Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 303
1.
Acta Radiol ; : 2841851241246364, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715339

BACKGROUND: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with an extended Tofts linear (ETL) model for tissue and tumor evaluation has been established, but its effectiveness in evaluating the pancreas remains uncertain. PURPOSE: To understand the pharmacokinetics of normal pancreas and serve as a reference for future studies of pancreatic diseases. MATERIAL AND METHODS: Pancreatic pharmacokinetic parameters of 54 volunteers were calculated using DCE-MRI with the ETL model. First, intra- and inter-observer reliability was assessed through the use of the intra-class correlation coefficient (ICC) and coefficient of variation (CoV). Second, a subgroup analysis of the pancreatic DCE-MRI pharmacokinetic parameters was carried out by dividing the 54 individuals into three groups based on the pancreatic region, three groups based on age, and two groups based on sex. RESULTS: There was excellent agreement and low variability of intra- and inter-observer to pancreatic DCE-MRI pharmacokinetic parameters. The intra- and inter-observer ICCs of Ktrans, kep, ve, and vp were 0.971, 0.952, 0.959, 0.944 and 0.947, 0.911, 0.978, 0.917, respectively. The intra- and inter-observer CoVs of Ktrans, kep, ve, vp were 9.98%, 5.99%, 6.47%, 4.76% and 10.15%, 5.22%, 6.28%, 5.40%, respectively. Only the pancreatic ve of the older group was higher than that of the young and middle-aged groups (P = 0.042, 0.001), and the vp of the pancreatic head was higher than that of the pancreatic body and tail (P = 0.014, 0.043). CONCLUSION: The application of DCE-MRI with an ETL model provides a reliable, robust, and reproducible means of non-invasively quantifying pancreatic pharmacokinetic parameters.

2.
Int J Biol Macromol ; 269(Pt 1): 132074, 2024 May 03.
Article En | MEDLINE | ID: mdl-38705320

Treatment for triple negative breast cancer (TNBC) remains a huge challenge due to the lack of targeted therapeutics and tumor heterogenicity. Cisplatin (Cis) have demonstrated favorable therapeutic response in TNBC and thus is used together with various kinase inhibitors to fight the heterogenicity of TNBC. The combination of Cis with SRC inhibitor dasatinib (DAS) has shown encouraging anti-TNBC efficacy although the additive toxicity was commonly observed. To overcome the severe side effects of this Cis involved therapy, here we co-encapsulated Cis and DAS into a self-assembled hyaluronan (HA) nanogel (designated as HA/Cis/DAS (HCD) nanogel) to afford the TNBC targeted delivery by using the 4T1 mouse model. The acquired HCD nanogel was around 181 nm in aqueous solution, demonstrating the pharmacological activities of both Cis and DAS. Taking advantages of HA's targeting capability towards CD44 that is overexpressed on many TNBC cells, the HCD could well maintain the anticancer efficacy of the Cis and DAS combination, significantly increase the maximum tolerated dose and relieve the renal toxicity in vivo. The current HCD nanogel provides a potent strategy to improve the therapeutic outcome of Cis and DAS combination and thus representing a new targeted treatment option for TNBC.

3.
Nat Aging ; 4(4): 464-482, 2024 Apr.
Article En | MEDLINE | ID: mdl-38622408

Aging is a major risk factor for numerous chronic diseases. Vaccination offers a promising strategy to combat these age-related diseases by targeting specific antigens and inducing immune responses. Here, we provide a comprehensive overview of recent advances in vaccine-based interventions targeting these diseases, including Alzheimer's disease, type II diabetes, hypertension, abdominal aortic aneurysm, atherosclerosis, osteoarthritis, fibrosis and cancer, summarizing current approaches for identifying disease-associated antigens and inducing immune responses against these targets. Further, we reflect on the recent development of vaccines targeting senescent cells, as a strategy for more broadly targeting underlying causes of aging and associated pathologies. In addition to highlighting recent progress in these areas, we discuss important next steps to advance the therapeutic potential of these vaccines, including improving and robustly demonstrating efficacy in human clinical trials, as well as rigorously evaluating the safety and long-term effects of these vaccine strategies.


Diabetes Mellitus, Type 2 , Neoplasms , Vaccines , Humans , Vaccines/therapeutic use , Aging , Vaccination
4.
Protein Cell ; 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38577810

Aging has a profound impact on the gingiva and significantly increases its susceptibility to periodontitis, a worldwide prevalent inflammatory disease. However, a systematic characterization and comprehensive understanding of the regulatory mechanism underlying gingival aging is still lacking. Here, we systematically dissected the phenotypic characteristics of gingiva during aging in primates and constructed the first single-nucleus transcriptomic landscape of gingival aging, by which a panel of cell type-specific signatures were elucidated. Epithelial cells were identified as the most affected cell types by aging in the gingiva. Further analyses pinpointed the crucial role of YAP in epithelial self-renew and homeostasis, which declined during aging in epithelial cells, especially in basal cells. The decline of YAP activity during aging was confirmed in the human gingival tissues, and downregulation of YAP in human primary gingival keratinocytes recapitulated the major phenotypic defects observed in the aged primate gingiva while overexpression of YAP showed rejuvenation effects. Our work provides an in-depth understanding of gingival aging and serves as a rich resource for developing novel strategies to combat aging-associated gingival diseases, with the ultimate goal of advancing periodontal health and promoting healthy aging.

5.
Phenomics ; 4(1): 56-71, 2024 Feb.
Article En | MEDLINE | ID: mdl-38605908

Aging is associated with a progressive decline in physiological capacities and an increased risk of aging-associated disorders. An increasing body of experimental evidence shows that aging is a complex biological process coordinately regulated by multiple factors at different molecular layers. Thus, it is difficult to delineate the overall systematic aging changes based on single-layer data. Instead, multimodal omics approaches, in which data are acquired and analyzed using complementary omics technologies, such as genomics, transcriptomics, and epigenomics, are needed for gaining insights into the precise molecular regulatory mechanisms that trigger aging. In recent years, multimodal omics sequencing technologies that can reveal complex regulatory networks and specific phenotypic changes have been developed and widely applied to decode aging and age-related diseases. This review summarizes the classification and progress of multimodal omics approaches, as well as the rapidly growing number of articles reporting on their application in the field of aging research, and outlines new developments in the clinical treatment of age-related diseases based on omics technologies.

6.
Dev Cell ; 59(8): 991-1009.e12, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38484732

Sirtuins are pro-longevity genes with chromatin modulation potential, but how these properties are connected is not well understood. Here, we generated a panel of isogeneic human stem cell lines with SIRT1-SIRT7 knockouts and found that any sirtuin deficiency leads to accelerated cellular senescence. Through large-scale epigenomic analyses, we show how sirtuin deficiency alters genome organization and that genomic regions sensitive to sirtuin deficiency are preferentially enriched in active enhancers, thereby promoting interactions within topologically associated domains and the formation of de novo enhancer-promoter loops. In all sirtuin-deficient human stem cell lines, we found that chromatin contacts are rewired to promote aberrant activation of the placenta-specific gene PAPPA, which controls the pro-senescence effects associated with sirtuin deficiency and serves as a potential aging biomarker. Based on our survey of the 3D chromatin architecture, we established connections between sirtuins and potential target genes, thereby informing the development of strategies for aging interventions.


Cellular Senescence , Chromatin , Placenta , Sirtuins , Humans , Cellular Senescence/genetics , Placenta/metabolism , Sirtuins/metabolism , Sirtuins/genetics , Female , Pregnancy , Chromatin/metabolism , Chromatin/genetics , Sirtuin 1/metabolism , Sirtuin 1/genetics , Promoter Regions, Genetic/genetics , Cell Line
7.
Protein Cell ; 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38482631

Epigenetic clocks are accurate predictors of human chronological age based on the analysis of DNA methylation at specific CpG sites. However, available DNA methylation (DNAm) age predictors are based on datasets with limited ethnic representation. Moreover, a systematic comparison between DNAm data and other omics datasets has not yet been performed. To address these knowledge gaps, we generated and analyzed DNA methylation datasets from two independent Chinese cohorts, revealing age-related DNAm changes. Additionally, a DNA methylation (DNAm) aging clock (iCAS-DNAmAge) and a group of DNAm-based multi-modal clocks for Chinese individuals were developed, with most of them demonstrating strong predictive capabilities for chronological age. The clocks were further employed to predict factors influencing aging rates. The DNAm aging clock, derived from multi-modal aging features (compositeAge-DNAmAge), exhibited a close association with multi-omics changes, lifestyles, and disease status, underscoring its robust potential for precise biological age assessment. Our findings offer novel insights into the regulatory mechanism of age-related DNAm changes and extend the application of the DNAm clock for measuring biological age and aging pace, providing basis for evaluating aging intervention strategies.

8.
ACS Nano ; 18(11): 7677-7687, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38450654

Solid-state nanochannel-based sensing systems have been established as vigorous tools for sensing plentiful biomarkers due to their label-free, highly sensitive, and high-throughput screening. However, research on solid-state nanochannels has predominantly centered on the functional groups modified on the inner wall, neglecting investigations into the outer surface. Actually, the outer surface, as a part of the nanochannels, also plays a key role in regulating ionic current. When the target nears the entrance of the nanochannel and prepares to pass through, it would also interact with functional groups located on the nanochannel's outer surface, leading to subsequent alterations in the ionic current. Recently, the probes on the outer surface have experimentally demonstrated their ability to independently regulate ionic current, unveiling advantages in in situ target detection, especially for targets larger than the diameter of the nanochannels that cannot pass through them. Here, we review the progress over the past decade in nanochannels featuring diverse outer-surface functionalization aimed at enhanced sensing performance, including charge modification, wettability adjustment, and probe immobilization. In addition, we present the promises and challenges posed by outer-surface functionalized nanochannels and discuss possible directions for their future deployments.

9.
Nat Aging ; 4(3): 396-413, 2024 Mar.
Article En | MEDLINE | ID: mdl-38503993

Adrenal glands, vital for steroid secretion and the regulation of metabolism, stress responses and immune activation, experience age-related decline, impacting systemic health. However, the regulatory mechanisms underlying adrenal aging remain largely uninvestigated. Here we established a single-nucleus transcriptomic atlas of both young and aged primate suprarenal glands, identifying lipid metabolism and steroidogenic pathways as core processes impacted by aging. We found dysregulation in centripetal adrenocortical differentiation in aged adrenal tissues and cells in the zona reticularis region, responsible for producing dehydroepiandrosterone sulfate (DHEA-S), were highly susceptible to aging, reflected by senescence, exhaustion and disturbed hormone production. Remarkably, LDLR was downregulated in all cell types of the outer cortex, and its targeted inactivation in human adrenal cells compromised cholesterol uptake and secretion of dehydroepiandrosterone sulfate, as observed in aged primate adrenal glands. Our study provides crucial insights into endocrine physiology, holding therapeutic promise for addressing aging-related adrenal insufficiency and delaying systemic aging.


Adrenal Glands , Aging , Animals , Humans , Aged , Dehydroepiandrosterone Sulfate/metabolism , Adrenal Glands/metabolism , Aging/genetics , Zona Reticularis , Primates/metabolism
10.
Clin Exp Med ; 24(1): 31, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38300370

At present, although there are tumor markers for hepatocellular carcinoma (HCC), markers with better predictive efficiency are needed. SAA4 gene expression in liver tumor and paracancerous tissues was analyzed using The Cancer Genome Atlas database. The differentially expressed genes (DEGs) were analyzed and visualized by heatmap and volcano plot. Survival analysis was performed based on SAA4 expression. SAA4 expression was compared in patients grouped based on clinicopathological features, and gene set enrichment analysis (GSEA) was conducted. Immunohistochemical staining was used to verify the SAA4 protein staining intensity from The Human Protein Atlas database and our center's samples. The diagnostic value of SAA4 for HCC was evaluated by receiver operating characteristic curves. SAA4 was expressed at low levels in HCC tissues, and low SAA4 expression was associated with a poor prognosis in HCC. In addition, SAA4 expression decreased with HCC progression. There were 188 upregulated DEGs and 1551 downregulated DEGs between the high and low SAA4 expression groups. Complement and coagulation cascades, fatty acid metabolism, and ECM receptor interaction were significantly enriched in the GSEA. SAA4 had good predictive efficacy for HCC and even early HCC and was superior to AFP. In general, low SAA4 expression was associated with advanced HCC stage and a poor prognosis. In addition, SAA4 may be helpful for the diagnosis of early HCC and may become a novel tumor marker with good predictive power for HCC.


Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Biomarkers, Tumor/genetics , Gene Expression , Prognosis , Serum Amyloid A Protein/genetics
11.
Angew Chem Int Ed Engl ; 63(13): e202316434, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38192021

Aptamer-based probes are pivotal components in various sensing strategies, owing to their exceptional specificity and versatile programmable structure. Nevertheless, numerous aptamer-based probes usually offer only a single function, limiting their capacity to meet the diverse requirements of multi-faceted sensing systems. Here, we introduced supersandwich DNA probes (SSW-DNA), designed and modified on the outer surface of nanochannels with hydrophobic inner walls, enabling dual functionality: qualitative detection for on-site analysis and quantitative detection for precise analysis. The fragmented DNAs resulting from the target recognition, are subsequently identified through lateral flow assays, enabling robust on-site qualitative detection of microcystin-LR with an impressively low limit of detection (LOD) at 0.01 µg/L. Meanwhile, the nanochannels enable highly sensitive quantification of microcystin-LR through the current analysis, achieving an exceptionally low LOD at 2.5×10-7  µg/L, with a broad dynamic range spanning from 1×10-6 to 1×102  µg/L. Furthermore, the process of target recognition introduces just a single potential error propagation, which reduces the overall risk of errors during the entire qualitative and quantitative detection process. This sensing strategy broadens the scope of applications for aptamer-based composite probes, holding promising implications across diverse fields, such as medical diagnosis, food safety, and environmental protection.


Aptamers, Nucleotide , Biosensing Techniques , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , DNA Probes , DNA , Limit of Detection
12.
Trends Pharmacol Sci ; 45(2): 157-172, 2024 02.
Article En | MEDLINE | ID: mdl-38216430

Epigenetic dysregulation emerges as a critical hallmark and driving force of aging. Although still an evolving field with much to explore, it has rapidly gained significance by providing valuable insights into the mechanisms of aging and potential therapeutic opportunities for age-related diseases. Recent years have witnessed remarkable strides in our understanding of the epigenetic landscape of aging, encompassing pivotal elements, such as DNA methylation, histone modifications, RNA modifications, and noncoding (nc) RNAs. Here, we review the latest discoveries that shed light on new epigenetic mechanisms and critical targets for predicting and intervening in aging and related disorders. Furthermore, we explore burgeoning interventions and exemplary clinical trials explicitly designed to foster healthy aging, while contemplating the potential ramifications of epigenetic influences.


DNA Methylation , Epigenesis, Genetic , Humans , Aging/genetics , Protein Processing, Post-Translational
13.
Sci China Life Sci ; 67(3): 460-474, 2024 Mar.
Article En | MEDLINE | ID: mdl-38170390

Cullin-RING E3 ubiquitin ligases (CRLs), the largest family of multi-subunit E3 ubiquitin ligases in eukaryotic cells, represent core cellular machinery for executing protein degradation and maintaining proteostasis. Here, we asked what roles Cullin proteins play in human mesenchymal stem cell (hMSC) homeostasis and senescence. To this end, we conducted a comparative aging phenotype analysis by individually knocking down Cullin members in three senescence models: replicative senescent hMSCs, Hutchinson-Gilford Progeria Syndrome hMSCs, and Werner syndrome hMSCs. Among all family members, we found that CUL2 deficiency rendered hMSCs the most susceptible to senescence. To investigate CUL2-specific underlying mechanisms, we then applied CRISPR/Cas9-mediated gene editing technology to generate CUL2-deficient human embryonic stem cells (hESCs). When we differentiated these into hMSCs, we found that CUL2 deletion markedly accelerates hMSC senescence. Importantly, we identified that CUL2 targets and promotes ubiquitin proteasome-mediated degradation of TSPYL2 (a known negative regulator of proliferation) through the substrate receptor protein APPBP2, which in turn down-regulates one of the canonical aging marker-P21waf1/cip1, and thereby delays senescence. Our work provides important insights into how CRL2APPBP2-mediated TSPYL2 degradation counteracts hMSC senescence, providing a molecular basis for directing intervention strategies against aging and aging-related diseases.


Cullin Proteins , Mesenchymal Stem Cells , Humans , Carrier Proteins/metabolism , Cellular Senescence , Cullin Proteins/genetics , Cullin Proteins/metabolism , Mesenchymal Stem Cells/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/metabolism
14.
Nat Commun ; 15(1): 759, 2024 Jan 26.
Article En | MEDLINE | ID: mdl-38272905

Anion exchanger 2 (AE2) is an electroneutral Na+-independent Cl-/HCO3- exchanger belongs to the SLC4 transporter family. The widely expressed AE2 participates in a variety of physiological processes, including transepithelial acid-base secretion and osteoclastogenesis. Both the transmembrane domains (TMDs) and the N-terminal cytoplasmic domain (NTD) are involved in regulation of AE2 activity. However, the regulatory mechanism remains unclear. Here, we report a 3.2 Å cryo-EM structure of the AE2 TMDs in complex with PIP2 and a 3.3 Å full-length mutant AE2 structure in the resting state without PIP2. We demonstrate that PIP2 at the TMD dimer interface is involved in the substrate exchange process. Mutation in the PIP2 binding site leads to the displacement of TM7 and further stabilizes the interaction between the TMD and the NTD. Reduced substrate transport activity and conformation similar to AE2 in acidic pH indicating the central contribution of PIP2 to the function of AE2.


Antiporters , Lipids , Humans , Chloride-Bicarbonate Antiporters/genetics , Antiporters/genetics , SLC4A Proteins , Mutation , Anion Transport Proteins/metabolism , Hydrogen-Ion Concentration
15.
Nat Commun ; 15(1): 122, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38167862

Targeting tumor-infiltrating regulatory T cells (Tregs) is an efficient way to evoke an anti-tumor immune response. However, how Tregs maintain their fragility and stability remains largely unknown. IFITM3 and STAT1 are interferon-induced genes that play a positive role in the progression of tumors. Here, we showed that IFITM3-deficient Tregs blunted tumor growth by strengthening the tumor-killing response and displayed the Th1-like Treg phenotype with higher secretion of IFNγ. Mechanistically, depletion of IFITM3 enhances the translation and phosphorylation of STAT1. On the contrary, the decreased IFITM3 expression in STAT1-deficient Tregs indicates that STAT1 conversely regulates the expression of IFITM3 to form a feedback loop. Blocking the inflammatory cytokine IFNγ or directly depleting STAT1-IFITM3 axis phenocopies the restored suppressive function of tumor-infiltrating Tregs in the tumor model. Overall, our study demonstrates that the perturbation of tumor-infiltrating Tregs through the IFNγ-IFITM3-STAT1 feedback loop is essential for anti-tumor immunity and constitutes a targetable vulnerability of cancer immunotherapy.


Neoplasms , T-Lymphocytes, Regulatory , Humans , Feedback , Neoplasms/genetics , Neoplasms/therapy , Cytokines/metabolism , Forkhead Transcription Factors/metabolism , Membrane Proteins/metabolism , RNA-Binding Proteins/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism
16.
Protein Cell ; 15(1): 36-51, 2024 Jan 03.
Article En | MEDLINE | ID: mdl-37158785

Hypoxia-inducible factor (HIF-1α), a core transcription factor responding to changes in cellular oxygen levels, is closely associated with a wide range of physiological and pathological conditions. However, its differential impacts on vascular cell types and molecular programs modulating human vascular homeostasis and regeneration remain largely elusive. Here, we applied CRISPR/Cas9-mediated gene editing of human embryonic stem cells and directed differentiation to generate HIF-1α-deficient human vascular cells including vascular endothelial cells, vascular smooth muscle cells, and mesenchymal stem cells (MSCs), as a platform for discovering cell type-specific hypoxia-induced response mechanisms. Through comparative molecular profiling across cell types under normoxic and hypoxic conditions, we provide insight into the indispensable role of HIF-1α in the promotion of ischemic vascular regeneration. We found human MSCs to be the vascular cell type most susceptible to HIF-1α deficiency, and that transcriptional inactivation of ANKZF1, an effector of HIF-1α, impaired pro-angiogenic processes. Altogether, our findings deepen the understanding of HIF-1α in human angiogenesis and support further explorations of novel therapeutic strategies of vascular regeneration against ischemic damage.


Endothelial Cells , Vascular Endothelial Growth Factor A , Humans , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Endothelial Cells/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation , Hypoxia/metabolism , Cell Hypoxia/physiology
17.
Mol Cell ; 84(1): 34-54, 2024 Jan 04.
Article En | MEDLINE | ID: mdl-37963471

Aging, as a complex process involving multiple cellular and molecular pathways, is known to be exacerbated by various stresses. Because responses to these stresses, such as oxidative stress and genotoxic stress, are known to interplay with the epigenome and thereby contribute to the development of age-related diseases, investigations into how such epigenetic mechanisms alter gene expression and maintenance of cellular homeostasis is an active research area. In this review, we highlight recent studies investigating the intricate relationship between stress and aging, including its underlying epigenetic basis; describe different types of stresses that originate from both internal and external stimuli; and discuss potential interventions aimed at alleviating stress and restoring epigenetic patterns to combat aging or age-related diseases. Additionally, we address the challenges currently limiting advancement in this burgeoning field.


DNA Methylation , Epigenesis, Genetic , Epigenome , Oxidative Stress
18.
Protein Cell ; 15(2): 98-120, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-37378670

Aging increases the risk of liver diseases and systemic susceptibility to aging-related diseases. However, cell type-specific changes and the underlying mechanism of liver aging in higher vertebrates remain incompletely characterized. Here, we constructed the first single-nucleus transcriptomic landscape of primate liver aging, in which we resolved cell type-specific gene expression fluctuation in hepatocytes across three liver zonations and detected aberrant cell-cell interactions between hepatocytes and niche cells. Upon in-depth dissection of this rich dataset, we identified impaired lipid metabolism and upregulation of chronic inflammation-related genes prominently associated with declined liver functions during aging. In particular, hyperactivated sterol regulatory element-binding protein (SREBP) signaling was a hallmark of the aged liver, and consequently, forced activation of SREBP2 in human primary hepatocytes recapitulated in vivo aging phenotypes, manifesting as impaired detoxification and accelerated cellular senescence. This study expands our knowledge of primate liver aging and informs the development of diagnostics and therapeutic interventions for liver aging and associated diseases.


Hepatocytes , Liver , Animals , Humans , Aged , Liver/metabolism , Hepatocytes/metabolism , Primates/genetics , Gene Expression Profiling , Aging/genetics
19.
Trends Microbiol ; 32(4): 342-354, 2024 Apr.
Article En | MEDLINE | ID: mdl-37802660

Endogenous retroviruses (ERVs) are evolutionary remnants of retroviral infections in which the viral genome became embedded as a dormant regulatory element within the host germline. When ERVs become activated, they comprehensively rewire genomic regulatory networks of the host and facilitate critical developmental events, such as preimplantation development and placentation, in a manner specific to species, developmental stage, and tissues. However, accumulating evidence suggests that aberrant ERV transcription compromises genome stability and has been implicated in cellular senescence and various pathogenic processes, underscoring the significance of host genomic surveillance mechanisms. Here, we revisit the prominent functions of ERVs in early development and highlight their emerging roles in mammalian post-implantation development and organogenesis. We also discuss their implications for aging and pathological processes such as microbial infection, immune response. Furthermore, we discuss recent advances in stem-cell-based models, single-cell omics, and genome editing technologies, which serve as beacons illuminating the versatile nature of ERVs in mammalian development and health.


Endogenous Retroviruses , Animals , Endogenous Retroviruses/genetics , Mammals , Genomics , Biological Evolution , Genome, Viral
20.
Nucleic Acids Res ; 52(D1): D909-D918, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-37870433

Diverse individuals age at different rates and display variable susceptibilities to tissue aging, functional decline and aging-related diseases. Centenarians, exemplifying extreme longevity, serve as models for healthy aging. The field of human aging and longevity research is rapidly advancing, garnering significant attention and accumulating substantial data in recent years. Omics technologies, encompassing phenomics, genomics, transcriptomics, proteomics, metabolomics and microbiomics, have provided multidimensional insights and revolutionized cohort-based investigations into human aging and longevity. Accumulated data, covering diverse cells, tissues and cohorts across the lifespan necessitates the establishment of an open and integrated database. Addressing this, we established the Human Aging and Longevity Landscape (HALL), a comprehensive multi-omics repository encompassing a diverse spectrum of human cohorts, spanning from young adults to centenarians. The core objective of HALL is to foster healthy aging by offering an extensive repository of information on biomarkers that gauge the trajectory of human aging. Moreover, the database facilitates the development of diagnostic tools for aging-related conditions and empowers targeted interventions to enhance longevity. HALL is publicly available at https://ngdc.cncb.ac.cn/hall/index.


Aging , Databases, Factual , Longevity , Multiomics , Aged, 80 and over , Humans , Young Adult , Aging/genetics , Biomarkers , Disease Susceptibility , Genomics , Longevity/genetics
...