalization of Cse4-3A, CIN, and reduced interaction with Cdc4. Constitutive expression of histone H3 (Δ16H3) suppresses the CIN phenotype of GAL-cse4-3A strain, suggesting that the CIN phenotype is linked to Cse4-3A mislocalization. We conclude that Mck1 and its three potential phosphorylation sites on Cse4 promote Cse4-Cdc4 interaction and this contributes to ubiquitin-mediated proteolysis of Cse4 preventing its mislocalization and CIN. These studies advance our understanding of pathways that regulate cellular levels of CENP-A to prevent mislocalization of CENP-A in human cancers.

3.
Nat Commun ; 15(1): 5546, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956055

RESUMEN

C-H bond activation enables the facile synthesis of new chemicals. While C-H activation in short-chain alkanes has been widely investigated, it remains largely unexplored for long-chain organic molecules. Here, we report light-driven C-H activation in complex organic materials mediated by 2D transition metal dichalcogenides (TMDCs) and the resultant solid-state synthesis of luminescent carbon dots in a spatially-resolved fashion. We unravel the efficient H adsorption and a lowered energy barrier of C-C coupling mediated by 2D TMDCs to promote C-H activation and carbon dots synthesis. Our results shed light on 2D materials for C-H activation in organic compounds for applications in organic chemistry, environmental remediation, and photonic materials.

5.
J Neuroinflammation ; 21(1): 176, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026249

RESUMEN

Accumulating evidence implicates that herpes simplex virus type 1 (HSV-1) has been linked to the development and progression of Alzheimer's disease (AD). HSV-1 infection induces ß-amyloid (Aß) deposition in vitro and in vivo, but the effect and precise mechanism remain elusive. Here, we show that HSV-1 infection of the brains of transgenic 5xFAD mice resulted in accelerated Aß deposition, gliosis, and cognitive dysfunction. We demonstrate that HSV-1 infection induced the recruitment of microglia to the viral core to trigger microglial phagocytosis of HSV-GFP-positive neuronal cells. In addition, we reveal that the NLRP3 inflammasome pathway induced by HSV-1 infection played a crucial role in Aß deposition and the progression of AD caused by HSV-1 infection. Blockade of the NLRP3 inflammasome signaling reduces Aß deposition and alleviates cognitive decline in 5xFAD mice after HSV-1 infection. Our findings support the notion that HSV-1 infection is a key factor in the etiology of AD, demonstrating that NLRP3 inflammasome activation functions in the interface of HSV-1 infection and Aß deposition in AD.


Asunto(s)
Enfermedad de Alzheimer , Progresión de la Enfermedad , Herpesvirus Humano 1 , Ratones Transgénicos , Microglía , Proteína con Dominio Pirina 3 de la Familia NLR , Fagocitosis , Transducción de Señal , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/virología , Ratones , Microglía/metabolismo , Microglía/patología , Microglía/virología , Transducción de Señal/fisiología , Humanos , Herpes Simple/patología , Herpes Simple/inmunología , Herpes Simple/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Modelos Animales de Enfermedad , Presenilina-1/genética , Presenilina-1/metabolismo
6.
Molecules ; 29(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38998947

RESUMEN

Rechargeable potassium ion batteries have long been regarded as one alternative to conventional lithium ion batteries because of their resource sustainability and cost advantages. However, the compatibility between anodes and electrolytes remains to be resolved, impeding their commercial adoption. In this work, the K-ion storage properties of Bi nanoparticles encapsulated in N-doped carbon nanocomposites have been examined in two typical electrolyte solutions, which show a significant effect on potassium insertion/removal processes. In a KFSI-based electrolyte, the N-C@Bi nanocomposites exhibit a high specific capacity of 255.2 mAh g-1 at 0.5 A g-1, which remains at 245.6 mAh g-1 after 50 cycles, corresponding to a high capacity retention rate of 96.24%. In a KPF6-based electrolyte, the N-C@Bi nanocomposites show a specific capacity of 209.0 mAh g-1, which remains at 71.5 mAh g-1 after 50 cycles, corresponding to an inferior capacity retention rate of only 34.21%. Post-investigations reveal the formation of a KF interphase derived from salt decomposition and an intact rod-like morphology after cycling in K2 electrolytes, which are responsible for better K-ion storage properties.

7.
Artículo en Inglés | MEDLINE | ID: mdl-39022811

RESUMEN

In response to growing concerns about public safety and environmental conservation, it is essential to develop a precise identification method for trace explosives. To improve the stability and detection sensitivity of perovskite quantum dots (PQDs) and address the issue of low porosity in traditional polymer-based photonic crystals (PhCs), this study proposed a PQD photoluminescence (PL) enhancement strategy based on the slow light effect of ZIF-8 PhCs for highly sensitive, selective, and convenient detection of 2,4,6-trinitrophenol (TNP). The slow light effect at the photonic band gap edge is the basis of amplifying the PL signal. PhCs were fabricated by the evaporation-induced self-assembly method. The diffraction wavelength overlapping the whole visible region was designed to match the emission wavelength of PQDs. Results showed that PhCs matching the PBG edge with PQDs' emission peak amplified the PL signal 11.3 times, significantly improving sensitivity for trace TNP detection with a limit as low as 2.52 nM. Moreover, there was a 13.3-fold enhancement of PQDs' fluorescence lifetime when the emission wavelength fell in the PBG range. The hydrophobic surface of ZIF-8 PhCs enhanced the PQDs' stability and moisture resistance. Furthermore, the selective quenching mechanism of TNP by the sensor was photoinduced electron transfer (PET) verified by DFT calculations and time-resolved PL decay dynamics measurements. This study demonstrated great potential for manipulating light emission enhancement by PhCs in developing efficient fluorescent sensors for trace environmental pollutant detection.

8.
IEEE Trans Med Imaging ; PP2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39024079

RESUMEN

Histopathological examinations heavily rely on hematoxylin and eosin (HE) and immunohistochemistry (IHC) staining. IHC staining can offer more accurate diagnostic details but it brings significant financial and time costs. Furthermore, either re-staining HE-stained slides or using adjacent slides for IHC may compromise the accuracy of pathological diagnosis due to information loss. To address these challenges, we develop PST-Diff, a method for generating virtual IHC images from HE images based on diffusion models, which allows pathologists to simultaneously view multiple staining results from the same tissue slide. To maintain the pathological consistency of the stain transfer, we propose the asymmetric attention mechanism (AAM) and latent transfer (LT) module in PST-Diff. Specifically, the AAM can retain more local pathological information of the source domain images through the design of asymmetric attention mechanisms, while ensuring the model's flexibility in generating virtual stained images that highly confirm to the target domain. Subsequently, the LT module transfers the implicit representations across different domains, effectively alleviating the bias introduced by direct connection and further enhancing the pathological consistency of PST-Diff. Furthermore, to maintain the structural consistency of the stain transfer, the conditional frequency guidance (CFG) module is proposed to precisely control image generation and preserve structural details according to the frequency recovery process. To conclude, the pathological and structural consistency constraints provide PST-Diff with effectiveness and superior generalization in generating stable and functionally pathological IHC images with the best evaluation score. In general, PST-Diff offers prospective application in clinical virtual staining and pathological image analysis.

9.
Food Chem ; 460(Pt 1): 140458, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39029364

RESUMEN

In recent years, meat analogs based on plant proteins have received increasing attention. However, the process of high moisture extrusion (HME), the method for their preparation, has not been thoroughly explored, particularly in terms of elucidating the complex interactions that occur during extrusion, which remain challenging. These interactions arise from the various ingredients added during HME, including proteins, starches, edible gums, dietary fibers, lipids, and enzymes. These ingredients undergo intricate conformational changes and interactions under extreme conditions of high temperature, pressure, and shear, ultimately forming the fibrous structure of meat analogs. This review offers a overview of these ingredients and the molecular interaction changes they undergo during the extrusion process. Additionally, it delves into the major molecular interactions such as disulfide bonding, hydrogen bonding, and hydrophobic interactions, providing detailed insights into each.

10.
Nano Lett ; 24(27): 8277-8286, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38949123

RESUMEN

The controlled vapor-phase synthesis of two-dimensional (2D) transition metal dichalcogenides (TMDs) is essential for functional applications. While chemical vapor deposition (CVD) techniques have been successful for transition metal sulfides, extending these methods to selenides and tellurides often faces challenges due to uncertain roles of hydrogen (H2) in their synthesis. Using CVD growth of MoSe2 as an example, this study illustrates the role of a H2-free environment during temperature ramping in suppressing the reduction of MoO3, which promotes effective vaporization and selenization of the Mo precursor to form MoSe2 monolayers with excellent crystal quality. As-synthesized MoSe2 monolayer-based field-effect transistors show excellent carrier mobility of up to 20.9 cm2/(V·s) with an on-off ratio of 7 × 107. This approach can be extended to other TMDs, such as WSe2, MoTe2, and MoSe2/WSe2 in-plane heterostructures. Our work provides a rational and facile approach to reproducibly synthesize high-quality TMD monolayers, facilitating their translation from laboratory to manufacturing.

11.
Ren Fail ; 46(2): 2363591, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38856314

RESUMEN

Sepsis is a severe systemic infectious disease that often leads to multi-organ dysfunction. One of the common and serious complications of sepsis is renal injury. In this study, we aimed to investigate the potential mechanistic role of a novel compound called H-151 in septic kidney injury. We also examined its impact on renal function and mouse survival rates. Initially, we confirmed abnormal activation of the STING-TBK1 signaling pathway in the kidneys of septic mice. Subsequently, we treated the mice with H-151 and observed significant improvement in sepsis-induced renal dysfunction. This was evidenced by reductions in blood creatinine and urea nitrogen levels, as well as a marked decrease in inflammatory cytokine levels. Furthermore, H-151 substantially improved the seven-day survival rate of septic mice, indicating its therapeutic potential. Importantly, H-151 also exhibited an inhibitory effect on renal apoptosis levels, further highlighting its mechanism of protecting against septic kidney injury. These study findings not only offer new insights into the treatment of septic renal injury but also provide crucial clues for further investigations into the regulatory mechanisms of the STING-TBK1 signaling pathway and potential drug targets.


Asunto(s)
Lesión Renal Aguda , Modelos Animales de Enfermedad , Lipopolisacáridos , Proteínas de la Membrana , Proteínas Serina-Treonina Quinasas , Sepsis , Transducción de Señal , Animales , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/tratamiento farmacológico , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Sepsis/complicaciones , Sepsis/metabolismo , Sepsis/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Masculino , Riñón/patología , Riñón/metabolismo , Riñón/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ratones Endogámicos C57BL , Citocinas/metabolismo
12.
Inflammation ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913144

RESUMEN

Abstract-This study explored the role of the non-canonical STING-PERK signaling pathway in sepsis-associated acute kidney injury (SA-AKI). Gene expression data from the GEO database and serum STING protein levels in patients with SA-AKI were analyzed. An LPS-induced mouse model and an in vitro model using HK-2 cells were used to investigate the role of STING in SA-AKI. STING expression was suppressed using shRNA silencing technology and the STING inhibitor C176. Kidney function, inflammatory markers, apoptosis, and senescence were measured. The role of the STING-PERK pathway was investigated by silencing PERK in HK-2 cells and administering the PERK inhibitor GSK2606414. STING mRNA expression and serum STING protein levels were significantly higher in patients with SA-AKI. Suppressing STING expression improved kidney function, reduced inflammation, and inhibited apoptosis and senescence. Silencing PERK or administering GSK2606414 suppressed the inflammatory response, cell apoptosis, and senescence, suggesting that PERK is a downstream effector in the STING signaling pathway. The STING-PERK signaling pathway exacerbates cell senescence and apoptosis in SA-AKI. Inhibiting this pathway could provide potential therapeutic targets for SA-AKI treatment.

13.
J Colloid Interface Sci ; 673: 874-882, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38908286

RESUMEN

The quest for efficient hydrogen production highlights the need for cost-effective and high-performance catalysts to enhance the electrochemical water-splitting process. A significant challenge in developing self-supporting catalysts lies in the high cost and complex modification of traditional substrates. In this study, we developed catalysts featuring superaerophobic microstructures engineered on microspherical nickel-coated Chinese rice paper (Ni-RP), chosen for its affordability and exceptional ductility. These catalysts, due to their microspherical morphology and textured surface, exhibited significant superaerophobic properties, substantially reducing bubble adhesion. The nickel oxy-hydroxide (NiOxHy) and phosphorus-doped nickel (PNi) catalysts on Ni-RP demonstrated effective roles in oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), achieving overpotentials of 250 mV at 20 mA cm-2 and 87 mV at -10 mA cm-2 in 1 M KOH, respectively. Moreover, a custom water-splitting cell using PNi/Ni-RP and NiOxHy/Ni-RP electrodes reached an impressive average voltage of 1.55 V at 10 mA cm-2, with stable performance over 100 h in 1 M KOH. Our findings present a cost-effective, sustainable, and easily modifiable substrate that utilizes superaerophobic structures to create efficient and durable catalysts for water splitting. This work serves as a compelling example of designing high-performance self-supporting catalysts for electrocatalytic applications.

14.
Int J Oncol ; 65(1)2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847236

RESUMEN

Glutathione (GSH)­degrading enzymes are essential for starting the first stages of GSH degradation. These enzymes include extracellular γ­glutamyl transpeptidase (GGT) and intracellular GSH­specific γ­glutamylcyclotransferase 1 (ChaC1) and 2. These enzymes are essential for cellular activities, such as immune response, differentiation, proliferation, homeostasis regulation and programmed cell death. Tumor tissue frequently exhibits abnormal expression of GSH­degrading enzymes, which has a key impact on the development and spread of malignancies. The present review summarizes gene and protein structure, catalytic activity and regulation of GSH­degrading enzymes, their vital roles in tumor development (including regulation of oxidative and endoplasmic reticulum stress, control of programmed cell death, promotion of inflammation and tumorigenesis and modulation of drug resistance in tumor cells) and potential role as diagnostic biomarkers and therapeutic targets.


Asunto(s)
Glutatión , Neoplasias , gamma-Glutamilciclotransferasa , gamma-Glutamiltransferasa , Humanos , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/enzimología , Glutatión/metabolismo , gamma-Glutamilciclotransferasa/metabolismo , gamma-Glutamilciclotransferasa/genética , gamma-Glutamiltransferasa/metabolismo , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Animales , Regulación Neoplásica de la Expresión Génica , Estrés Oxidativo , Estrés del Retículo Endoplásmico
15.
Per Med ; 21(4): 227-241, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38940394

RESUMEN

High altitude pulmonary edema (HAPE) is a life-threatening form of non-cardiogenic pulmonary edema. In recent years, association studies have become the main method for identifying HAPE genetic loci. A genome-wide association study (GWAS) of HAPE risk-associated loci was performed in Chinese male Han individuals (164 HAPE cases and 189 healthy controls) by the Precision Medicine Diversity Array Chip with 2,771,835 loci (Applied Biosystems Axiom™). Eight overlapping candidate loci in CCNG2, RP11-445O3.2, NUPL1 and WWOX were finally selected. In silico functional analyses displayed the PPI network, functional enrichment and signal pathways related to CCNG2, NUPL1, WWOX and NRXN1. This study provides data supplements for HAPE susceptibility gene loci and new insights into HAPE susceptibility.


Asunto(s)
Mal de Altura , Pueblo Asiatico , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Humanos , Masculino , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Pueblo Asiatico/genética , China , Mal de Altura/genética , Polimorfismo de Nucleótido Simple/genética , Hipertensión Pulmonar/genética , Estudios de Casos y Controles , Sitios Genéticos/genética , Adulto , Pueblos del Este de Asia
16.
Microsyst Nanoeng ; 10: 86, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919162

RESUMEN

The introduction of flows within sessile droplets is highly effective for many lab-on-a-chip chemical and biomedical applications. However, generating such flows is difficult due to the typically small droplet volumes. Here, we present a simple, non-contact strategy to generate internal flows in sessile droplets for enhancing mixing and mass transport. The flows are driven by actuating a rigid substrate into oscillation with certain amplitude distributions without relying on the resonance of the droplet itself. Substrate oscillation characteristics and corresponding flow patterns are documented herein. Mixing indices and mass transfer coefficients of sessile droplets on the substrate surface are measured using optical and electrochemical methods. They demonstrate complete mixing within the droplets in 1.35 s and increases in mass transfer rates of more than seven times static values. Proof of concept was conducted with experiments of silver nanoparticle synthesis and with heavy metal ion sensing employing the sessile droplet as a microreactor for synthesis and an electrochemical cell for sensing. The degrees of enhancement of synthesis efficiency and detection sensitivity attributed to the internal flows are experimentally documented.

17.
Sensors (Basel) ; 24(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38931801

RESUMEN

Active vision systems (AVSs) have been widely used to obtain high-resolution images of objects of interest. However, tracking small objects in high-magnification scenes is challenging due to shallow depth of field (DoF) and narrow field of view (FoV). To address this, we introduce a novel high-speed AVS with a continuous autofocus (C-AF) approach based on dynamic-range focal sweep and a high-frame-rate (HFR) frame-by-frame tracking pipeline. Our AVS leverages an ultra-fast pan-tilt mechanism based on a Galvano mirror, enabling high-frequency view direction adjustment. Specifically, the proposed C-AF approach uses a 500 fps high-speed camera and a focus-tunable liquid lens operating at a sine wave, providing a 50 Hz focal sweep around the object's optimal focus. During each focal sweep, 10 images with varying focuses are captured, and the one with the highest focus value is selected, resulting in a stable output of well-focused images at 50 fps. Simultaneously, the object's depth is measured using the depth-from-focus (DFF) technique, allowing dynamic adjustment of the focal sweep range. Importantly, because the remaining images are only slightly less focused, all 500 fps images can be utilized for object tracking. The proposed tracking pipeline combines deep-learning-based object detection, K-means color clustering, and HFR tracking based on color filtering, achieving 500 fps frame-by-frame tracking. Experimental results demonstrate the effectiveness of the proposed C-AF approach and the advanced capabilities of the high-speed AVS for magnified object tracking.

18.
Nanomaterials (Basel) ; 14(11)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38869594

RESUMEN

Polarization-insensitive semiconductor optical amplifiers (SOAs) in all-optical networks can improve the signal-light quality and transmission rate. Herein, to reduce the gain sensitivity to polarization, a multi-quantum-well SOA in the 1550 nm band is designed, simulated, and developed. The active region mainly comprises the quaternary compound InGaAlAs, as differences in the potential barriers and wells of the components cause lattice mismatch. Consequently, a strained quantum well is generated, providing the SOA with gain insensitivity to the polarization state of light. In simulations, the SOA with ridge widths of 4 µm, 5 µm, and 6 µm is investigated. A 3 dB gain bandwidth of >140 nm is achieved with a 4 µm ridge width, whereas a 6 µm ridge width provides more output power and gain. The saturated output power is 150 mW (21.76 dB gain) at an input power of 0 dBm but increases to 233 mW (13.67 dB gain) at an input power of 10 dBm. The polarization sensitivity is <3 dBm at -20 dBm. This design, which achieves low polarization sensitivity, a wide gain bandwidth, and high gain, will be applicable in a wide range of fields following further optimization.

19.
Front Immunol ; 15: 1340332, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919631

RESUMEN

During infection, positive-stranded RNA causes a rearrangement of the host cell membrane, resulting in specialized membrane structure formation aiding viral genome replication. Double-membrane vesicles (DMVs), typical structures produced by virus-induced membrane rearrangements, are platforms for viral replication. Nidoviruses, one of the most complex positive-strand RNA viruses, have the ability to infect not only mammals and a few birds but also invertebrates. Nidoviruses possess a distinctive replication mechanism, wherein their nonstructural proteins (nsps) play a crucial role in DMV biogenesis. With the participation of host factors related to autophagy and lipid synthesis pathways, several viral nsps hijack the membrane rearrangement process of host endoplasmic reticulum (ER), Golgi apparatus, and other organelles to induce DMV formation. An understanding of the mechanisms of DMV formation and its structure and function in the infectious cycle of nidovirus may be essential for the development of new and effective antiviral strategies in the future.


Asunto(s)
Nidovirales , Replicación Viral , Nidovirales/fisiología , Animales , Humanos , Infecciones por Nidovirales , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Retículo Endoplásmico/virología , Retículo Endoplásmico/metabolismo , Membrana Celular/metabolismo , Membrana Celular/virología , Interacciones Huésped-Patógeno
20.
Circ Res ; 135(1): 60-75, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770652

RESUMEN

BACKGROUND: Pathogenic concepts of right ventricular (RV) failure in pulmonary arterial hypertension focus on a critical loss of microvasculature. However, the methods underpinning prior studies did not take into account the 3-dimensional (3D) aspects of cardiac tissue, making accurate quantification difficult. We applied deep-tissue imaging to the pressure-overloaded RV to uncover the 3D properties of the microvascular network and determine whether deficient microvascular adaptation contributes to RV failure. METHODS: Heart sections measuring 250-µm-thick were obtained from mice after pulmonary artery banding (PAB) or debanding PAB surgery and properties of the RV microvascular network were assessed using 3D imaging and quantification. Human heart tissues harvested at the time of transplantation from pulmonary arterial hypertension cases were compared with tissues from control cases with normal RV function. RESULTS: Longitudinal 3D assessment of PAB mouse hearts uncovered complex microvascular remodeling characterized by tortuous, shorter, thicker, highly branched vessels, and overall preserved microvascular density. This remodeling process was reversible in debanding PAB mice in which the RV function recovers over time. The remodeled microvasculature tightly wrapped around the hypertrophied cardiomyocytes to maintain a stable contact surface to cardiomyocytes as an adaptation to RV pressure overload, even in end-stage RV failure. However, microvasculature-cardiomyocyte contact was impaired in areas with interstitial fibrosis where cardiomyocytes displayed signs of hypoxia. Similar to PAB animals, microvascular density in the RV was preserved in patients with end-stage pulmonary arterial hypertension, and microvascular architectural changes appeared to vary by etiology, with patients with pulmonary veno-occlusive disease displaying a lack of microvascular complexity with uniformly short segments. CONCLUSIONS: 3D deep tissue imaging of the failing RV in PAB mice, pulmonary hypertension rats, and patients with pulmonary arterial hypertension reveals complex microvascular changes to preserve the microvascular density and maintain a stable microvascular-cardiomyocyte contact. Our studies provide a novel framework to understand microvascular adaptation in the pressure-overloaded RV that focuses on cell-cell interaction and goes beyond the concept of capillary rarefaction.


Asunto(s)
Hipertensión Pulmonar , Imagenología Tridimensional , Ratones Endogámicos C57BL , Animales , Humanos , Ratones , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/diagnóstico por imagen , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/patología , Masculino , Ventrículos Cardíacos/fisiopatología , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/patología , Microvasos/fisiopatología , Microvasos/diagnóstico por imagen , Microvasos/patología , Remodelación Vascular , Arteria Pulmonar/fisiopatología , Arteria Pulmonar/diagnóstico por imagen , Arteria Pulmonar/patología , Disfunción Ventricular Derecha/fisiopatología , Disfunción Ventricular Derecha/etiología , Disfunción Ventricular Derecha/diagnóstico por imagen , Función Ventricular Derecha , Remodelación Ventricular , Modelos Animales de Enfermedad , Miocitos Cardíacos/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA