Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 68
1.
Research (Wash D C) ; 7: 0363, 2024.
Article En | MEDLINE | ID: mdl-38694198

Combined hyperlipidemia (CHL) manifests as elevated cholesterol and triglycerides, associated with fatty liver and cardiovascular diseases. Emerging evidence underscores the crucial role of the intestinal microbiota in metabolic disorders. However, the potential therapeutic viability of remodeling the intestinal microbiota in CHL remains uncertain. In this study, CHL was induced in low-density lipoprotein receptor-deficient (LDLR-/-) hamsters through an 8-week high-fat and high-cholesterol (HFHC) diet or a 4-month high-cholesterol (HC) diet. Placebo or antibiotics were administered through separate or cohousing approaches. Analysis through 16S rDNA sequencing revealed that intermittent antibiotic treatment and the cohousing approach effectively modulated the gut microbiota community without impacting its overall abundance in LDLR-/- hamsters exhibiting severe CHL. Antibiotic treatment mitigated HFHC diet-induced obesity, hyperglycemia, and hyperlipidemia, enhancing thermogenesis and alleviating nonalcoholic steatohepatitis (NASH), concurrently reducing atherosclerotic lesions in LDLR-/- hamsters. Metabolomic analysis revealed a favorable liver lipid metabolism profile. Increased levels of microbiota-derived metabolites, notably butyrate and glycylglycine, also ameliorated NASH and atherosclerosis in HFHC diet-fed LDLR-/- hamsters. Notably, antibiotics, butyrate, and glycylglycine treatment exhibited protective effects in LDLR-/- hamsters on an HC diet, aligning with outcomes observed in the HFHC diet scenario. Our findings highlight the efficacy of remodeling gut microbiota through antibiotic treatment and cohousing in improving obesity, NASH, and atherosclerosis associated with refractory CHL. Increased levels of beneficial microbiota-derived metabolites suggest a potential avenue for microbiome-mediated therapies in addressing CHL-associated diseases.

2.
Nature ; 629(8010): 211-218, 2024 May.
Article En | MEDLINE | ID: mdl-38600391

A major limitation of chimeric antigen receptor (CAR) T cell therapies is the poor persistence of these cells in vivo1. The expression of memory-associated genes in CAR T cells is linked to their long-term persistence in patients and clinical efficacy2-6, suggesting that memory programs may underpin durable CAR T cell function. Here we show that the transcription factor FOXO1 is responsible for promoting memory and restraining exhaustion in human CAR T cells. Pharmacological inhibition or gene editing of endogenous FOXO1 diminished the expression of memory-associated genes, promoted an exhaustion-like phenotype and impaired the antitumour activity of CAR T cells. Overexpression of FOXO1 induced a gene-expression program consistent with T cell memory and increased chromatin accessibility at FOXO1-binding motifs. CAR T cells that overexpressed FOXO1 retained their function, memory potential and metabolic fitness in settings of chronic stimulation, and exhibited enhanced persistence and tumour control in vivo. By contrast, overexpression of TCF1 (encoded by TCF7) did not enforce canonical memory programs or enhance the potency of CAR T cells. Notably, FOXO1 activity correlated with positive clinical outcomes of patients treated with CAR T cells or tumour-infiltrating lymphocytes, underscoring the clinical relevance of FOXO1 in cancer immunotherapy. Our results show that overexpressing FOXO1 can increase the antitumour activity of human CAR T cells, and highlight memory reprogramming as a broadly applicable approach for optimizing therapeutic T cell states.


Forkhead Box Protein O1 , Immunologic Memory , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , T-Lymphocytes , Animals , Humans , Mice , Cell Line, Tumor , Chromatin/metabolism , Chromatin/genetics , Forkhead Box Protein O1/metabolism , Gene Editing , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/cytology
4.
Mol Pain ; 20: 17448069241240692, 2024.
Article En | MEDLINE | ID: mdl-38443317

Pain is a major symptom in cancer patients, and cancer-induced bone pain (CIBP) is the most common type of moderate and severe cancer-related pain. The current available analgesic treatments for CIBP have adverse effects as well as limited therapeutic effects. Acupuncture is proved effective in pain management as a safe alternative therapy. We evaluated the analgesic effect of acupuncture in treatment of cancer pain and try to explore the underlying analgesic mechanisms. Nude mice were inoculated with cancer cells into the left distal femur to establish cancer pain model. Electroacupuncture (EA) treatment was applied for the xenograft animals. Pain behaviors of mice were evaluated, followed by the detections of neuropeptide-related and inflammation-related indicators in peripheral and central levels. EA treatment alleviated cancer-induced pain behaviors covering mechanical allodynia, thermal hyperalgesia and spontaneous pain, and also down-regulated immunofluorescence expressions of neuropeptide CGRP and p75 in the skin of affected plantar area in xenograft mice, and inhibited expressions of overexpressed neuropeptide-related and inflammation-related protein in the lumbar spinal cord of xenograft mice. Overall, our findings suggest that EA treatment ameliorated cancer-induced pain behaviors in the mouse xenograft model of cancer pain, possibly through inhibiting the expressions of neuropeptide-related and inflammation-related protein in central level following tumor cell xenografts.


Cancer Pain , Electroacupuncture , Neoplasms , Neuropeptides , Rats , Humans , Mice , Animals , Cancer Pain/etiology , Cancer Pain/therapy , Cancer Pain/metabolism , Nociception , Mice, Nude , Rats, Sprague-Dawley , Pain/metabolism , Hyperalgesia/complications , Hyperalgesia/therapy , Hyperalgesia/chemically induced , Analgesics/metabolism , Inflammation/metabolism , Spinal Cord/metabolism
5.
Theranostics ; 14(5): 2036-2057, 2024.
Article En | MEDLINE | ID: mdl-38505614

Background: ApoA5 mainly synthesized and secreted by liver is a key modulator of lipoprotein lipase (LPL) activity and triglyceride-rich lipoproteins (TRLs). Although the role of ApoA5 in extrahepatic triglyceride (TG) metabolism in circulation has been well documented, the relationship between ApoA5 and nonalcoholic fatty liver disease (NAFLD) remains incompletely understood and the underlying molecular mechanism still needs to be elucidated. Methods: We used CRISPR/Cas9 gene editing to delete Apoa5 gene from Syrian golden hamster, a small rodent model replicating human metabolic features. Then, the ApoA5-deficient (ApoA5-/-) hamsters were used to investigate NAFLD with or without challenging a high fat diet (HFD). Results: ApoA5-/- hamsters exhibited hypertriglyceridemia (HTG) with markedly elevated TG levels at 2300 mg/dL and hepatic steatosis on a regular chow diet, accompanied with an increase in the expression levels of genes regulating lipolysis and small adipocytes in the adipose tissue. An HFD challenge predisposed ApoA5-/- hamsters to severe HTG (sHTG) and nonalcoholic steatohepatitis (NASH). Mechanistic studies in vitro and in vivo revealed that targeting ApoA5 disrupted NR1D1 mRNA stability in the HepG2 cells and the liver to reduce both mRNA and protein levels of NR1D1, respectively. Overexpression of human NR1D1 by adeno-associated virus 8 (AAV8) in the livers of ApoA5-/- hamsters significantly ameliorated fatty liver without affecting plasma lipid levels. Moreover, restoration of hepatic ApoA5 or activation of UCP1 in brown adipose tissue (BAT) by cold exposure or CL316243 administration could significantly correct sHTG and hepatic steatosis in ApoA5-/- hamsters. Conclusions: Our data demonstrate that HTG caused by ApoA5 deficiency in hamsters is sufficient to elicit hepatic steatosis and HFD aggravates NAFLD by reducing hepatic NR1D1 mRNA and protein levels, which provides a mechanistic link between ApoA5 and NAFLD and suggests the new insights into the potential therapeutic approaches for the treatment of HTG and the related disorders due to ApoA5 deficiency in the clinical trials in future.


Hyperlipidemias , Non-alcoholic Fatty Liver Disease , Animals , Cricetinae , Humans , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Liver/metabolism , Triglycerides/metabolism , Hyperlipidemias/metabolism , Diet, High-Fat/adverse effects , Mesocricetus , RNA, Messenger/metabolism , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
6.
bioRxiv ; 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38496446

3-dimensional (3D) genome conformation is central to gene expression regulation, yet our understanding of its contribution to rapid transcriptional responses, signal integration, and memory in immune cells is limited. Here, we study the molecular regulation of the inflammatory response in primary macrophages using integrated transcriptomic, epigenomic, and chromosome conformation data, including base pair-resolution Micro-Capture C. We demonstrate that interleukin-4 (IL-4) primes the inflammatory response in macrophages by stably rewiring 3D genome conformation, juxtaposing endotoxin-, interferon-gamma-, and dexamethasone-responsive enhancers in close proximity to their cognate gene promoters. CRISPR-based perturbations of enhancer-promoter contacts or CCCTC-binding factor (CTCF) boundary elements demonstrated that IL-4-driven conformation changes are indispensable for enhanced and synergistic endotoxin-induced transcriptional responses, as well as transcriptional memory following stimulus removal. Moreover, transcriptional memory mediated by changes in chromosome conformation often occurred in the absence of changes in chromatin accessibility or histone modifications. Collectively, these findings demonstrate that rapid and memory transcriptional responses to immunological stimuli are encoded in the 3D genome.

8.
J Colloid Interface Sci ; 660: 1010-1020, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38290324

Metal-organic frameworks (MOFs) have emerged as promising active electrode materials in supercapacitors for its controllable porous structure and excellent physio-chemical properties. However, the poor conductivities keep it from achieving its full capacitance potential, which greatly limits its practical application. Here, a facile pathway is reported to fabricate the GO/Ni2ZnS4@NiCo2S4 composite with large specific surface area and favorable electrical conductivity. Thanks to the novel tremella-like core-shell structure and high-efficient synergistic effects among multi-components, the designed GO/Ni2ZnS4@NiCo2S4 electrode shows a high specific capacitance of 2284 F/g at 1 A/g. Furthermore, the asymmetric supercapacitor fabricated by coupling GO/Ni2ZnS4@NiCo2S4 positive electrode with biological carbon negative electrode achieves a remarkable energy density of 120 Wh kg-1 at a power density of 750 W kg-1.

9.
BMJ Open ; 14(1): e074478, 2024 01 10.
Article En | MEDLINE | ID: mdl-38199630

INTRODUCTION: Hysterectomy is the most common surgical procedure in the field of gynaecology. The traditional multiport laparoscopy, transumbilical laparoendoscopic single-site surgery (TU-LESS) and transvaginal natural orifice transluminal endoscopic surgery (vNOTES) hysterectomy approaches have been implemented to varying degrees in clinical practice. At present, although their feasibility has been proven, there are no large randomised controlled studies on postoperative rehabilitation. This study aims to evaluate postoperative recovery and assess the safety and effectiveness of these three surgical approaches for total laparoscopic hysterectomy. METHOD AND ANALYSIS: This is a multicentre, randomised, single-blind, three-arm, parallel-group, interventional clinical trial. Recruitment will be carried out in five tertiary hospitals in China. Patients diagnosed with benign uterine disease or precancerous lesions will be assigned to the vNOTES group, TU-LESS group and conventional laparoscopy group at a 1:1:1 ratio. The achievement rate of comprehensive indices of enhanced recovery after surgery (ERAS) within 24 hours postoperatively will be considered the primary outcome (the comprehensive indicators of ERAS include fluid intake, passing flatus, urination after catheter removal, ambulation and a Visual Analogue Scale score ≤3.) This study will use a non-inferiority test, with a power (1-ß) of 80% and a margin of -0.15, at a one-sided α of 0.0125. The sample size will be 480 patients (including an assumed 15% dropout rate), calculated according to the primary outcome. ETHICS AND DISSEMINATION: This study was approved on 25 April 2022 by the Medical Ethics Committee of West China Second University Hospital (2022(057)), Sichuan University, Chengdu, China. All participants will be required to provide informed consent before their participation in the study. The results of the trial will be submitted for publication in a peer-reviewed journal and presented at international conferences. PROTOCOL VERSION: V.3.0, 31 August 2023. TRIAL REGISTRATION NUMBER: ChiCTR2200057405.


Enhanced Recovery After Surgery , Hysterectomy , Female , Humans , Single-Blind Method , China , Device Removal , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
10.
J Anim Physiol Anim Nutr (Berl) ; 108(2): 357-365, 2024 Mar.
Article En | MEDLINE | ID: mdl-37899710

This experiment was conducted to investigate the effects of a high-fibre diet on growth performance, nutrients digestibility, intestinal health, and intestinal microbiota composition of growing pigs. Twelve healthy "Duroc × Landrace × Yorkshire" castrates (49 ± 1.35 kg) were randomly divided into two groups with six replicates and one pig per replicate. The two diet treatments were fed the basal diet (CON) based on corn and soybean meal and high fibre diet (HF) respectively. The nutritional levels of the two treatments were the same. The experiment lasted 28 days. The results showed that the addition of 16% wheat bran fibre to the diet of growing pigs did not affect growth performance (p > 0.05). Compared with the CON, contents of isobutyric and butyric acid, GSH-PX and T-AOC in serum were increased in the HF. It decreased the gross energy digestibility and acetic acid content in feces of growing pigs (p < 0.05), the contents of GSH-PX and T-AOC in serum. It decreased the gross energy digestibility and acetic acid content in feces of growing pigs (p < 0.05). Compared with the CON, the Shannon, and Chao1 indexes of the HF were increased (p < 0.05). At the phylum level, the abundance of g_Lactobacillus increased in the HF (p < 0.05). Correlation analysis showed that a total of 18 microbial genera were correlated with antioxidant capacity and volatile fatty acid levels (p < 0.05). In summary, this study showed that adding 16% wheat bran to the diet of growing pigs had no effect on growth performance but helped to improve the richness and stability of intestinal microbiota, promote posterior intestinal fermentation and increase serum antioxidant capacity.


Antioxidants , Microbiota , Swine , Animals , Antioxidants/pharmacology , Digestion/physiology , Diet/veterinary , Dietary Fiber/analysis , Acetates/pharmacology , Animal Feed/analysis , Animal Nutritional Physiological Phenomena
11.
Res Sq ; 2023 Nov 07.
Article En | MEDLINE | ID: mdl-37986944

Poor CAR T persistence limits CAR T cell therapies for B cell malignancies and solid tumors1,2. The expression of memory-associated genes such as TCF7 (protein name TCF1) is linked to response and long-term persistence in patients3-7, thereby implicating memory programs in therapeutic efficacy. Here, we demonstrate that the pioneer transcription factor, FOXO1, is responsible for promoting memory programs and restraining exhaustion in human CAR T cells. Pharmacologic inhibition or gene editing of endogenous FOXO1 in human CAR T cells diminished the expression of memory-associated genes, promoted an exhaustion-like phenotype, and impaired antitumor activity in vitro and in vivo. FOXO1 overexpression induced a gene expression program consistent with T cell memory and increased chromatin accessibility at FOXO1 binding motifs. FOXO1-overexpressing cells retained function, memory potential, and metabolic fitness during settings of chronic stimulation and exhibited enhanced persistence and antitumor activity in vivo. In contrast, TCF1 overexpression failed to enforce canonical memory programs or enhance CAR T cell potency. Importantly, endogenous FOXO1 activity correlated with CAR T and TIL responses in patients, underscoring its clinical relevance in cancer immunotherapy. Our results demonstrate that memory reprogramming through FOXO1 can enhance the persistence and potency of human CAR T cells and highlights the utility of pioneer factors, which bind condensed chromatin and induce local epigenetic remodeling, for optimizing therapeutic T cell states.

12.
Zhongguo Zhen Jiu ; 43(10): 1151-6, 2023 Oct 12.
Article Zh | MEDLINE | ID: mdl-37802521

OBJECTIVE: To observe the effect of electroacupuncture (EA) at "Neiguan" (PC 6) on myocardial fibrosis in spontaneously hypertensive rats (SHR), and explore preliminarily the mediating role of cholinergic anti-inflammatory pathway (CAP) and its downstream nuclear factor κB (NF-κB) signaling pathway. METHODS: Six 12-week-old WKY male rats were employed as the normal group. Eighteen 12-week-old SHR were randomly divided into 3 groups, i.e. a model group, an EA group and a blocking group (EA after blocking α7 nicotinic acetylcholine receptor [α7nAchR]), with 6 rats in each one. In the EA group, EA was delivered at "Neiguan"(PC 6) and the site 0.5 cm from its left side, with disperse-dense wave, 2 Hz/15 Hz in frequency and 1 mA in current intensity. One intervention took 30 min and was given once every 2 days, lasting 8 weeks. In the blocking group, prior to each EA, the α7nAchR specific blocker, α-bungartoxin was injected intravenously in the tails of the rats. After EA intervention, the systolic blood pressure (SBP), the diastolic blood pressure (DBP) and the mean arterial pressure (MAP) were measured with non-invasive blood pressure monitor. Using echocardiogram, the left ventricular (LV) anterior wall end-diastolic thickness (LVAWd) , LV posterior wall end-diastolic thickness (LVPWd) and the LV end-diastolic internal diameter (LVIDd) were measured. The level of hydroxyproline (Hyp) in the myocardial tissue was determined by using alkaline hydrolysis, and that of acetylcholine (Ach) was detected by ELISA. With the real-time PCR adopted, the mRNA expression of NF-κB p65, tumor necrosis factor α (TNF-α), interleukin (IL)-1ß and IL-6 were determined. RESULTS: Compared with the normal group, SBP, DBP, MAP, LVAWd and LVPWd were increased (P<0.01), and LVIDd was decreased (P<0.01) in the rats of the model group. SBP, DBP, MAP and LVAWd were dropped (P<0.01, P<0.05), and LVIDd rose (P<0.01) in the EA group when compared with those in the model group. The differences in the above indexes were not statistically significant between the blocking group and the model group (P>0.05). Compared with the normal group, Hyp level and the mRNA expression of NF-κB p65, TNF-α, IL-1ß and IL-6 in the myocardial tissue increased (P<0.01, P<0.05) and Ach level decreased (P<0.01) in the model group. Hyp level, the mRNA expression of NF-κB p65, TNF-α, IL-1ß and IL-6 in the myocardial tissue were reduced (P<0.05, P<0.01) and Ach level rose (P<0.01) in the EA group when compared with those in the model group. These indexes were not different statistically between the blocking group and the model group (P>0.05). CONCLUSION: CAP may be involved in ameliorating the pathological damage of myocardial fibrosis during EA at "Neiguan"(PC 6). The underlying effect mechanism is associated with up-regulating the neurotransmitter, Ach and down-regulating mRNA expression of NF-κB p65 and pro-inflammatory factors such as TNF-α, IL-1ß and IL-6 in myocardial tissue.


Electroacupuncture , NF-kappa B , Rats , Male , Animals , Rats, Inbred SHR , NF-kappa B/genetics , NF-kappa B/metabolism , Rats, Inbred WKY , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Neuroimmunomodulation , alpha7 Nicotinic Acetylcholine Receptor , Acetylcholine , Fibrosis , RNA, Messenger
13.
Cell ; 186(19): 4216-4234.e33, 2023 09 14.
Article En | MEDLINE | ID: mdl-37714135

Chronic stimulation can cause T cell dysfunction and limit the efficacy of cellular immunotherapies. Improved methods are required to compare large numbers of synthetic knockin (KI) sequences to reprogram cell functions. Here, we developed modular pooled KI screening (ModPoKI), an adaptable platform for modular construction of DNA KI libraries using barcoded multicistronic adaptors. We built two ModPoKI libraries of 100 transcription factors (TFs) and 129 natural and synthetic surface receptors (SRs). Over 30 ModPoKI screens across human TCR- and CAR-T cells in diverse conditions identified a transcription factor AP4 (TFAP4) construct that enhanced fitness of chronically stimulated CAR-T cells and anti-cancer function in vitro and in vivo. ModPoKI's modularity allowed us to generate an ∼10,000-member library of TF combinations. Non-viral KI of a combined BATF-TFAP4 polycistronic construct enhanced fitness. Overexpressed BATF and TFAP4 co-occupy and regulate key gene targets to reprogram T cell function. ModPoKI facilitates the discovery of complex gene constructs to program cellular functions.


Cell- and Tissue-Based Therapy , Exercise , Humans , Gene Library , Immunotherapy , Research
14.
Zhongguo Fei Ai Za Zhi ; 26(7): 487-496, 2023 Jul 20.
Article Zh | MEDLINE | ID: mdl-37653012

BACKGROUND: Lung large cell neuroendocrine carcinoma (LCNEC) is a rare and highly malignant lung tumor with a poor prognosis. Currently, most research on LCNEC is based on retrospective studies and lacks validation in the real world. The study aims to identify independent risk factors and establish and validate a predictive model for the prognosis of LCNEC. METHODS: Patient data were extracted from Surveillance, Epidemiology, and End Results (SEER) and our department's hospitalization records from 2010 to 2015 and 2016 to 2020, respectively. Kaplan-Meier analysis was used to evaluate overall survival (OS). OS is defined as the time from diagnosis to death or last follow-up for a patient. Univariate and multivariate Cox regression analyses were performed to identify significant prognostic factors and construct a Nomogram for predicting the prognosis of LCNEC. RESULTS: In total, 1892 LCNEC patients were included and divided into a training cohort (n=1288) and two validation cohorts (n=552, n=52). Univariate Cox regression analysis showed that age, gender, primary tumor site, laterality, T stage, N stage, M stage, surgery, and radiotherapy were factors that could affect the prognosis of LCNEC patients (P<0.05). Multivariate Cox analysis indicated that age, gender, primary tumor site, T stage, N stage, M stage, surgery, and radiotherapy were independent risk factors for the prognosis of LCNEC patients (P<0.05). Calibration curves and the concordance index (internal: 0.744±0.015; external: 0.763±0.020, 0.832±0.055) demonstrated good predictive performance of the model. CONCLUSIONS: Patients aged ≥65 years, male, with advanced tumor-node-metastasis (TNM) staging, and who have not undergone surgery or radiotherapy have a poor prognosis. Nomogram can provide a certain reference for personalized clinical decision-making for patients.


Carcinoma, Neuroendocrine , Lung Neoplasms , Humans , Male , Prognosis , Nomograms , Retrospective Studies , Lung Neoplasms/diagnosis , Carcinoma, Neuroendocrine/diagnosis , Lung
15.
Sci Total Environ ; 903: 166206, 2023 Dec 10.
Article En | MEDLINE | ID: mdl-37567291

The coastal zone exhibited a high population density with highly impacted by anthropogenic activities, such as river impoundment to prevent saline intrusion, which resulted in weak hydrological conditions. Rainfall events can result in dramatic changes in hydrological and nutrient transportation conditions, especially in rivers with weak hydrological conditions. However, how the nitrogen transport and N2O emissions or biogeochemistry responds to the different types of rainfall events in the weak hydrodynamics rivers is poorly understood. In this study, the hydrological, nitrogenous characteristic, as well as N2O dynamics, were studied by high-frequency water sampling during two distinct rainfall events, high-intensity with short duration (E1) and low-intensity with long duration (E2). The results displayed that the hydrologic condition in E1 with a wider range of d-excess values (from -9.50 to 32.1 ‰), were more dynamic than those observed in E2. The N2O concentrations (0.01-3.33 µmol/L) were higher during E1 compared to E2 (0.03-1.11 µmol/L), which indicated that high-intensity rainfall has a greater potential for N2O emission. On the contrary, the concentrations of nitrogen (e.g., TN and NO3--N) were lower during E1 compared to E2. Additionally, hysteresis was observed in both water and nitrogen components, resulting in a prolonged recovery time for pre-rainfall levels during the long-duration event. Moreover, the results showed that the higher average N2O flux (78.3 µmol/m2/h) in the rainfall event period was much larger than that in the non-rainfall period (1.63 µmol/m2/h). The frequency dam regulation resulted in the water level fluctuation, which could enhance wet-dry alternation and simulated N2O emissions. This study highlighted the characteristic of N dynamic and hydrological responses to diverse rainfall events occurrences in the coastal river. Rainfall could increase the N2O emission, especially during high-intensity rainfall events, which cannot be ignored in the context of annual N2O release.

16.
J Thorac Dis ; 15(7): 3612-3626, 2023 Jul 31.
Article En | MEDLINE | ID: mdl-37559610

Background: Little is known about the correlation between nodal upstaging and pulmonary nodules classified according to the presence of solid components in the lung and mediastinal windows. This study thus aimed to analyze the risk factors of nodal upstaging and prognosis based on different imaging features, clinical characteristics, and pathological results from patients with clinical stage T1N0M0 lung adenocarcinoma. Methods: A total of 340 patients between January 2016 and June 2017 were selected from the Affiliated Hospital of Qingdao University database. Imaging features, clinical characteristics, and pathological results were collected for survival and analysis of nodal upstaging risk factors. We used logistic regression models to identify important metastatic risk factors for nodal upstaging. Survival rates were calculated using Kaplan-Meier (KM) survival curves and compared with the log-rank test. Significant prognostic risk factors were identified using the Cox proportional hazards model. Results: A total of 340 patients, with an average age of 64.89 (±8.775) years, were enrolled. Among them, nonnodal upstaging occurred both in 77 (22.6%) patients with pure ground-glass nodules (pGGNs) and in 30 (8.8%) patients with heterogenous ground-glass nodules (hGGNs). Compared to the 92 (27.1%) patients with real part-solid nodules (rPSNs), the 141 (41.5%) patients with solid nodules were significantly different in terms of in nodal upstaging (P<0.001). Moreover, preoperative carcinoembryonic antigen (CEA) level >3.4 µg/L [odds ratio (OR): 2.931; 95% confidence interval (CI): 1.511-5.688; P=0.001], imaging tumor size >18.3 mm (OR, 3.482; 95% CI: 1.609-7.535; P=0.002), and consolidation tumor ratio (CTR) >0.788 (OR 8.791; 95% CI: 3.570-21.651; P<0.001) were independent risk factors for nodal upstaging. The KM survival curve results showed that patients with pGGNs and those with hGGNs had a much better 5-year disease-free survival (DFS) and 5-year overall survival (OS) than did those with rPSNs and those with solid nodules (DFS: 98.7% vs. 100% vs. 81.4% vs. 73.7%, P<0.001; OS: 97.4% vs. 100% vs. 90.2% vs. 83.7%, P=0.003). In the multivariate Cox regression analysis of patients with rPSNs and solid nodules, tumor location and pathological lymph node grade were found to be independent risk factors for DFS and OS. Conclusions: Patients with pGGNs and those with hGGNs were more likely to be free of nodal upstaging and had better prognosis than did those with clinical stage IA rPSNs and solid nodules. The patients with pGGNs or hGGNs with preoperative CEA level <3.4 µg/L, imaging tumor size <18.3 mm, and CTR <0.788 can choose systematic lymph node sampling (SLNS) or decline lymph node dissection to avoid postoperative complications.

17.
BMC Genomics ; 24(1): 327, 2023 Jun 15.
Article En | MEDLINE | ID: mdl-37322431

BACKGROUND: Retinal neovascularization (RNV) is a leading cause of blindness worldwide. Long non-coding RNA (lncRNA) and competing endogenous RNA (ceRNA) regulatory networks play vital roles in angiogenesis. The RNA-binding protein galectin-1 (Gal-1) participates in pathological RNV in oxygen-induced retinopathy mouse models. However, the molecular associations between Gal-1 and lncRNAs remain unclear. Herein, we aimed to explore the potential mechanism of action of Gal-1 as an RNA-binding protein. RESULTS: A comprehensive network of Gal-1, ceRNAs, and neovascularization-related genes was constructed based on transcriptome chip data and bioinformatics analysis of human retinal microvascular endothelial cells (HRMECs). We also conducted functional enrichment and pathway enrichment analyses. Fourteen lncRNAs, twenty-nine miRNAs, and eleven differentially expressed angiogenic genes were included in the Gal-1/ceRNA network. Additionally, the expression of six lncRNAs and eleven differentially expressed angiogenic genes were validated by qPCR in HRMECs with or without siLGALS1. Several hub genes, such as NRIR, ZFPM2-AS1, LINC0121, apelin, claudin-5, and C-X-C motif chemokine ligand 10, were found to potentially interact with Gal-1 via the ceRNA axis. Furthermore, Gal-1 may be involved in regulating biological processes related to chemotaxis, chemokine-mediated signaling, the immune response, and the inflammatory response. CONCLUSIONS: The Gal-1/ceRNA axis identified in this study may play a vital role in RNV. This study provides a foundation for the continued exploration of therapeutic targets and biomarkers associated with RNV.


MicroRNAs , RNA, Long Noncoding , Retinal Neovascularization , Animals , Humans , Mice , Chemokines , Endothelial Cells , Galectin 1/genetics , Gene Regulatory Networks , MicroRNAs/genetics , Retinal Neovascularization/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics
18.
Opt Lett ; 48(12): 3315-3318, 2023 Jun 15.
Article En | MEDLINE | ID: mdl-37319090

We propose an accurate and robust phase extraction method for phase-shifting interferometry to reduce the phase ripple error caused by illumination, contrast, phase-shift spatiotemporal variation, and intensity harmonics. In this method, a general physical model of interference fringes is constructed, and the parameters are decoupled using a Taylor expansion linearization approximation. In the iterative process, the estimated illumination and contrast spatial distributions are decorrelated from the phase, thus reducing damage to the algorithm's robustness caused by a large number of linear model approximations. To the best of our knowledge, no method has been able to extract the phase distribution robustly and with high accuracy while considering all of these error sources simultaneously without imposing constraints inconsistent with the practical conditions.


Algorithms , Interferometry , Lighting
19.
Article En | MEDLINE | ID: mdl-36767800

It is important to explore characteristics of dissolved organic matter (DOM) in the riverine system due to its critical role in the carbon cycle. This study investigated the distribution characteristics and sources of DOM based on excitation emission matrix three-dimensional fluorescence technology and parallel factor (EEM-PARAFAC) analysis at two rivers in northern China strongly impacted by human activities. The results show that the fluorescence intensity of terrestrial humic-like substances increased during summer in Haihe River. The intensity was significantly higher than in spring due to terrestrial detritus from runoff conveyance. The fluorescence intensity of protein-like substances in spring was the highest and decreased in summer. This feature of DOM in the Duliujian River was related to the increase in precipitation and surface runoff in the wet season and the rapid degradation of mixed DOM in the dry season. An analysis of HIX, BIX and FI showed a low degree of DOM humification and more endogenous contributions from microbial and phytoplankton degradation. Seasonal variations of dissolved organic carbon (DOC) and chromophoric DOM (CDOM, a335, thereinto C1) suggest that chromophores, particularly terrestrial substances, regulate the temporal patterns of DOM in the two rivers. Combined with the analysis of the proportion of land use types in riparian buffers, tillage had a great impact on DOM content and hydrophobicity in Haihe River watershed. Domestic wastewater and industrial sewage discharge contribute more DOM to Duliujian River watershed, which was indicated by more abundant protein-like components (212.17 ± 94.63 QSU in Duliujian River;186.59 ± 238.72 QSU in Haihe River). This study highlights that different land use types resulted in distinctive sources and seasonal dynamics of DOM in rivers. Meanwhile, it should be considered that the estimation of carbon cycling should involve monitoring and evaluating anthropogenic inputs into rivers.


Dissolved Organic Matter , Rivers , Humans , Wastewater , Sewage , China , Humic Substances/analysis , Spectrometry, Fluorescence
20.
J Biol Chem ; 299(3): 102907, 2023 03.
Article En | MEDLINE | ID: mdl-36642184

The dynamic cycling of O-linked GlcNAc (O-GlcNAc) on and off Ser/Thr residues of intracellular proteins, termed O-GlcNAcylation, is mediated by the conserved enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase. O-GlcNAc cycling is important in homeostatic and stress responses, and its perturbation sensitizes the heart to ischemic and other injuries. Despite considerable progress, many molecular pathways impacted by O-GlcNAcylation in the heart remain unclear. The mitogen-activated protein kinase (MAPK) pathway is a central signaling cascade that coordinates developmental, physiological, and pathological responses in the heart. The developmental or adaptive arm of MAPK signaling is primarily mediated by Erk kinases, while the pathophysiologic arm is mediated by p38 and Jnk kinases. Here, we examine whether O-GlcNAcylation affects MAPK signaling in cardiac myocytes, focusing on Erk1/2 and p38 in basal and hypertrophic conditions induced by phenylephrine. Using metabolic labeling of glycans coupled with alkyne-azide "click" chemistry, we found that Erk1/2 and p38 are O-GlcNAcylated. Supporting the regulation of p38 by O-GlcNAcylation, the OGT inhibitor, OSMI-1, triggers the phosphorylation of p38, an event that involves the NOX2-Ask1-MKK3/6 signaling axis and also the noncanonical activator Tab1. Additionally, OGT inhibition blocks the phenylephrine-induced phosphorylation of Erk1/2. Consistent with perturbed MAPK signaling, OSMI-1-treated cardiomyocytes have a blunted hypertrophic response to phenylephrine, decreased expression of cTnT (key component of the contractile apparatus), and increased expression of maladaptive natriuretic factors Anp and Bnp. Collectively, these studies highlight new roles for O-GlcNAcylation in maintaining a balanced activity of Erk1/2 and p38 MAPKs during hypertrophic growth responses in cardiomyocytes.


Myocytes, Cardiac , Signal Transduction , Humans , Myocytes, Cardiac/metabolism , Signal Transduction/physiology , Phosphorylation , Hypertrophy/metabolism , Proteins/metabolism , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Acetylglucosamine/metabolism
...