Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 100
1.
J Am Chem Soc ; 146(20): 13886-13893, 2024 May 22.
Article En | MEDLINE | ID: mdl-38739909

Guest-induced (crystal-to-crystal) transformation, i.e., periodic flexibility, is a typical feature of molecule-based crystalline porous materials, but its role for adsorptive separation is controversial. On the other hand, aperiodic flexibility is rarely studied. This work reports a pair of isomeric Cu(I) triazolate frameworks, namely, α-[Cu(fetz)] (MAF-2Fa) and ß-[Cu(fetz)] (MAF-2Fb), which show typical periodic and aperiodic flexibility for CO chemical adsorption, respectively. Quantitative mixture breakthrough experiments show that, while MAF-2Fa exhibits high adsorption capacity at high pressures but negligible adsorption below the threshold pressure and with leakage concentrations of 3-8%, MAF-2Fb exhibits relatively low adsorption capacity at high pressures but no leakage (residual CO concentration <1 ppb). Tandem connection of MAF-2Fa and MAF-2Fb can combine their advantages of high CO adsorption capacities at high and low pressures, respectively. MAF-2Fa and MAF-2Fb can both keep the separation performances unchanged at high relative humidities, but only MAF-2Fb shows a unique coadsorption behavior at a relative humidity of 82%, which can be used to improve purification performances.

2.
Angew Chem Int Ed Engl ; : e202407675, 2024 May 21.
Article En | MEDLINE | ID: mdl-38770616

Manipulating the crystal orientation plays a crucial role in the conversion efficiency during second harmonic generation (SHG). Here, we provide a new strategy in controlling the surface-dependent anisotropic SHG with the precise design of (101) and (20) MAGeI3 facets. Based on the SHG measurement, the (101) MAGeI3 single crystal exhibits larger SHG (1.3 × (20) MAGeI3). Kelvin probe force microscopy imaging shows a smaller work function for the (101) MAGeI3 compared with the (20), which indirectly demonstrates the stronger intrinsic polarization on the (101) surface. X-ray photoelectron spectroscopy confirms the band bending within the (101) facet. Temperature-dependent steady-state and time-resolved photoluminescence spectroscopy show shorter lifetime and wider emission band in the (101) MAGeI3 single crystal, revealing the higher defect states. Additionally, powder X-ray diffraction patterns show the (101) MAGeI3 possesses larger in-plane polar units [GeI3]- density, which could directly enhance the spontaneous polarization in the (101) facet. Density functional theory (DFT) calculation further demonstrates the higher intrinsic polarization in the (101) facet compared with the (20) facet, and the larger built-in electric field in the (101) facet facilitates surface vacancy defect accumulation. Our work provides a new angle in tuning and optimizing hybrid perovskite-based nonlinear optical materials.

3.
Angew Chem Int Ed Engl ; : e202404271, 2024 May 03.
Article En | MEDLINE | ID: mdl-38700507

Integrating controllable spin states into single-molecule magnets (SMMs) enables precise manipulation of magnetic interactions at a molecular level, but remains a synthetic challenge. Herein, we developed a 3d-4f metallacrown (MC) magnet [DyNi5(quinha)5(Clsal)2(py)8](ClO4)∙4H2O (H2quinha = quinaldichydroxamic acid, HClsal = 5-chlorosalicylaldehyde) wherein a square planar NiII is stabilized by chemical stacking. Thioacetal modification was employed via post-synthetic ligand substitutions and yielded [DyNi5(quinha)5(Clsaldt)2(py)8](ClO4)·3H2O (HClsaldt = 4-chloro-2-(1,3-dithiolan-2-yl)phenol). Thanks to the additional ligations of thioacetal onto the NiII site, coordination-induced spin state switching (CISSS) took place with spin state altering from low-spin S = 0 to high-spin S = 1. The synergy of CISSS effect and magnetic interactions results in distinct energy splitting and magnetic dynamics. Magnetic studies indicate prominent enhancement of reversal barrier from 57 cm-1 to 423 cm-1, along with hysteresis opening and an over 200-fold increment in coercive field at 2 K. Ab initio calculations provide deeper insights into the exchange models and rationalize the relaxation/tunnelling pathways. These results demonstrate here provide a fire-new perspective in modulating the magnetization relaxation via the incorporation of controllable spin states and magnetic interactions facilitated by the CISSS approach.

4.
Inorg Chem ; 63(17): 7966-7972, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38620044

Hybrid ferroelastic crystals have emerged as a hot research topic in recent years owing to their prospective applications in piezoelectric sensors, mechanical switches, and optoelectronic devices. Nevertheless, most of the documented materials exhibit one-step or two-step ferroelastic phase transition(s), and those with multistep ferroelastic transitions are extremely scarce. We present a new hexagonal molecular perovskite based on a fluoro-substituted flexible cyclic ammonium cation, (1-fluoromethyl-1-methylpyrrolidine)[CdCl3] (1), undergoing unusual three-step ferroelastic phase transitions from hexagonal paraelastic phase to orthorhombic, monoclinic, and triclinic ferroelastic phases at 388, 376, and 311 K, respectively, with Aizu notation of 6/mmmFmmm, mmmF2/m, and 2/mF-1, featuring spontaneous strain of 0.002, 0.023, and 0.110, respectively. Furthermore, variable-temperature single-crystal diffraction reveals that the phase-transition mechanism in 1 principally originates from intriguing dynamic change of organic cations and synchronous displacement of inorganic chains. This scarce instance of multistep hybrid ferroelastic provides important clues for finding advanced ferroelastic materials.

5.
Chem Sci ; 15(10): 3661-3669, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38455005

Ferroelastic materials have gained widespread attention as promising candidates for mechanical switches, shape memory, and information processing. Their phase-transition mechanisms usually originate from conventional order-disorder and/or displacive types, while those involving dynamic coordination bonds are still scarce. Herein, based on a strategic molecular design of organic cations, we report three new polar hybrid crystals with a generic formula of AA'RbBiCl6 (A = A' = Me3SO+ for 1; A = Me3SO+ and A' = Me4N+ for 2; A = A' = Me3NNH2+ for 3). Their A-site cations link to the [RbBiCl6]n2n- inorganic framework with lon topology through Rb-O/N coordination bonds, while their significantly different interactions between A'-site cations and inorganic frameworks provide distinct phase-transition behaviour. In detail, the strongly coordinative A'-site Me3SO+ cations prevent 1 from a structural phase transition, while coordinatively free A'-site Me4N+ cations trigger a conventional order-disorder ferroelastic transition at 247 K in 2, accompanied by a latent heat of 0.63 J g-1 and a usual "high → low" second-harmonic-generation (SHG) switch. Interestingly, the A'-site Me3NNH2+ cations in 3 reveal unusual dynamic coordination bonds, driving a high-temperature ferroelastic transition at 369 K with a large latent heat of 18.34 J g-1 and an unusual "low → high" SHG-switching behaviour. This work provides an effective molecular assembly strategy to establish dynamic coordination bonds in a new type of host-guest model and opens an avenue for designing advanced ferroelastic multifunctional materials.

6.
Nat Mater ; 23(1): 116-123, 2024 Jan.
Article En | MEDLINE | ID: mdl-37957269

Carbon monoxide (CO) separation relies on chemical adsorption but suffers from the difficulty of desorption and instability of open metal sites against O2, H2O and so on. Here we demonstrate quasi-open metal sites with hidden or shielded coordination sites as a promising solution. Possessing the trigonal coordination geometry (sp2), Cu(I) ions in porous frameworks show weak physical adsorption for non-target guests. Rational regulation of framework flexibility enables geometry transformation to tetrahedral geometry (sp3), generating a fourth coordination site for the chemical adsorption of CO. Quantitative breakthrough experiments at ambient conditions show CO uptakes up to 4.1 mmol g-1 and CO selectivity up to 347 against CO2, CH4, O2, N2 and H2. The adsorbents can be completely regenerated at 333-373 K to recover CO with a purity of >99.99%, and the separation performances are stable in high-concentration O2 and H2O. Although CO leakage concentration generally follows the structural transition pressure, large amounts (>3 mmol g-1) of ultrahigh-purity (99.9999999%, 9N; CO concentration < 1 part per billion) gases can be produced in a single adsorption process, demonstrating the usefulness of this approach for separation applications.

7.
Chem Commun (Camb) ; 59(75): 11264-11267, 2023 Sep 19.
Article En | MEDLINE | ID: mdl-37661855

Integrating NH4+ as a B'-site ion within a three-dimensional double hybrid perovskite resulted in a novel high-temperature ferroelastic, (Me3NOH)2(NH4)[Co(CN)6], which uniquely demonstrates a reversible triclinic-to-cubic phase transition at 369 K and offers a record-setting 24 orientation states, the highest ever reported among all ferroelastics.

8.
Chem Asian J ; 18(19): e202300608, 2023 Oct 04.
Article En | MEDLINE | ID: mdl-37553296

Endowing room-temperature polymorphs with both long-term stability and easy interconvertibility is a big challenge due to the complexity of intermolecular interactions. Herein, we present a chiral hexagonal perovskite (R-3-hydroxy-1-methylpiperidinium)[CdCl3 ] having two room-temperature crystalline forms featuring obviously distinct second-harmonic-generation (SHG) signals with a high switching contrast of ~18 times. The two room-temperature forms could be long-term stable yet easily interconvertible through an irreversible thermal-induced phase transition and a pressure-driven backward transition, by switching hydrogen bonds via collective reorientation of ordered homochiral cations. Based on the essential role of homochiral organic cations in inducing switchable hydrogen bond linkages, this present instance provides good evidence that relatively irregular organic cations could induce more obvious inorganic chain deformations, thus endowing polymorphs with significantly different SHG signals at room temperature.

9.
J Phys Chem Lett ; 14(36): 8009-8015, 2023 Sep 14.
Article En | MEDLINE | ID: mdl-37651131

Free accessible confined space and loose interaction are crucial for most solid-state ionic motions. Here, by using a near-spherical anion and a disc-shaped ammonium as two distinct but rigid building blocks, we report a new ionic crystal, (HMIm)3[La(NO3)6] (HMIm = 1-methyl-1H-imidazol-3-ium), in which the different confined spaces of three (HMIm)+ ions are fine-tuned over a broad temperature range. This effect can be utilized to modulate the dipolar polarization across a wide temperature/frequency range. Additionally, small-scale substitution of (HMIm)+ by its isomer of almost identical shape/size affords molecular solid solutions, which can further tune the dipolar polarization by varying the doping ratio. It is revealed that the differences in dipole moment and hydrogen bond rather than that of shape/size lead to a distorted crystalline environment for these solid solutions. Overall, we provide an exceptional model for understanding and regulating the dipole motion of polar aromatic molecules/ions in a crystalline environment.

10.
Chem Sci ; 14(22): 5965-5973, 2023 Jun 07.
Article En | MEDLINE | ID: mdl-37293638

Hybrid ferroelastics have attracted increasing attention for their potential application as mechanical switches. The sporadically documented anomalous ferroelastic phase transitions, i.e., ferroelasticity that appears at a high-temperature phase rather than a low-temperature phase, are of particular interest but are not well understood at the molecular level. By judiciously choosing a polar and flexible organic cation (Me2NH(CH2)2Br+) with cis-/anti- conformations as an A-site component, we obtained two new polar hybrid ferroelastics, A2[MBr6] (M = Te for 1 and Sn for 2). These materials undergo distinct thermal-induced ferroelastic phase transitions. The larger [TeBr6]2- anions anchor the adjacent organic cations well and essentially endow 1 with a conventional ferroelastic transition (P21 → Pm21n) arising from a common order-disorder transition of organic cations without conformational changes. Moreover, the smaller [SnBr6]2- anions can interact with the adjacent organic cations in energetically similar sets of intermolecular interactions, enabling 2 to undergo an anomalous ferroelastic phase transition (P212121 → P21) arising from an unusual cis-/anti-conformational reversal of organic cations. These two instances demonstrate the importance of the delicate balance of intermolecular interactions for inducing anomalous ferroelastic phase transitions. The findings here provide important insights for seeking new multifunctional ferroelastic materials.

11.
J Am Chem Soc ; 145(25): 13663-13673, 2023 Jun 28.
Article En | MEDLINE | ID: mdl-37329320

The development of photo-responsive ferroelectrics whose polarization may be remotely controlled by optical means is of fundamental importance for basic research and technological applications. Herein, we report the design and synthesis of a new metal-nitrosyl ferroelectric crystal (DMA)(PIP)[Fe(CN)5(NO)] (1) (DMA = dimethylammonium, PIP = piperidinium) with potential phototunable polarization via a dual-organic-cation molecular design strategy. Compared to the parent non-ferroelectric (MA)2[Fe(CN)5(NO)] (MA = methylammonium) material with a phase transition at 207 K, the introduction of larger dual organic cations both lowers the crystal symmetry affording robust ferroelectricity and increases the energy barrier of molecular motions, endowing 1 with a large polarization of up to 7.6 µC cm-2 and a high Curie temperature (Tc) of 316 K. Infrared spectroscopy shows that the reversible photoisomerization of the nitrosyl ligand is accomplished by light irradiation. Specifically, the ground state with the N-bound nitrosyl ligand conformation can be reversibly switched to both the metastable state I (MSI) with isonitrosyl conformation and the metastable state II (MSII) with side-on nitrosyl conformation. Quantum chemistry calculations suggest that the photoisomerization significantly changes the dipole moment of the [Fe(CN)5(NO)]2- anion, thus leading to three ferroelectric states with different values of macroscopic polarization. Such optical accessibility and controllability of different ferroelectric states via photoinduced nitrosyl linkage isomerization open up a new and attractive route to optically controllable macroscopic polarization.

12.
Sci Rep ; 13(1): 7957, 2023 05 17.
Article En | MEDLINE | ID: mdl-37198299

Biosurfactants are attracting much interest due to their potential application as therapeutic agents in the medical and cosmetic field. Previous studies have demonstrated that biosurfactant such as sophorolipid (SL) exhibits immunomodulatory effects. In this article, we found the potential of sophorolipid for inhibiting histamine-induced itch and preliminarily explored its molecular basis. First, behavioral tests indicated that SL can remit the histamine-induced scratching behaviors of mice. Second, SL can suppress the the calcium influx induced by histamine, HTMT and VUF8430 in HaCaT cells. RT-PCR analysis showed that the histamine-induced upregulation of mRNA levels of phospholipase Cγ1, 1,4,5-trisphosphate receptor (IP3R), and protein kinase Cα can be inhibted by SL, suggesting that SL may impede the PLC/IP3R signaling pathway activated by histamine. In further tests, the capsaicin-induced calcium influx can also be inhibited by SL. The immunofluorescence and molecular docking analysis indicated that SL acts as an inhibitor of transient receptor potential vanilloid-1 (TRPV1) activation to decrease calcium influx against stimuli. In summary, these results revealed that SL may inhibit histamine-induced itch by decreasing PLC/IP3R signaling pathway activation and modulating TRPV1 activity. This paper indicates that SL can be a useful treatment for histamine-dependent itch.


Calcium , Histamine , Mice , Animals , Histamine/metabolism , Calcium/metabolism , Molecular Docking Simulation , Pruritus/chemically induced , Pruritus/drug therapy , Pruritus/metabolism , Signal Transduction , TRPV Cation Channels/metabolism
13.
Angew Chem Int Ed Engl ; 62(10): e202218902, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36645367

Melt-quenched glasses of organic-inorganic hybrid crystals, i.e., hybrid glasses, have attracted increasing attention as an emerging class of hybrid materials with beneficial processability and formability in the past years. Herein, we present a new hybrid crystal, (Ph3 PEt)3 [Ni(NCS)5 ] (1, Ph3 PEt+ =ethyl(triphenyl)phosphonium), crystallizing in a polar space group P1 and exhibiting thermal-induced reversible crystal-liquid-glass-crystal transitions with relatively low melting temperature of 132 °C, glass-transition temperature of 40 °C, and recrystallization on-set temperature of 78 °C, respectively. Taking advantage of such mild conditions, we fabricated an unprecedented hybrid glass-ceramic thin film, i.e., a thin glass uniformly embedding inner polar micro-crystals, which exhibits a much enhanced intrinsic second-order nonlinear optical effect, being ca. 25.6 and 3.1 times those of poly-crystalline 1 and KH2 PO4 , respectively, without any poling treatments.

14.
Sci China Mater ; 66(4): 1641-1648, 2023.
Article En | MEDLINE | ID: mdl-36532126

Epidemics caused by pathogens in recent years have created an urgent need for energetic biocidal agents with the capacity of detonation and releasing bactericides. Herein we present a new type of energetic biocidal agents based on a series of iodine-rich molecular perovskites, (H2dabco)M(IO4)3 (dabco = 1,4-diazabicyclo[2.2.2]octane, M = Na+/K+/Rb+/NH4 + for DAI-1/2/3/4) and (H2dabco)Na(H4IO6)3 (DAI-X1). These compounds possess a cubic perovskite structure, and notably have not only high iodine contents (49-54 wt%), but also high performance in detonation velocity (6.331-6.558 km s-1) and detonation pressure (30.69-30.88 GPa). In particular, DAI-4 has a very high iodine content of 54.0 wt% and simultaneously an exceptional detonation velocity up to 6.558 km s-1. As disclosed by laser scanning confocal microscopy observation and a standard micro-broth dilution method, the detonation products of DAI-4 exhibit a broad-spectrum bactericidal effect against bacteria (E. coli, S. aureus, and P. aeruginosa). The advantages of easy scale-up synthesis, low cost, high detonation performance, and high iodine contents enable these periodate-based molecular perovskites to be highly promising candidates for energetic biocidal agents. Electronic Supplementary Material: Supplementary material is available in the online version of this article at 10.1007/s40843-022-2257-6.

15.
Chem Sci ; 13(47): 14124-14131, 2022 Dec 07.
Article En | MEDLINE | ID: mdl-36540826

Molecular-based ferroic phase-transition materials have attracted increasing attention in the past decades due to their promising potential as sensors, switches, and memory. One of the long-term challenges in the development of molecular-based ferroic materials is determining how to promote the ferroic phase-transition temperature (T c). Herein, we present two new hexagonal molecular perovskites, (nortropinonium)[CdCl3] (1) and (nortropinium)[CdCl3] (2), to demonstrate a simple design principle for obtaining ultrahigh-T c ferroelastic phase transitions. They consist of same host inorganic chains but subtly different guest organic cations featuring a rigid carbonyl and a flexible hydroxyl group in 1 and 2, respectively. With stronger hydrogen bonds involving the carbonyl but a relatively lower decomposition temperature (T d, 480 K), 1 does not exhibit a crystalline phase transition before its decomposition. The hydroxyl group subtly changes the balance of intermolecular interactions in 2via reducing the attractive hydrogen bonds but increasing the repulsive interactions between adjacent organic cations, which finally endows 2 with an enhanced thermal stability (T d = 570 K) and three structural phase transitions, including two ferroelastic phase transitions at ultrahigh T c values of 463 K and 495 K, respectively. This finding provides important clues to judiciously tuning the intermolecular interactions in hybrid crystals for developing high-T c ferroic materials.

16.
Angew Chem Int Ed Engl ; 61(43): e202208875, 2022 Oct 24.
Article En | MEDLINE | ID: mdl-36043492

Ge-based hybrid perovskite materials have demonstrated great potential for second harmonic generation (SHG) due to the geometry and lone-pair induced non-centrosymmetric structures. Here, we report a new family of hybrid 3D Ge-based bromide perovskites AGeBr3 , A=CH3 NH3 (MA), CH(NH2 )2 (FA), Cs and FAGe0.5 Sn0.5 Br3 , crystallizing in polar space groups. These compounds exhibit tunable SHG responses, where MAGeBr3 shows the strongest SHG intensity (5×potassium dihydrogen phosphate, KDP). Structural and theoretical analysis indicate the high SHG efficiency is attributed to the displacement of Ge2+ along [111] direction and the relatively strong interactions between lone pair electrons of Ge2+ and polar MA cations along the c-axis. This work provides new structural insights for designing and fine-tuning the SHG properties in hybrid metal halide materials.

17.
Nat Commun ; 13(1): 4569, 2022 08 05.
Article En | MEDLINE | ID: mdl-35931702

The flexibility and guest-responsive behavior of some metal-organic frameworks (MOFs) indicate their potential in the fields of sensors and molecular recognition. As a subfamily of MOFs, the flexible zeolitic imidazolate frameworks (ZIFs) typically feature a small displacive transition due to the rigid zeolite topology. Herein, an atypical reversible displacive transition (6.4 Å) is observed for the sodalite (SOD) cage in flexible ZIF-65(Zn), which represents an unusually large breathing effect compared to other ZIFs. ZIF-65(Zn) exhibits a stepwise II → III → I expansion between an unusual ellipsoidal SOD cage (8.6 Å × 15.9 Å for II) and a spherical SOD cage (15.0 Å for I). The breathing behavior of ZIF-65(Zn) varies depending on the nature of the guest molecules (polarity and shape). Computational simulations are employed to rationalize the differences in the breathing behavior depending on the structure of the ZIF-65(Zn) cage and the nature of the guest-associated host-guest and guest-guest interactions.


Metal-Organic Frameworks , Zeolites , Imidazoles/chemistry , Metal-Organic Frameworks/chemistry , Zeolites/chemistry , Zinc/chemistry
18.
Angew Chem Int Ed Engl ; 61(35): e202204700, 2022 Aug 26.
Article En | MEDLINE | ID: mdl-35642623

Introducing magnetic switchability into artificial molecular machines is fascinating for precise control of magnetism via external stimuli. Herein, a field-induced CoII single-molecule magnet was found to exhibit the reversible switch of Jahn-Teller distortion near room temperature, along with thermal conformational motion of the 18-crown-6 rotor, which pulls the coordinated H2 O to rotate through intermolecular hydrogen bonds and triggers a single-crystal-to-single-crystal phase transition with Twarm =282 K and Tcool =276 K. Interestingly, the molecular magnetic anisotropy probed by single-crystal angular-resolved magnetometry revealed the reorientation of easy axis by 14.6°. Moreover, ON/OFF negative magnetodielectric effects were respectively observed in the high-/low-temperature phase, which manifests the spin-lattice interaction in the high-temperature phase could be stronger, in accompanied by the hydrogen bonding between the rotating 18-crown-6 and the coordinated H2 O.

19.
Inorg Chem ; 61(18): 7201-7206, 2022 May 09.
Article En | MEDLINE | ID: mdl-35476414

Here, we report a weakly bound ionic cocrystal, (Et3NCH2Cl)2[ZnCl4], which undergoes a reversible structural phase transition owing to the switched molecular dynamics of the quasi-spherical (Et3NCH2Cl)+ cation from static to dynamic. Interestingly, a unique rolling and moving mechanism is uncovered for such a cation in the high-temperature phase, where its two methylene groups exhibit different kinetic energy barriers. This study provides a meaningful insight into the solid-state molecular dynamics of large-size quasi-spherical molecules that contain both a rigid core and flexible shell.

20.
Inorg Chem ; 61(9): 4143-4149, 2022 Mar 07.
Article En | MEDLINE | ID: mdl-35192767

In recent years, molecular perovskite energetic materials have attracted more attention because of their simple synthesis processes, high thermal stabilities, excellent performances, and great significance as a design platform for energetic materials. To explore the possibility of the application of molecular perovskite energetic materials in heat-resistant explosives, four silver(I)-based molecular perovskite energetic compounds, (H2A)[Ag(ClO4)3], where H2A = piperazine-1,4-diium (H2pz2+) for PAP-5, 1-methyl-piperazine-1,4-diium (H2mpz2+) for PAP-M5, homopiperazine-1,4-diium (H2hpz2+) for PAP-H5, and 1,4-diazabicyclo[2.2.2]octane-1,4-diium (H2dabco2+) for DAP-5, were synthesized by a one-pot self-assembly strategy and structurally characterized. The single-crystal structures indicated that PAP-5, PAP-M5, and DAP-5 possess cubic perovskite structures while PAP-H5 possesses a hexagonal perovskite structure. Differential thermal analyses showed that their onset decomposition temperatures are >308.3 °C. For PAP-5 and DAP-5, they have not only exceptional calculated detonation parameters (D values of 8.961 and 8.534 km s-1 and P values of 42.4 and 37.9 GPa, respectively) but also the proper mechanical sensitivity (impact sensitivities of ≤10 J for PAP-5 and 3 J for DAP-5 and friction sensitivities of ≤5N for both PAP-5 and DAP-5) and thus are of interest as potential heat-resistant primary explosive components.

...