Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 186: 201-214, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39089350

RESUMEN

The current techniques for antithrombotic coating on blood-contacting biomedical materials and devices are usually complex and lack practical feasibility with weak coating stability and low heparin immobilization. Here, a heparinized self-healing polymer coating with inflammation modulation is introduced through thermal-initiated radical copolymerization of methacrylate esterified heparin (MA-heparin) with methyl methacrylate (MMA) and n-butyl acrylate (nBA), followed by the anchoring of reactive oxygen species (ROS)-responsive polyoxalate containing vanillyl alcohol (PVAX) onto the coating through esterification. The aspirin, which is readily dissolved in the solution of MMA and nBA, is encapsulated within the coating after copolymerization. The copolymerization of MA-heparin with MMA and nBA significantly increases the heparin content of the coating, effectively inhibiting thrombosis and rendering the coating self-healing to help maintain long-term stability. ROS-responsive PVAX and aspirin released in a temperature-dependent manner resist acute and chronic inflammation, respectively. The heparinized self-healing and inflammation-modulated polymer coating exhibits the ability to confer long-term stability and hemocompatibility to blood-contacting biomedical materials and devices. STATEMENT OF SIGNIFICANCE: Surface engineering for blood-contacting biomedical devices paves a successful way to reduce thrombotic and inflammatory complications. However, lack of effectiveness, long-term stability and practical feasibility hinders the development and clinical application of existing strategies. Here we design a heparinized self-healing and inflammation-modulated polymer coating, which possesses high heparin level and self-healing capability to maintain long-term stability. The polymer coating is practically feasible to varied substrates and demonstrated to manipulate inflammation and prevent thrombosis both in vitro and in vivo. Our work provides a new method to develop coatings for blood-contacting biomedical materials and devices with long-term stability and hemocompatibility.


Asunto(s)
Materiales Biocompatibles Revestidos , Heparina , Inflamación , Polímeros , Heparina/química , Heparina/farmacología , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Inflamación/patología , Inflamación/tratamiento farmacológico , Animales , Polímeros/química , Polímeros/farmacología , Humanos , Ratones , Especies Reactivas de Oxígeno/metabolismo , Trombosis
2.
Phys Eng Sci Med ; 47(3): 1277-1290, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39133370

RESUMEN

The cervical vertebral maturation (CVM) method is essential to determine the timing of orthodontic and orthopedic treatment. In this paper, a target detection model called DC-YOLOv5 is proposed to achieve fully automated detection and staging of CVM. A total of 1800 cephalometric radiographs were labeled and categorized based on the CVM stages. We introduced a model named DC-YOLOv5, optimized for the specific characteristics of CVM based on YOLOv5. This optimization includes replacing the original bounding box regression loss calculation method with Wise-IOU to address the issue of mutual interference between vertical and horizontal losses in Complete-IOU (CIOU), which made model convergence challenging. We incorporated the Res-dcn-head module structure to enhance the focus on small target features, improving the model's sensitivity to subtle sample differences. Additionally, we introduced the Convolutional Block Attention Module (CBAM) dual-channel attention mechanism to enhance focus and understanding of critical features, thereby enhancing the accuracy and efficiency of target detection. Loss functions, precision, recall, mean average precision (mAP), and F1 scores were used as the main algorithm evaluation metrics to assess the performance of these models. Furthermore, we attempted to analyze regions important for model predictions using gradient Class Activation Mapping (CAM) techniques. The final F1 scores of the DC-YOLOv5 model for CVM identification were 0.993, 0.994 for mAp0.5 and 0.943 for mAp0.5:0.95, with faster convergence, more accurate and more robust detection than the other four models. The DC-YOLOv5 algorithm shows high accuracy and robustness in CVM identification, which provides strong support for fast and accurate CVM identification and has a positive effect on the development of medical field and clinical diagnosis.


Asunto(s)
Algoritmos , Vértebras Cervicales , Vértebras Cervicales/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Cefalometría , Niño
3.
Int J Public Health ; 69: 1606956, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948086

RESUMEN

Objectives: We evaluated the long-term effects of air pollution controls on health and health inequity among Chinese >45 years of age. Methods: Data were derived from the China Health Aging and Retirement Longitudinal Survey and the China National Environmental Monitoring Centre. Decreases in PM2.5 and PM10 were scaled to measure air quality controls. We used a quasi-experimental design to estimate the impact of air quality controls on self-reported health and health inequity. Health disparities were estimated using the concentration index and the horizontal index. Results: Air pollution controls significantly improved self-reported health by 20% (OR 1.20, 95% CI, 1.02-1.42). The poorest group had a 40% (OR 1.41, 95% CI, 0.96-2.08) higher probability of having excellent self-reported health after air pollution controls. A pro-rich health inequity was observed, and the horizontal index decreased after air pollution controls. Conclusion: Air pollution controls have a long-term positive effect on health and health equity. The poorest population are the main beneficiaries of air pollution controls, which suggests policymakers should make efforts to reduce health inequity in air pollution controls.


Asunto(s)
Contaminación del Aire , Disparidades en el Estado de Salud , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , China , Pueblos del Este de Asia , Exposición a Riesgos Ambientales , Estudios Longitudinales , Material Particulado/análisis , Factores Socioeconómicos
4.
Phys Chem Chem Phys ; 26(32): 21520-21529, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39082090

RESUMEN

As a class of photosensitizers (PSs) with dual functions of photodynamic therapy (PDT) and fluorescence imaging, the relationship between the structure and dual-function of thiophene-fused-type BODIPY dyes has not been studied in depth before. We found that the thiophene-fused-type BODIPY triplet photosensitizer is produced according to the energy level matching rule and the introduction of the thiophene ring significantly reduces the energy gap ΔEST between singlet and triplet states, as revealed by our investigation of the excited state structures and energies of thieno-fused BODIPY dyes. At the same time, a tiny ΔEST also results in a greatly enhanced intersystem crossing (ISC) rate, kISC. The kISC value of MeO-BODIPY, having the highest singlet oxygen quantum yield (ΦΔ), is the largest. Substitution with a strong electron donor N,N-dimethylaminophenyl (DMA) leads to the vertical configuration in the T1 state. The small ΔE (0.0029 eV) between the HOMO and HOMO-1 triggers the photo induced electron transfer (PET) of inhibiting ISC and fluorescence. When thieno-fused BODIPYs react with pyrrole, the increase of π-conjugation and smaller ΔEHOMO-LUMO explain the redshift in emission wavelength of thieno-pyrrole-fused BODIPY. The more planar configuration of the S1 state and the stronger oscillator intensity reflect a higher fluorescence quantum yield (ΦF). The extension of π-conjugation can cause molecules to transition to higher-level singlet excited states (Sn states, n ≥ 1) after absorbing energy and reduce the energy level of the excited state, resulting in multiple channels and favoring 1O2 production for thieno-pyrrole-fused BODIPYs with electron-withdrawing groups at the para-position of the phenyl groups. Due to ΔES0-T1 < 0.980 eV, the substitution of electron-donating groups cannot produce 1O2. In this work, we have revealed the mechanism of ISC and the fluorescence emission process in the thiophene-fused-type BODIPY dye, which has provided a theoretical foundation and guidance for the future design of BODIPY-based heavy-atom-free PSs for molecular applications in PDT.

5.
Nano Lett ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856668

RESUMEN

Cell membrane-based nanovesicles (CMNVs) play pivotal roles in biomolecular transportation in living organisms and appear as attractive bioinformed nanomaterials for theranostic applications. However, the current surface-engineering technologies are limited in flexibility and orthogonality, making it challenging to simultaneously display multiple different ligands on the CMNV surface in a precisely controlled manner. Here, we developed a DNA scaffold-programmed approach to orthogonally engineer CMNVs with versatile ligands. The designed DNA scaffolds can rapidly anchor onto the CMNV surface, and their unique sequences and hybridized properties enable independent control of the loading of multiple different types of biomolecules on the CMNVs. As a result, the orthogonal engineering of CMNVs with a renal targeted peptide and a therapeutic protein at controlled ratios demonstrated an enhanced renal targeting and repair potential in vivo. This study highlights that a DNA scaffold-programmed platform can provide a potent means for orthogonal and flexible surface engineering of CMNVs for diverse therapeutic purposes.

6.
Biomark Res ; 12(1): 62, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38886769

RESUMEN

Inhibitors of Bruton's tyrosine kinase (BTKi) and chimeric antigen receptor T-cell (CAR-T) therapy targeting CD19 are paradigm-shifting advances in treating patients with aggressive mantle cell lymphoma (MCL). However, clinical relapses following BTKi and CD19-directed CAR-T treatments are a fast-growing medical challenge. Development of novel therapies to overcome BTKi resistance (BTKi-R) and BTKi-CAR-T dual resistance (Dual-R) are urgently needed. Our single-cell RNA sequencing data revealed major transcriptomic reprogramming, with great enrichment of MYC-targets evolving as resistance to these therapies developed. Interestingly, cyclin-dependent kinase 9 (CDK9), a critical component of the positive transcription elongation factor-b complex, was among the top upregulated genes in Dual-R vs. BTKi-R samples. We therefore hypothesized that targeting CDK9 may turn off MYC-driven tumor survival and drug resistance. Enitociclib (formerly VIP152) is a selective CDK9 inhibitor whose potency against MCL has not been assessed. In this study, we found that enitociclib was highly potent in targeting lymphoma cells, with the half-maximal inhibitory concentration (IC50) ranging from 32 to 172 nM in MCL and diffuse large B-cell lymphoma cell lines. It inhibited CDK9 phosphorylation and downstream events including de novo synthesis of the short-lived proteins c-MYC, MCL-1, and cyclin D1, and induced apoptosis in a caspase-3-dependent manner. Enitociclib potently inhibited in vivo tumor growth of cell line-derived and patient-derived xenografts having therapeutic resistance. Our data demonstrate the potency of enitociclib in overcoming therapeutic resistance in MCL models and provide evidence in favor of its clinical investigation.

7.
J Exp Child Psychol ; 244: 105950, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38735221

RESUMEN

This study investigated whether and how each component of working memory (WM) and inhibitory control (IC) is related to analogical reasoning. Specifically, the mediating roles of analogical strategies were examined and compared across children and adults. In total, 79 children (50 girls; M ± SD = 8.43 ± 0.59 years old) and 77 adults (35 female; 19.44 ± 0.82 years old) were administered tests of WM, IC, and analogical reasoning. In addition, participants' eye movement data during the analogical reasoning task were collected to classify the analogical strategies. The results showed that the semantic-constraint strategy completely mediated the relationship between WM (rather than IC) and analogical reasoning for children. However, for adults, the project-first strategy partially mediated the association between IC (rather than WM) and analogical reasoning. These findings reveal the dissociated roles of WM and IC in analogical reasoning through analogical strategies for children and adults and highlight the importance of analogical strategies.


Asunto(s)
Inhibición Psicológica , Memoria a Corto Plazo , Humanos , Femenino , Masculino , Niño , Adulto Joven , Movimientos Oculares , Adulto , Solución de Problemas , Función Ejecutiva/fisiología , Semántica , Pensamiento/fisiología , Factores de Edad
8.
Int J Biol Macromol ; 269(Pt 1): 131849, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670202

RESUMEN

Long-term patency and ability for revascularization remain challenges for small-caliber blood vessel grafts to treat cardiovascular diseases clinically. Here, a gelatin/heparin coated bio-inspired polyurethane composite fibers-based artificial blood vessel with continuous release of NO and biopeptides to regulate vascular tissue repair and maintain long-term patency is fabricated. A biodegradable polyurethane elastomer that can catalyze S-nitrosothiols in the blood to release NO is synthesized (NPU). Then, the NPU core-shell structured nanofiber grafts with requisite mechanical properties and biopeptide release for inflammation manipulation are fabricated by electrospinning and lyophilization. Finally, the surface of tubular NPU nanofiber grafts is coated with heparin/gelatin and crosslinked with glutaraldehyde to obtain small-caliber artificial blood vessels (ABVs) with the ability of vascular revascularization. We demonstrate that artificial blood vessel grafts promote the growth of endothelial cells but inhibit the growth of smooth muscle cells by the continuous release of NO; vascular grafts can regulate inflammatory balance for vascular tissue remodel without excessive collagen deposition through the release of biological peptides. Vascular grafts prevent thrombus and vascular stenosis to obtain long-term patency. Hence, our work paves a new way to develop small-caliber artificial blood vessel grafts that can maintain long-term patency in vivo and remodel vascular tissue successfully.


Asunto(s)
Prótesis Vascular , Gelatina , Heparina , Poliuretanos , Poliuretanos/química , Gelatina/química , Heparina/química , Heparina/farmacología , Humanos , Nanofibras/química , Animales , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Óxido Nítrico/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo
9.
Vet Res ; 55(1): 46, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589976

RESUMEN

Pasteurella multocida is an important zoonotic respiratory pathogen capable of infecting a diverse range of hosts, including humans, farm animals, and wild animals. However, the precise mechanisms by which P. multocida compromises the pulmonary integrity of mammals and subsequently induces systemic infection remain largely unexplored. In this study, based on mouse and rabbit models, we found that P. multocida causes not only lung damage but also bacteremia due to the loss of lung integrity. Furthermore, we demonstrated that bacteremia is an important aspect of P. multocida pathogenesis, as evidenced by the observed multiorgan damage and systemic inflammation, and ultimately found that this systemic infection leads to a cytokine storm that can be mitigated by IL-6-neutralizing antibodies. As a result, we divided the pathogenesis of P. multocida into two phases: the pulmonary infection phase and the systemic infection phase. Based on unbiased RNA-seq data, we discovered that P. multocida-induced apoptosis leads to the loss of pulmonary epithelial integrity. These findings have been validated in both TC-1 murine lung epithelial cells and the lungs of model mice. Conversely, the administration of Ac-DEVD-CHO, an apoptosis inhibitor, effectively restored pulmonary epithelial integrity, significantly mitigated lung damage, inhibited bacteremia, attenuated the cytokine storm, and reduced mortality in mouse models. At the molecular level, we demonstrated that the FAK-AKT-FOXO1 axis is involved in P. multocida-induced lung epithelial cell apoptosis in both cells and animals. Thus, our research provides crucial information with regard to the pathogenesis of P. multocida as well as potential treatment options for this and other respiratory bacterial diseases.


Asunto(s)
Bacteriemia , Infecciones por Pasteurella , Pasteurella multocida , Enfermedades de los Roedores , Humanos , Animales , Conejos , Ratones , Infecciones por Pasteurella/veterinaria , Infecciones por Pasteurella/microbiología , Proteínas Proto-Oncogénicas c-akt , Síndrome de Liberación de Citoquinas/patología , Síndrome de Liberación de Citoquinas/veterinaria , Pulmón/patología , Bacteriemia/veterinaria , Bacteriemia/patología , Apoptosis , Mamíferos , Proteína Forkhead Box O1
10.
Vet Res ; 55(1): 31, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493147

RESUMEN

Pasteurella multocida is an opportunistic zoonotic pathogen that primarily causes fatal respiratory diseases, such as pneumonia and respiratory syndromes. However, the precise mechanistic understanding of how P. multocida disrupts the epithelial barrier in mammalian lung remains largely unknown. In this study, using unbiased RNA-seq analysis, we found that the evolutionarily conserved Hippo-Yap pathway was dysregulated after P. multocida infection. Given the complexity of P. multocida infection associated with lung injury and systemic inflammatory processes, we employed a combination of cell culture models, mouse models, and rabbit models to investigate the dynamics of the Hippo-Yap pathway during P. multocida infection. Our findings reveal that P. multocida infection activates the Hippo-Yap pathway both in vitro and in vivo, by upregulating the upstream factors p-Mst1/2, p-Lats1, and p-Yap, and downregulating the downstream effectors Birc5, Cyr61, and Slug. Conversely, pharmacological inhibition of the Hippo pathway by XMU-MP-1 significantly rescued pulmonary epithelial cell apoptosis in vitro and reduced lung injury, systemic inflammation, and mouse mortality in vivo. Mechanistic studies revealed that P. multocida induced up-regulation of Rassf1 expression, and Rassf1 enhanced Hippo-Yap pathway through phosphorylation. Accordingly, in vitro knockdown of Rassf1 significantly enhanced Yap activity and expression of Yap downstream factors and reduced apoptosis during P. multocida infection. P. multocida-infected rabbit samples also showed overexpression of Rassf1, p-Lats1, and p-Yap, suggesting that P. multocida activates the Rassf1-Hippo-Yap pathway. These results elucidate the pathogenic role of the Rassf1-Hippo-Yap pathway in P. multocida infection and suggest that this pathway has the potential to be a drug target for the treatment of pasteurellosis.


Asunto(s)
Lesión Pulmonar , Pasteurella multocida , Enfermedades de los Roedores , Ratones , Animales , Conejos , Vía de Señalización Hippo , Transducción de Señal , Lesión Pulmonar/veterinaria , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Pulmón/metabolismo , Apoptosis , Proliferación Celular , Mamíferos
11.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167065, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38342419

RESUMEN

Transcription factor EB (TFEB), a master lysosomal biogenesis and autophagy regulator, is crucial for cellular homeostasis, and its abnormality is related to diverse inflammatory diseases. Genetic variations in autophagic genes are associated with susceptibility to inflammatory bowel disease (IBD); however, little is known about the role and mechanism of TFEB in disease pathogenesis. In this study, we found that the genetic deletion of TFEB in mouse intestinal epithelial cells (IEC) caused intestinal barrier dysfunction, leading to increased susceptibility to experimental colitis. Mechanistically, TFEB functionally protected IEC in part through peroxisome proliferator-activated receptor gamma coactivator 1alpha (TFEB-PGC1α axis) induction, which consequently suppressed reactive oxygen species. TFEB can directly regulate PGC-1α transcription to control antioxidation level. Notably, TFEB expression is impaired and downregulated in the colon tissues of IBD patients. Collectively, our results indicate that intestinal TFEB participates in oxidative stress regulation and attenuates IBD progression.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Homeostasis , Enfermedades Inflamatorias del Intestino , Mucosa Intestinal , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Especies Reactivas de Oxígeno , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Animales , Especies Reactivas de Oxígeno/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Enfermedades Inflamatorias del Intestino/genética , Ratones , Humanos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Estrés Oxidativo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Masculino , Colitis/metabolismo , Colitis/patología , Colitis/inducido químicamente , Colitis/genética
12.
Front Pediatr ; 12: 1351401, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38384661

RESUMEN

Background: The present systematic review and meta-analysis of randomized controlled trials (RCTs) was conducted to investigate the effects of music on pain management in preterm neonates during painful procedures. Methods: The PubMed, Embase, Web of Science, EBSCO and Cochrane Library databases were searched to identify relevant articles published from their inception to September 2023. The study search strategy and all other processes were implemented in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Results: Four RCTs that satisfied the inclusion criteria were included in this meta-analysis. The music group had significantly lower Premature Infant Pain Profile (PIPP) scores during (RR = -1.21; 95% CI = -2.02--0.40, p = 0.0032) and after painful procedures (RR = -0.65; 95% CI = -1.06--0.23, p = 0.002). The music group showed fewer changes in PIPP scores after invasive operations than did the control group (RR = -2.06; 95% CI -3.16--0.96; p = 0.0002). Moreover, our results showed that music improved oxygen saturation during (RR = 3.04, 95% CI = 1.64-4.44, p < 0.0001) and after painful procedures (RR = 3.50, 95% CI = 2.11-4.90, p < 0.00001). However, the change in peak heart rate during and after painful procedures was not statistically significant (RR = -12.14; 95% CI = -29.70-5.41 p = 0.18; RR = -10.41; 95% CI = -22.72-1.90 p = 0.10). Conclusion: In conclusion, this systematic review demonstrated that music interventions are effective for relieving procedural pain in preterm infants. Our results indicate that music can reduce stress levels and improve blood oxygen saturation. Due to the current limitations, large-scale, prospective RCTs should be performed to validate the present results.

13.
Neurochem Int ; 175: 105705, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38412923

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease that seriously threatens the quality of life of the elderly. Its pathogenesis has not yet been fully elucidated. Ferroptosis, a cell death caused by excessive accumulation of iron-dependent lipid peroxides, has been implicated in the pathogenesis of AD. Uncontrolled lipid peroxidation is the core process of ferroptosis, and inhibiting lipid peroxidation of ferroptosis may be an important therapeutic target for AD. Based on previous studies, we mixed standards of icariin, astragaloside IV, and puerarin, named the standard mixture YHG, and investigated the effect of YHG on ferroptosis -lipid peroxidation in APP/PS1 mice. DFX, a ferroptosis inhibitor, was used as a control drug. In this study, APP/PS1 mice were used as an AD animal model, and behavioral experiments, iron level detection, Transmission electron microscopy (TEM) observation, lipid peroxidation level detection, antioxidant capacity detection, immunofluorescence, Western blot and real-time qPCR were performed. It was found that YHG could reduce body weight, significantly improve abnormal behaviors and the ultrastructure of hippocampal neurons in APP/PS1 mice. The results of biochemical tests showed that YHG reduced the contents of iron, malondialdehyde (MDA) and lipid peroxide (LPO) in brain tissue and serum, and increased the levels of superoxide dismutase (SOD) and reduced glutathione (GSH). Immunofluorescence, WesternBlot and real-time qPCR results showed that YHG could promote the expression of solute carrier family 7 member 11 (SLC7A11), solute carrier family 3 member 2 (SLC3A2) and glutathione peroxidase 4(GPX4). Inhibited the expression of long-chain acyllipid coenzyme a synthetase 4(ACSL4) and lysophosphatidyltransferase 3 (LPCAT3). This study suggests that the mechanism by which YHG improves cognitive dysfunction in APP/PS1 mice may be related to the inhibition of ferroptosis-lipid peroxidation.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ferroptosis , Flavonoides , Isoflavonas , Enfermedades Neurodegenerativas , Saponinas , Triterpenos , Humanos , Anciano , Animales , Ratones , Peroxidación de Lípido , Calidad de Vida , Peróxidos Lipídicos , Enfermedad de Alzheimer/tratamiento farmacológico , Hierro , 1-Acilglicerofosfocolina O-Aciltransferasa
14.
J Anim Sci Biotechnol ; 15(1): 7, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38247003

RESUMEN

BACKGROUND: Diets rich in starch have been shown to increase a risk of reducing milk fat content in dairy goats. While bile acids (BAs) have been used as a lipid emulsifier in monogastric and aquatic animals, their effect on ruminants is not well understood. This study aimed to investigate the impact of BAs supplementation on various aspects of dairy goat physiology, including milk composition, rumen fermentation, gut microbiota, and BA metabolism. RESULTS: We randomly divided eighteen healthy primiparity lactating dairy goats (days in milk = 100 ± 6 d) into two groups and supplemented them with 0 or 4 g/d of BAs undergoing 5 weeks of feeding on a starch-rich diet. The results showed that BAs supplementation positively influenced milk yield and improved the quality of fatty acids in goat milk. BAs supplementation led to a reduction in saturated fatty acids (C16:0) and an increase in monounsaturated fatty acids (cis-9 C18:1), resulting in a healthier milk fatty acid profile. We observed a significant increase in plasma total bile acid concentration while the proportion of rumen short-chain fatty acids was not affected. Furthermore, BAs supplementation induced significant changes in the composition of the gut microbiota, favoring the enrichment of specific bacterial groups and altering the balance of microbial populations. Correlation analysis revealed associations between specific bacterial groups (Bacillus and Christensenellaceae R-7 group) and BA types, suggesting a role for the gut microbiota in BA metabolism. Functional prediction analysis revealed notable changes in pathways associated with lipid metabolism, suggesting that BAs supplementation has the potential to modulate lipid-related processes. CONCLUSION: These findings highlight the potential benefits of BAs supplementation in enhancing milk production, improving milk quality, and influencing metabolic pathways in dairy goats. Further research is warranted to elucidate the underlying mechanisms and explore the broader implications of these findings.

15.
ChemMedChem ; 19(1): e202300312, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37970644

RESUMEN

Ischemic stroke primarily leads to insufficient oxygen delivery in ischemic area. Prompt reperfusion treatment for restoration of oxygen is clinically suggested but mediates more surging reactive oxygen species (ROS) generation and oxidative damage, known as ischemia-reperfusion injury (IRI). Therefore, the regulation of oxygen content is a critical point to prevent cerebral ischemia induced pathological responses and simultaneously alleviate IRI triggered by the sudden oxygen restoration. In this work, we constructed a perfluorocarbon (PFC)-based artificial oxygen nanocarrier (PFTBA-L@GB), using an ultrasound-assisted emulsification method, alleviates the intracerebral hypoxic state in ischemia stage and IRI after reperfusion. The high oxygen solubility of PFC allows high oxygen efficacy. Furthermore, PFC has the adhesion affinity to platelets and prevents the overactivation of platelet. The encapsulated payload, ginkgolide B (GB) exerts its anti-thrombosis by antagonism on platelet activating factor and antioxidant effect by upregulation of antioxidant molecular pathway. The versatility of the present strategy provides a practical approach to build a simple, safe, and relatively effective oxygen delivery agent to alleviate hypoxia, promote intracerebral oxygenation, anti-inflammatory, reduce intracerebral oxidative stress damage and thrombosis and caused by stroke.


Asunto(s)
Fluorocarburos , Nanopartículas , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Fluorocarburos/farmacología , Fluorocarburos/uso terapéutico , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Oxígeno/farmacología
16.
Cell Death Dis ; 14(11): 714, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919300

RESUMEN

Bruton's tyrosine kinase inhibitors (BTKi) and CAR T-cell therapy have demonstrated tremendous clinical benefits in mantle cell lymphoma (MCL) patients, but intrinsic or acquired resistance inevitably develops. In this study, we assessed the efficacy of the highly potent and selective MCL-1 inhibitor AZD5991 in various therapy-resistant MCL cell models. AZD5991 markedly induced apoptosis in these cells. In addition to liberating BAK from the antiapoptotic MCL-1/BAK complex for the subsequent apoptosis cascade, AZD5991 downregulated inhibitor of apoptosis proteins (IAPs) through a BAK-dependent mechanism to amplify the apoptotic signal. The combination of AZD5991 with venetoclax enhanced apoptosis and reduced mitochondrial oxygen consumption capacity in MCL cell lines irrespective of their BTKi or venetoclax sensitivity. This combination also dramatically inhibited tumor growth and prolonged mouse survival in two aggressive MCL patient-derived xenograft models. Mechanistically, the augmented cell lethality was accompanied by the synergistic suppression of IAPs. Supporting this notion, the IAP antagonist BV6 induced dramatic apoptosis in resistant MCL cells and sensitized the resistant MCL cells to venetoclax. Our study uncovered another unique route for MCL-1 inhibitor to trigger apoptosis, implying that the pro-apoptotic combination of IAP antagonists and apoptosis inducers could be further exploited for MCL patients with multiple therapeutic resistance.


Asunto(s)
Linfoma de Células del Manto , Humanos , Ratones , Animales , Adulto , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Inhibidoras de la Apoptosis/metabolismo , Regulación hacia Abajo , Proliferación Celular , Línea Celular Tumoral , Apoptosis , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
17.
ACS Biomater Sci Eng ; 9(7): 4311-4327, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37327139

RESUMEN

The brain and liver are more susceptible to ischemia and reperfusion (IR) injury (IRI), which triggers the reactive oxygen species (ROS) burst and inflammatory cascade and results in severe neuronal damage or hepatic injury. Moreover, the damaged endothelial barrier contributes to proinflammatory activity and limits the delivery of therapeutic agents such as some macromolecules and nanomedicine despite the integrity being disrupted after IRI. Herein, we constructed a phenylboronic-decorated chitosan-based nanoplatform to deliver myricetin, a multifunctional polyphenol molecule for the treatment of cerebral and hepatic ischemia. The chitosan-based nanostructures are widely studied cationic carriers for endothelium penetration such as the blood-brain barrier (BBB) and sinusoidal endothelial barrier (SEB). The phenylboronic ester was chosen as the ROS-responsive bridging segment for conjugation and selective release of myricetin molecules, which meanwhile scavenged the overexpressed ROS in the inflammatory environment. The released myricetin molecules fulfill a variety of roles including antioxidation through multiple phenolic hydroxyl groups, inhibition of the inflammatory cascade by regulation of the macrophage polarization from M1 to M2, and endothelial injury repairment. Taken together, our present study provides valuable insight into the development of efficient antioxidant and anti-inflammatory platforms for potential application against ischemic disease.


Asunto(s)
Quitosano , Daño por Reperfusión , Humanos , Quitosano/farmacología , Especies Reactivas de Oxígeno , Inflamación/tratamiento farmacológico , Isquemia , Antioxidantes/farmacología , Endotelio , Macrófagos
18.
Macromol Biosci ; 23(10): e2300036, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37259884

RESUMEN

Tight manipulation of the initial leukocytes infiltration and macrophages plasticity toward the M2 phenotype remain a challenge for diabetic wound healing. Inspired by the platelet function and platelet-macrophage interaction, a platelet-anchored polylactic acid-b-polyethylene glycol-b-polylactic acid (PLA-PEG-PLA) electrospun dressing is developed for inflammatory modulation and diabetic wounds healing acceleration. PLA-PEG-PLA electrospun meshes encapsulated with thymosin ß4 (Tß4) and CaCl2 is fabricated with electrospinning, followed by immersion of electrospun mesh in platelet-rich plasma to firmly anchor the platelets. It is demonstrated that the anchored platelets on electrospun mesh can enhance the initial macrophage recruitment and control the Tß4 release from electrospun meshes to facilitate the macrophages polarization to the M2 phenotype. The inflammatory regulation promotes the expression of vascular endothelial growth factor and the migration of vascular endothelial cells for angiogenesis, resulting in accelerated diabetic wounds healing. Therefore, this work paved a new way to design platelet-inspired electrospun meshes for inflammation manipulation and diabetic wound healing.

19.
Plant Physiol ; 191(3): 1734-1750, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36617219

RESUMEN

In pear (Pyrus bretschneideri), pollen tube growth is critical for the double fertilization associated with seed setting, which in turn affects fruit yield. The normal deposition of callose mediates the polar growth of pollen tubes. However, the mechanism regulating callose synthesis in pollen tubes remains relatively uncharacterized. In this study, we revealed that the typical pear pollen tube lifecycle has a semi-growth duration (GD50) of 16.16 h under in vitro culture conditions. Moreover, callose plugs were deposited throughout the pollen tube lifecycle. The formation of callose plugs was inhibited by 2-deoxy-D-glucose, which also accelerated the senescence of pear pollen tubes. Additionally, PbrCalS1B.1, which encodes a plasma membrane-localized callose synthase, was expressed specifically in pollen tubes and restored the fertility of the Arabidopsis (Arabidopsis thaliana) cals5 mutant, in which callose synthesis is inhibited. However, this restoration of fertility was impaired by the transient silencing of PbrCalS1B.1, which restricts callose plug formation and shortens the pear pollen tube lifecycle. More specifically, PbrbZIP52 regulated PbrCalS1B.1 transcription by binding to promoter A-box elements to maintain the periodic formation of callose plugs and normal pollen tube growth, ultimately leading to double fertilization. This study confirmed that PbrbZIP52 positively affects pear pollen tube longevity by promoting callose synthesis. This finding may be useful for breeding high-yielding pear cultivars and stabilizing fruit setting in commercial orchards.


Asunto(s)
Arabidopsis , Pyrus , Tubo Polínico , Pyrus/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Longevidad , Fitomejoramiento , Arabidopsis/metabolismo
20.
J Chromatogr Sci ; 61(7): 625-636, 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35726164

RESUMEN

An azobenzenediamide bridged bis(ß-cyclodextrin) chiral stationary phase (AZCDP) was prepared, and its high-performance liquid chromatography performance in reversed-phase and polar organic modes was evaluated by chiral probes, including triazoles, flavanones, amino acids and ß-blockers. The results showed that AZCDP had strong chiral separation ability and the 40 chiral compounds were successfully resolved, of which 32 were completely separated (Rs ≥ 1.5) and the best enantioresolution was up to 3.93 within 20 min under a wide range of pH value and temperature. The separation ability of AZCDP with double cavities was significantly better than common CD-CSPs with single cavity, which was related to the synergistic inclusion effect. Compared with the previously reported stilbene (C=C)-bridged CSP, AZCDP with azobenzene (N=N)-bridged had a wider resolution range. For example, it could resolve myclobutanil, pindolol, carteolol, betaxolol, bevanolol and bitertanol, which could not be resolved before, and should be related to the fact that the flexible N=N was more compatible with the synergistic inclusion between cavities than the rigid C=C bridge group. The azobenzenediamide bridging group could also provide hydrogen bond, π-π and other sites, which was conducive to chiral separations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA