Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Heliyon ; 10(6): e28299, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38545190

Background: The Functional Movement Screen (FMS) is widely recognized by clinicians and trainers as a valuable tool for the prediction and prevention of training injuries in sports population. However, some studies suggested that FMS may not fully meet the needs of professional athletes. To address this, the Modified Functional Movement Screen (MFMS) has been specifically developed for athletes. Methods: A total of 527 male athletes in active service without prior training injuries 18.5 ± 1.2 years old) underwent the MFMS test, and their training injuries were monitored during a 2-year follow-up period. The ability of the MFMS to predict the risk of training injury was evaluated based on the receiver operating characteristic (ROC) curve of the total MFMS score. Binary logistic analysis was employed to examine the correlation between the 10 MFMS tests and the risk of training injury. Results: The injured group of athletes had significantly lower total MFMS scores compared to the healthy group (P < 0.001). The total MFMS score demonstrated a strong predictive ability for training injury risk, with an area under the ROC curve of 0.97 (P < 0.001). The calculated cut-off point was set at 22, yielding an odds ratio of 25.63, sensitivity of 0.94, and specificity of 0.88. Binary logistic regression analysis revealed a negative correlation between 6 MFMS tests and the risk of training injury. Conclusion: The MFMS can effectively predict the risk of training injuries. Athletes with a total MFMS score below 22 are more susceptible to experiencing injuries during training.

2.
Nanomaterials (Basel) ; 13(15)2023 Aug 07.
Article En | MEDLINE | ID: mdl-37570582

Cordyceps extract and withaferin A (Wi-A) are natural compounds that have therapeutic effects on non-alcoholic fatty liver disease (NAFLD). However, their efficacy is limited and a long treatment duration is usually required. To enhance their efficiency, the synergistic effects of nanobubble water (NBW) derived from nitrogen, hydrogen, and oxygen gases were investigated. Results showed that the physical properties of all three NBWs, including nanobubble density (108 particles/mL) and zeta potential (below -22 mV), were stable during 48 h of storage. Hydrogen and nitrogen NBWs did not reduce, but instead promoted, free fatty acid-induced lipid accumulation in HepG2 cells. In contrast, oxygen NBW synergistically enhanced the effects of cordyceps extract and Wi-A. The lipid content decreased by 29% and 33% in the oxygen NBW + cordyceps extract and oxygen NBW + Wi-A groups, respectively, compared to reductions of 22% and 16% by aqueous extracts without NB. This study found that NBW may enhance the lipid-reducing effects of natural compounds, such as cordyceps extract and withaferin A, in hepatic cells. Further studies in animal experiments are needed to determine whether NBW has a potential application in NAFLD.

3.
Materials (Basel) ; 16(4)2023 Feb 20.
Article En | MEDLINE | ID: mdl-36837363

The interaction of metallic glasses (MGs) with hydrogen can trigger many interesting physical, chemical and mechanical phenomena. However, atomic-scale understanding is still lacking. In this work, molecular dynamics (MD) simulations are employed to study the atomic structure, mechanical properties and relaxation behaviors of H-doped Ni50Al50 MGs doped by two methods. The properties of H-doped MGs are determined not only by the hydrogen content but also by the doping method. When H atoms are doped into the molten state of samples, H atoms can fully diffuse and interact with metallic atoms, resulting in loose local atomic structures, homogeneous deformation and enhanced ß relaxation. In contrast, when H atoms are doped into as-cast MGs, the H content is crucial in affecting the atomic structure and mechanical properties. A small number of H atoms has little influence on the elastic matrix, while the percolation of shear transformation zones (STZs) is hindered by H atoms, resulting in the delay of shear band (SB) formation and an insignificant change in the strength. However, a large number of H atoms can make the elastic matrix loose, leading to the decrease in strength and the transition of the deformation mode from SB to homogeneous deformation. The H effects on the elastic matrix and flow units are also applied to the dynamic relaxation. The deformability of H-doped Ni50Al50 MGs is enhanced by both H-doping methods; however, our results reveal that the mechanisms are different.

4.
Materials (Basel) ; 15(16)2022 Aug 18.
Article En | MEDLINE | ID: mdl-36013832

The microstructure of carbon fiber-reinforced carbon-matrix composites (carbon/carbon composites) has important effects on its ablation performance. However, the traditional macro-ablation methods have underestimated the ablation recession rate and ignored the influence of microstructure. To simulate the ablation of large-sized structures while accounting for the influence of microstructure, it is necessary to modify these methods. In this work, a thermochemical ablation model for carbon/carbon composites is proposed based on the evolution behavior of their microstructure. The ablation recession rate and surface temperature predicted by this model are in good agreement with the experimental results. Through numerical analysis, we found that the ablation recession rate of the material without carbon fibers is much greater than that of the material containing carbon fibers. The ablation recession rate is influenced by the fiber orientation due to the change in thermal conductivity. The anti-ablation efficiency of carbon/carbon composites can be improved by increasing their fiber radius, radiation coefficient, specific heat capacity, interphase density, and thermal conductivity coefficient. The thermochemical ablation model provides a guide for the design of better anti-ablation carbon/carbon composites.

5.
J Med Virol ; 94(9): 4406-4416, 2022 09.
Article En | MEDLINE | ID: mdl-35585032

H1N1 influenza has brought serious threats to people's health and a high socioeconomic burden to society. Oseltamivir, a kind of neuraminidase (NA) inhibitor, is the second-generation specific drug that is broadly used currently. However, H1N1 influenza viruses have exhibited oseltamivir resistance in the past decades, which might be a hidden danger. To understand the frequency and distribution laws of oseltamivir-resistant viruses, we conducted a thorough and deep analysis of the available NA protein sequences of H1N1 influenza viruses worldwide from 1918 to 2020. The differences and similarities before and after 2009 were also considered since the dominant viruses changed in this period. Results showed that 3.76% of H1N1 viruses harbored oseltamivir resistance currently. Among various significative mutations, H274Y had the highest frequency of 3.30%, while the frequencies of the other mutations were far below this whether before or after 2009. The oseltamivir resistance was mainly found in three hosts, humans, swine, and avian. Different mutation sites could exhibit different distributions in each host. Our results showed that the resistance level reached a peak during the 2007-2008 influenza season and then quickly decreased in 2009. The resistance also displayed a global distribution. The densely populated countries usually had a high resistance level. However, frequent significative mutations were also found in some small countries. Our findings indicated the necessity of monitoring oseltamivir resistance around the world. The study could provide a unique perspective toward the cognition of viruses and facilitate the future study of both pandemic and drug development.


Drug Resistance, Viral , Influenza A Virus, H1N1 Subtype , Influenza, Human , Oseltamivir , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Resistance, Viral/genetics , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/drug therapy , Influenza, Human/epidemiology , Mutation , Neuraminidase/antagonists & inhibitors , Neuraminidase/genetics , Oseltamivir/pharmacology , Oseltamivir/therapeutic use , Swine , Viral Proteins/genetics
7.
J Med Virol ; 93(6): 3473-3483, 2021 06.
Article En | MEDLINE | ID: mdl-33200496

H1N1 influenza is a kind of acute respiratory infectious disease that has a high socioeconomic and medical burden each year around the world. In the past decades, H1N1 influenza viruses have exhibited high resistance to adamantanes, which has become a serious issue. To understand the up-to-date distribution and evolution of H1N1 influenza viruses with adamantanes-resistant mutations, we conducted a deep analysis of 15875 M2 protein and 8351 MP nucleotides sequences. Results of the distribution analyses showed that 77.32% of H1N1 influenza viruses harbored-resistance mutations of which 73.52% were S31N, And the mutant variants mainly appeared in North America and Europe and H1N1 influenza viruses with S31N mutation became the circulating strains since 2009 all over the world. In addition, 80.65% of human H1N1 influenza viruses and 74.61% of swine H1N1 influenza viruses exhibited adamantanes resistance, while the frequency was only 1.86% in avian H1N1 influenza viruses. Studies from evolutionary analyses indicated that the avian-origin swine H1N1 influenza viruses replaced the classical human H1N1 influenza viruses and became the circulating strains after 2009; The interspecies transmission among avian, swine, and human strains over the past 20 years contributed to the 2009 swine influenza pandemic. Results of our study clearly clarify the historical drug resistance level of H1N1 influenza viruses around the world and demonstrated the evolution of adamantanes-resistant mutations in H1N1 influenza viruses. Our findings emphasize the necessity for monitoring the adamantanes susceptibility of H1N1 influenza viruses and draw attention to analyses of the evolution of drug-resistant H1N1 influenza variants.


Adamantane/pharmacology , Antiviral Agents/pharmacology , Drug Resistance, Viral/genetics , Evolution, Molecular , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/genetics , Mutation , Animals , Europe , Host Specificity , Humans , Influenza A Virus, H1N1 Subtype/classification , Influenza, Human/virology , North America , Orthomyxoviridae Infections/virology , Phylogeny , Swine , Viral Proteins/genetics
8.
Sensors (Basel) ; 20(14)2020 Jul 10.
Article En | MEDLINE | ID: mdl-32664250

Effective testing of defects in various materials is an important guarantee to ensure its safety performance. Compared with traditional non-destructive testing (NDT) methods, infrared thermography is a new NDT technique which has developed rapidly in recent years. Its core technologies include thermal excitation and infrared image processing. In this paper, several main infrared thermography nondestructive testing techniques are reviewed. Through the analysis and comparison of the detection principle, technical characteristics and data processing methods of these testing methods, the development of the infrared thermography nondestructive testing technique is presented. Moreover, the application and development trend are summarized.

9.
Arch Biochem Biophys ; 690: 108467, 2020 09 15.
Article En | MEDLINE | ID: mdl-32592804

Increasing evidence demonstrates that tRNA-derived fragments (tRFs) exert important effects and are dysregulated in various human cancer types. However, their roles in gastric cancer (GC) remain unknown. Here we identified the functional effects of tRF-3019a (derived from tRNA-Ala-AGC-1-1) in GC. We demonstrated that tRF-3019a was upregulated in GC tissues and cell lines. Phenotypic studies revealed that tRF-3019a overexpression enhances GC cell proliferation, migration and invasion. Conversely, tRF-3019a knockdown inhibits GC cell malignant activities. Mechanistic investigation implies that tRF-3019a directly regulates tumor suppressor gene FBXO47. Furthermore, tRF-3019a levels may discriminate GC tissues from nontumorous tissues. Taken together, our results reveal that tRF-3019a modulates GC cell proliferation, migration and invasion by targeting FBXO47, and it may serve as a potential diagnostic biomarker for GC.


RNA, Transfer, Amino Acid-Specific/genetics , RNA, Transfer/metabolism , Stomach Neoplasms/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Base Sequence , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Nucleic Acid Conformation , Transfection
10.
Front Oncol ; 10: 570916, 2020.
Article En | MEDLINE | ID: mdl-33665159

tRNA-derived fragments (tRFs) are a new classification of small non-coding RNAs (sncRNAs) derived from the specific cleavage of precursors and mature tRNAs. Accumulating recent evidence has shown that tRFs are frequently abnormal in several cancers. Nevertheless, the role of tRFs in gastric cancer and its mechanism remain unclear. In this study, we found abnormal expression of tRF-3017A (derived from tRNA-Val-TAC) in gastric cancer tissues and cell lines and confirmed its effect on promoting the invasion and migration of gastric cancer cells through functional experiments in vitro. Analysis of clinicopathologic data showed patients with higher tRF-3017A were associated with significantly higher lymph node metastasis. Mechanistic investigation implies that tRF-3017A regulates the tumor suppressor gene NELL2 through forming the RNA-induced silencing complex (RISC) with Argonaute (AGO) proteins. In this study, we found that higher tRF-3017A were associated with significantly higher lymph node metastasis in gastric cancer patients and the tRF-3017A may play a role in promoting the migration and invasion of gastric cancer cells by silencing tumor suppressor NELL2.

11.
Tumour Biol ; 33(5): 1543-8, 2012 Oct.
Article En | MEDLINE | ID: mdl-22576950

Midkine (MDK) is a heparin-binding molecule involved in the regulation of growth and differentiation during embryogenesis, which is overexpressed in most of human malignant tumors and may act as an oncoprotein. The aim of the current study was to investigate the mechanism of MDK involved in the Adriamycin (ADR) resistance in human gastric cancer cells in vitro. We found that Adriamycin-resistant SGC7901 (SGC7901/ADR) exhibited 58.6-fold greater resistance to ADR compared with Adriamycin-sensitive SGC7901 cell line. MDK mRNA and protein expression levels were significantly higher in SGC7901/ADR than in SGC7901. To gain a deeper insight into the role of MDK in SGC7901/ADR, we stably transfected Adriamycin-sensitive SGC7901 with viral vector expressing MDK. Our result showed that multidrug resistance type I (MDR1) was found in SGC7901/ADR, not in SGC7901 by RT-PCR regardless of MDK transfection. P-Glycoprotein, which is the MDR1-coded protein, was found in SGC7901/ADR, not in SGC7901 by Western blot regardless of MDK transfection. We investigated whether an activation of the tyrosine kinase pathway would change the drug resistance phenotype with MDK transfection. Western blot results showed the upregulation of phosphorylated protein kinase B (AKT) and phosphorylated extracellular signal-regulated protein kinase (ERK) in Adriamycin-sensitive SGC7901 cell by MDK transfection accompanied with drug resistance to ADR, although the level of AKT and ERK protein expression did not change, so our results suggested that MDK, which can activate AKT and ERK by phosphorylation, induced the Adriamycin resistance in gastric cancer cells. Understanding the molecular mechanisms, driving MDK-induced ADR resistance, will provide benefits in developing new therapies for gastric cancer.


Antibiotics, Antineoplastic/pharmacology , Cytokines/genetics , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/genetics , Stomach Neoplasms/genetics , ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Cell Line, Tumor , Cytokines/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression , Humans , Midkine , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Stomach Neoplasms/metabolism , Transfection
...