Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-31118956

RESUMEN

BACKGROUND: The prevalence of overweight/obesity in adults is raised to 39%, which is nearly tripled more than 1975. The alteration of the gut microbiome has been widely accepted as one of the main causal factors. To find an effective strategy for the prevention and treatment of overweight/obesity, a systematic review and meta-analysis were designed. METHODS: In this study, we systematically reviewed the article published from January 2008 to July 2018 and conducted a meta-analysis to examine the effects of probiotics on body weight control, lipid profile, and glycemic control in healthy adults with overweight or obesity. The primary outcomes were body weight, body mass index (BMI), waist circumference, fat mass, fat percentages, plasma lipid profiles, and glucose metabolic parameters. RESULTS: We systematically searched PubMed, Embase, and the Web of Science and identified 1248 articles, and 7 articles which were manually searched by the references of included studies and previously systematic reviews. Twelve randomized controlled trials (RCTs), including 821 participants, were included in the meta-analysis via full-text screening. Probiotics supplementation resulted in a statistical reduction in body weight (WMD [95% CI]; -0.55 [-0.91, -0.19] kg), BMI (WMD [95% CI]; -0.30 [-0.43, -0.18] kg m-2), waist circumference (WMD [95% CI]; -1.20 [-2.21, -0.19] cm), fat mass (WMD [95% CI]; -0.91 [-1.19, -0.63] kg), and fat percentage (WMD [95% CI]; -0.92 [-1.27, -0.56] %) compared with control groups. As expected, the metabolic parameters were improved significantly, with a pooled standardized mean difference in TC (SMD [95% CI]; -0.43 [-0.80, -0.07]), LDL-C (SMD [95% CI]; -0.41 [-0.77, -0.04]), FPG (SMD [95% CI]; -0.35 [-0.67, -0.02]), insulin (SMD [95% CI]; -0.44 [-0.84, -0.03]), and HOMA-IR (SMD [95% CI]; -0.51 [-0.96, -0.05]), respectively. The changes in TG (SMD [95% CI]; 0.14 [-0.23, 0.50]), HDL-C (SMD [95% CI]; -0.31 [-0.70, 0.07]), and HbA1c (SMD [95% CI]; -0.23 [-0.46, 0.01]) were not significant. CONCLUSION: This study suggests that the probiotics supplementation could potentially reduce the weight gain and improve some of the associated metabolic parameters, which may become an effective strategy for the prevention and treatment of obesity in adult individuals.

2.
Diabetol Metab Syndr ; 11: 108, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31890042

RESUMEN

BACKGROUND: This study aimed to observe the hypoglycemic effect of cassia seed extract in rats with type-2 diabetes mellitus and its effect on reducing insulin resistance in the skeletal muscle. METHODS: 50 rats were randomly divided into the normal, model, high-dose, middle-dose, and low-dose groups of cassia seed extract (n = 10 each). A high-fat diet combined with streptozotocin administration was adopted to build type 2 diabetes models. The cassia seed extract groups were fed different concentrations cassia seed extract while the normal and model groups were fed the same volume of normal saline. The weight, FINS, GIR, insulin tolerance, blood glucose and blood lipid level, oxidative stress indices and expressions related to the LKB1-AMPK-GLUT4 pathway were detected and compared between the two groups. RESULTS: Compared with the normal group, the model group showed lower weight, glucose infusion rate and expressions related to LKB1-AMPK-GLUT4 pathway and higher FINS, insulin tolerance, blood glucose and blood lipid level and oxidative stress indices (all P < 0.05). Compared with the model group, higher weight, glucose infusion rate and expressions related to LKB1-AMPK-GLUT4 pathway and lower FINS, insulin tolerance, blood glucose and blood lipid level and oxidative stress indices were observed in all groups that were administered cassia see extract (all P < 0.05). CONCLUSION: Cassia seed extract could noticeably improve the insulin resistance of diabetic rats and enhance the insulin sensitivity of their skeletal muscles. Its mechanism may be related to damage repair of the LKB1-AMPK-GLUT4 signaling pathway and oxidative stress in the skeletal muscle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA