Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 183
1.
Viruses ; 16(5)2024 05 08.
Article En | MEDLINE | ID: mdl-38793624

Bacteriophages exert strong selection on their bacterial hosts to evolve resistance. At the same time, the fitness costs on bacteria following phage resistance may change their virulence, which may affect the therapeutic outcomes of phage therapy. In this study, we set out to assess the costs of phage resistance on the in vitro virulence of priority 1 nosocomial pathogenic bacterium, Acinetobacter baumannii. By subjecting phage-resistant variant Ev5-WHG of A. baumannii WHG40004 to several in vitro virulence profiles, we found that its resistance to phage is associated with reduced fitness in host microenvironments. Also, the mutant exhibited impaired adhesion and invasion to mammalian cells, as well as increased susceptibility to macrophage phagocytosis. Furthermore, the whole-genome sequencing of the mutant revealed that there exist multiple mutations which may play a role in phage resistance and altered virulence. Altogether, this study demonstrates that resistance to phage can significantly alter phenotypes associated with virulence in Acinetobacter baumannii.


Acinetobacter Infections , Acinetobacter baumannii , Bacteriophages , Phenotype , Acinetobacter baumannii/virology , Acinetobacter baumannii/pathogenicity , Acinetobacter baumannii/genetics , Virulence/genetics , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/pathogenicity , Acinetobacter Infections/microbiology , Animals , Humans , Macrophages/microbiology , Macrophages/virology , Mutation , Phagocytosis , Whole Genome Sequencing , Mice
2.
Adv Mater ; : e2403411, 2024 May 28.
Article En | MEDLINE | ID: mdl-38804620

Understanding psychology is an important task in modern society which helps predict human behavior and provide feedback accordingly. Monitoring of weak psychological and emotional changes requires bioelectronic devices to be stretchable and compliant for unobtrusive and high-fidelity signal acquisition. Thin conductive polymer film has been regarded as an ideal interface; however, it is very challenging to be simultaneously balance mechanical robustness and opto-electrical property. Here, we report a 40 nm-thick film based on photolithographic double-network conductive polymer mediated by graphene layer, which concurrently enables stretchability, conductivity and conformability. Photolithographic polymer and graphene endow the film photopatternability, enhance stress dissipation capability, as well as improving opto-electrical conductivity (4458 S cm-1 @ > 90% transparency) through molecular rearrangement by π-π, electrostatic interaction and hydrogen bonding. We further apply the film onto corrugated facial skin, monitor the subtle electromyogram, and perform machine learning algorithm to understand complex emotions, indicating the outstanding ability for stretchable and compliant bioelectronics. This article is protected by copyright. All rights reserved.

3.
Environ Res ; 255: 119150, 2024 May 18.
Article En | MEDLINE | ID: mdl-38763282

The coverage of accumulated snow plays a significant role in inducing changes in both microbial activity and environmental factors within freeze-thaw soil systems. This study aimed to analyze the impact of snow cover on the dynamics of archeal communities in freeze-thaw soil. Furthermore, it seeks to investigate the role of fertilization in freeze-thaw soil. Four treatments were established based on snow cover and fertilization:No snow and no fertilizer (CK-N), snow cover without fertilizer (X-N), fertilizer without snow cover (T-N), and both fertilizer and snow cover (T-X). The research findings indicated that after snow cover treatment, the carbon, nitrogen, and phosphorus content in freeze-thaw soil exhibit periodic fluctuations. Snow covered effectively altered the community composition of bacteria and archaea in the soil, with a greater impact on archaeal communities than on bacterial communities. Snow covered improves the stability of archaeal communities in freeze-thaw soil. Additionally, the arrival of snow also enhanced the correlation between archaea and environmental factors, with the key archaeal phyla involved being Nanoarchaeota and Crenarchaeota. Further research showed that the application of organic fertilizers also had some impact on freeze-thaw soil, but this impact was smaller compared to snow cover. In summary, the arrival of snow could alter the archaeal community and protect nutrient elements in freeze-thaw soil, reducing their loss, and its effect is more pronounced compared to the application of organic fertilizers.

4.
Article En | MEDLINE | ID: mdl-38607196

Objective: To study and compare the efficacy and clinical value of aminophylline and doxofylline in the clinical treatment of chronic obstructive pulmonary disease (COPD). Method: The study analyzed the clinical data of 92 patients with chronic obstructive pulmonary disease who received either aminophylline or doxofylline treatment in the hospital from January 2020 to June 2022. The patients were divided into a control group composed of 46 COPD patients who received aminophylline treatment and a study group composed of 46 COPD patients who received doxofylline treatment. The two groups' total effective rate and incidence of adverse reactions were compared. The serum inflammatory factor indicators, symptom scores, pulmonary ventilation function, arterial blood gas, chest and lung responsiveness, sleep status indicators, and quality of life scores of the two groups before and after treatment were compared. Results: At the end of treatment, the total effective rate was higher in the study group compared to the control group (P < .05). Regarding adverse reactions, the study group's total incidence was lower than the control group's (P < .05). After treatment, the levels of serum inflammatory factor indicators of CRP, PCT, and TNF- α in both groups were decreased compared with those before treatment; while comparing the above indicators between the groups, it was found that the values in the study group were lower (all P < .05). After treatment, the scores of symptoms such as cough, expectoration, and shortness of breath in both groups of patients were significantly lower than before treatment, while compared to the control group, the scores of all symptoms were lower in the study group (P < .05). After treatment, compared with FEV1, FEV1/FVC, PaO2, and PaCO2 before treatment, the above indicators in both groups were significantly improved. However, compared with various indicators in the control group, the values of FEV1, FEV1/FVC, and PaO2 in the study group were higher, while the values of PaCO2 in the study group were lower (all P < .05). After treatment, the measured values of indicators such as thoracic compliance, lung compliance, and total compliance in the two groups were significantly higher compared with those before the treatment, while compared to the control group, the values of all indicators in the study group were higher (P < .05). After treatment, compared with the control group's monitoring of various indicators of nighttime sleep, the study group obtained better data on monitoring of sleep latency and actual sleep duration. The group obtained lower scores in sleep quality evaluation, while the two groups significantly improved their sleep-related data in night-time monitoring and evaluation compared to those before treatment, with all P < .05. After treatment, the scores in various aspects of the quality of life of patients in both groups were significantly increased compared to those before treatment, and after comparing the scores of various quality of life between the two groups, it was found that the study group was higher than the control group (all P < .05). Conclusion: After the onset of COPD, doxofylline treatment can achieve better effects than aminophylline treatment.

5.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 493-498, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38660857

OBJECTIVE: To investigate the relationship between clinical indicators of CRAB symptoms and antioxidant enzyme activity in patients with multiple myeloma (MM). METHODS: The activity of catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD) in the bone marrow supernatants of 44 patients with MM and 12 patients with non-malignant hematological diseases was detected by colorimetric assay, and then the differences in the activity of antioxidant enzymes between the two groups were compared. Furthermore, the relationship between the activity of antioxidant enzymes in the MM group and the levels of serum calcium, serum creatinine (Scr), hemoglobin (Hb), alkaline phosphatase (ALP) as well as bone lesions were analyzed. RESULTS: The antioxidant enzyme activity was lower in MM patients compared with the control group (P < 0.05). When the concentrations of serum calcium and ALP were higher than the normal levels, Hb was lower than 85 g/L, and there were multiple bone lesions, the activity of CAT, SOD and GPX was significantly declined (P < 0.05); When the concentration of Scr≥177 µmol/L, the activity of GPX was significantly declined (P < 0.05). Regression analyses showed that CAT, SOD and GPX were negatively correlated with serum calcium (r =-0.538, r =-0.456, r =-0.431), Scr (r =-0.342, r =-0.384, r =-0.463), and ALP (r =-0.551, r =-0.572, r =-0.482). CONCLUSION: The activity of antioxidant enzymes, including CAT, SOD and GPX, were decreased in patients with MM and they were negatively correlated with some clinical indicators of CRAB symptoms (such as serum calcium, Scr, and ALP), which suggests that promoting the activity of antioxidant enzymes may be beneficial to treat the CRAB symptoms of the patients with MM.


Antioxidants , Multiple Myeloma , Humans , Alkaline Phosphatase/blood , Alkaline Phosphatase/metabolism , Antioxidants/metabolism , Bone Marrow , Brachyura , Calcium/blood , Calcium/metabolism , Catalase/blood , Catalase/metabolism , Creatinine/blood , Glutathione Peroxidase/blood , Glutathione Peroxidase/metabolism , Multiple Myeloma/blood , Multiple Myeloma/complications , Multiple Myeloma/enzymology , Multiple Myeloma/metabolism , Superoxide Dismutase/blood , Superoxide Dismutase/metabolism
6.
Biochem Genet ; 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38526710

Helicobacter pylori (H. pylori) is implicated in the aberrant proliferation and malignant transformation of gastric mucosal cells, heightening the risk of gastric cancer (GC). HN1 is involved in the development of various tumors. However, precise mechanistic underpinnings of HN1 promoting GC progression in H. pylori remain elusive. The study collected 79 tissue samples of GC patients, including 47 with H. pylori-positive GC and 32 H. pylori-negative controls. Using human gastric epithelial cells (GES-1) and human gastric adenocarcinoma cells (HGC-27), the effect of overexpression / knocking down of HN1 and H. pylori infection was evaluated on cell function (proliferation, migration, apoptosis), cytoskeleton, and expression of cell malignant phenotype factors that promote the malignant biological behavior of cancer cells. The expression of HN1 in GC tissues is higher than that in paracancerous tissue and is closely related to infiltration, lymphatic metastasis, distant metastasis, survival, and H. pylori infection. Downregulation of HN1 effectively hinders the ability of H. pylori strains 26695 and SS1 to promote migration of GES-1 and HGC-27 cells, while lowering the expression of key indicators associated with malignant phenotype. Downregulated GSK3B, ß-catenin, and Vimentin after knockdown Integrinß1, but HN1 expression remained largely unchanged, when HN1 and Integrinß1 were knocked down, GSK3B, ß-catenin, and Vimentin expression were considerably reduced. Our research demonstrated the crucial role of HN1 in H. pylori-induced acquisition of a malignant phenotype in GES-1 cells. Knockdown of HN1 blocked the pathogenic mechanism of H. pylori-induced GC and downregulated the expression of GSK3Β, ß-catenin and Vimentin via Integrin ß1.

7.
Microorganisms ; 12(3)2024 Feb 29.
Article En | MEDLINE | ID: mdl-38543544

Probiotics are live microorganisms with immunomodulatory effects in a strain-specific and dose-dependent manner. Bifidobacterium animalis subsp. lactis IU100 is a new probiotic strain isolated from healthy adults. This study aimed to evaluate the effects of IU100 on cyclophosphamide (CTX)-induced immunosuppression in mice. The results showed that IU100 significantly ameliorated CTX-induced decreases in body weight and immune organ indices. The promoted delayed-type hypersensitivity, serum hemolysins and immunoglobulin (IgA, IgG and IgM) levels after IU100 treatment indicated its enhancing role in cellular and humoral immunity. In addition, oral administration of IU100 increased serum cytokine (IL-1ß, IL-2, IL-4, IL-6, IFN-γ, TNF-α) levels dose-dependently, which are associated with CTX-induced shifts in the Th1/Th2 balance. The probiotic IU100 also modulated the composition of gut microbiota by reducing the Firmicutes/Bacteroidetes ratio; increasing beneficial Muribaculaceae and the Lachnospiraceae NK4A136 group; and inhibiting harmful Clostridium sensu stricto 1, Faecalibaculum and Staphylococcus at the genus level. The above genera were found to be correlated with serum cytokines and antibody levels. These findings suggest that IU100 effectively enhances the immune function of immunosuppressed mice, induced by CTX, by regulating gut microbiota.

8.
ACS Appl Mater Interfaces ; 16(13): 16962-16972, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38520330

Typical methods for stable immobilization of proteins often involve time-consuming surface modification of silicon-based materials to enable specific binding, while the nonspecific adsorption method is faster but usually unstable. Herein, we fused a silica-binding protein, Si-tag, to target proteins so that the target proteins could attach directly to silica substrates in a single step, markedly streamlining the immobilization process. The adhesion force between the Si-tag and glass substrates was determined to be approximately 400-600 pN at the single-molecule level by atomic force microscopy, which is greater than the unfolding force of most proteins. The adhesion force of the Si-tag exhibits a slight increase when pulled from the C-terminus compared to that from the N-terminus. Furthermore, the Si-tag's adhesion force on a glass surface is marginally higher than that on a silicon nitride probe. The binding properties of the Si-tag are not obviously affected by environmental factors, including pH, salt concentration, and temperature. In addition, the macroscopic adhesion force between the Si-tag-coated hydrogel and glass substrates was ∼40 times higher than that of unmodified hydrogels. Therefore, the Si-tag, with its strong silica substrate binding ability, provides a useful tool as an excellent fusion tag for the rapid and mechanically robust immobilization of proteins on silica and for the surface coating of silica-binding materials.


Carrier Proteins , Silicon Dioxide , Silicon Dioxide/chemistry , Spectrum Analysis , Microscopy, Atomic Force , Surface Properties
9.
Int Immunopharmacol ; 131: 111852, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38492338

BACKGROUND: We recently found that butyrate could ameliorate inflammation of alcoholic liver disease (ALD) in mice. However, the exact mechanism remains incompletely comprehended. Here, we examined the role of butyrate on ALD-associated inflammation through macrophage (Mψ) regulation and polarization using in vivo and in vitro experiments. METHODS: For in vivo experiments, C57BL/6J mice were fed modified Lieber-DeCarli liquid diets supplemented with or without ethanol and sodium butyrate (NaB). After 6 weeks of treatment, mice were euthanized and associated indicators were analyzed. For in vitro experiments, lipopolysaccharide (LPS)-induced inflammatory murine RAW264.7 cells were treated with NaB or miR-155 inhibitor/mimic to verify the anti-inflammatory effect and underlying mechanism. RESULTS: The administration of NaB alleviated pathological damage and associated inflammation, including LPS, tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1ß levels in ALD mice. NaB intervention restored the imbalance of macrophage polarization by inhibiting inducible nitric oxide synthase (iNOS) and elevating arginase-1 (Arg-1). Moreover, NaB reduced histone deacetylase-1 (HDAC1), nuclear factor kappa-B (NF-κB), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), and miR-155 expression in ALD mice, but also increased peroxisome proliferator-activated receptor-γ (PPAR-γ). Thus, MiR-155 was identified as a strong regulator of ALD. To further penetrate the role of miR-155, LPS-stimulated RAW264.7 cells co-cultured with NaB were treated with the specific inhibitor or mimic. Intriguingly, miR-155 was capable of negatively regulated inflammation with NaB intervention by targeting SOCS1, SHIP1, and IRAK-M genes. CONCLUSION: Butyrate suppresses the inflammation in mice with ALD by regulating macrophage polarization via the HDAC1/miR-155 axis, which may potentially contribute to the novel therapeutic treatment for the disease.


Hepatitis, Alcoholic , Liver Diseases, Alcoholic , MicroRNAs , Mice , Animals , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , Liver Diseases, Alcoholic/pathology , Inflammation/metabolism , Macrophages , Butyric Acid/pharmacology , Butyric Acid/therapeutic use , Butyric Acid/metabolism , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , MicroRNAs/metabolism
10.
BMC Microbiol ; 24(1): 97, 2024 Mar 23.
Article En | MEDLINE | ID: mdl-38521894

BACKGROUND: Primary nephrotic syndrome (PNS) is a common glomerular disease in children. Clostridium butyricum (C. butyricum), a probiotic producing butyric acid, exerts effective in regulating inflammation. This study was designed to elucidate the effect of C. butyricum on PNS inflammation through the gut-kidney axis. METHOD: BALB/c mice were randomly divided into 4 groups: normal control group (CON), C. butyricum control group (CON+C. butyricum), PNS model group (PNS), and PNS with C. butyricum group (PNS+C. butyricum). The PNS model was established by a single injection of doxorubicin hydrochloride (DOX) through the tail vein. After 1 week of modeling, the mice were treated with C. butyricum for 6 weeks. At the end of the experiment, the mice were euthanized and associated indications were investigated. RESULTS: Since the successful modeling of the PNS, the 24 h urine protein, blood urea nitrogen (BUN), serum creatinine (SCr), urine urea nitrogen (UUN), urine creatinine (UCr), lipopolysaccharides (LPS), pro-inflammatory interleukin (IL)-6, IL-17A were increased, the kidney pathological damage was aggravated, while a reduction of body weights of the mice and the anti-inflammatory IL-10 significantly reduced. However, these abnormalities could be dramatically reversed by C. butyricum treatment. The crucial Th17/Tregs axis in PNS inflammation also was proved to be effectively regulated by C. butyricum treatment. This probiotic intervention notably affected the expression levels of signal transducer and activator of transcription 3 (STAT3), Heme oxygenase-1 (HO-1) protein, and retinoic acid-related orphan receptor gamma t (RORγt). 16S rRNA sequencing showed that C. butyricum could regulate the composition of the intestinal microbial community and found Proteobacteria was more abundant in urine microorganisms in mice with PNS. Short-chain fatty acids (SCFAs) were measured and showed that C. butyricum treatment increased the contents of acetic acid, propionic acid, butyric acid in feces, acetic acid, and valeric acid in urine. Correlation analysis showed that there was a closely complicated correlation among inflammatory indicators, metabolic indicators, microbiota, and associated metabolic SCFAs in the gut-kidney axis. CONCLUSION: C. butyricum regulates Th17/Tregs balance via the gut-kidney axis to suppress the immune inflammatory response in mice with PNS, which may potentially contribute to a safe and inexpensive therapeutic agent for PNS.


Clostridium butyricum , Nephrotic Syndrome , Humans , Child , Mice , Animals , RNA, Ribosomal, 16S , Inflammation , Kidney , Fatty Acids, Volatile , Butyrates , Interleukin-6 , Acetates
11.
Chin Med J (Engl) ; 137(9): 1033-1043, 2024 May 05.
Article En | MEDLINE | ID: mdl-38545694

ABSTRACT: Epitranscriptomics focuses on the RNA-modification-mediated post-transcriptional regulation of gene expression. The past decade has witnessed tremendous progress in our understanding of the landscapes and biological functions of RNA modifications, as prompted by the emergence of potent analytical approaches. The hematopoietic system provides a lifelong supply of blood cells, and gene expression is tightly controlled during the differentiation of hematopoietic stem cells (HSCs). The dysregulation of gene expression during hematopoiesis may lead to severe disorders, including acute myeloid leukemia (AML). Emerging evidence supports the involvement of the mRNA modification system in normal hematopoiesis and AML pathogenesis, which has led to the development of small-molecule inhibitors that target N6-methyladenosine (m 6 A) modification machinery as treatments. Here, we summarize the latest findings and our most up-to-date information on the roles of m 6 A and N7-methylguanine in both physiological and pathological conditions in the hematopoietic system. Furthermore, we will discuss the therapeutic potential and limitations of cancer treatments targeting m 6 A.


Adenosine , Adenosine/analogs & derivatives , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Adenosine/metabolism , Hematopoietic System , Hematopoietic Stem Cells/metabolism , Hematopoiesis/genetics , RNA Processing, Post-Transcriptional/genetics
12.
Gene ; 909: 148306, 2024 May 30.
Article En | MEDLINE | ID: mdl-38408616

OBJECTIVES: Facing the emerging diseases, rapid identification of the pathogen and multi-dimensional characterization of the genomic features at both isolate-level and population-level through high-throughput sequencing data can provide invaluable information to guide the development of antiviral agents and strategies. However, a user-friendly program is in urgent need for clinical laboratories without bioinformatics background to decode the complex big genomics data. METHODS: In this study, we developed an interactive online platform named PHDtools with a total of 15 functions to analyze metagenomics data to identify the potential pathogen and decode multi-dimensional genetic signatures including intra-/inter-host variations and lineage-level variations. The platform was applied to analyze the meta-genomic data of the samples collected from the 172 imported COVID-19 cases. RESULTS: According to the analytical results of mNGS, 27 patients were found to have the co-infections of SARS-CoV-2 with either influenza virus (n = 9) or human picobirnavirus (n = 19). Enough coverages of all the assembled SARS-CoV-2 genomes provided the sub-lineages of Omicron variant, and the number of mutations in the non-structural genes and M gene was increased, as well as the intra-host variations occurred in E and M gene were under positive selection (Ka/Ks > 1). These findings of increased or changed mutations in the SARS-CoV-2 genome characterized the current adaptive evolution patterns of Omicron sub-lineages, and revealed the evolution speed of these sub-lineages might increase. CONCLUSIONS: Consequently, the application of PHDtools has proved that this platform is accurate, user-friendly and convenient for clinical users who are deficient in bioinformatics, and the clinical monitor of SARS-CoV-2 genomes by PHDtools also highlighted the potential evolution features of current SARS-CoV-2 and indicated that the development of anti-SARS-CoV-2 agents and new-designed vaccines should incorporate the gene variations other than S gene.


Computational Biology , Genomics , Humans , Metagenomics , Antiviral Agents , Data Analysis
13.
Int J Surg ; 110(4): 2396-2410, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38320094

BACKGROUND: The clinical data regarding the relationships between BMI and abdominal aortic aneurysm (AAA) are inconsistent, especially for the obese and overweight patients. The aims of this study were to determine whether obesity is associated with the presence of AAA and to investigate the quantitative relationship between BMI and the risk of AAA presence and postoperative mortality. MATERIALS AND METHODS: PubMed, Web of Science, and Embase databases were used to search for pertinent studies updated to December 2023. The pooled relative risk (RR) with 95% CI was estimated by conventional meta-analysis based on random effects model. Dose-response meta-analyses using robust-error meta-regression (REMR) model were conducted to quantify the associations between BMI and AAA outcome variables. Subgroup analysis, sensitivity analysis, and publication bias analysis were performed according to the characteristics of participants. RESULTS: Eighteen studies were included in our study. The meta-analysis showed a higher prevalence of AAA with a RR of 1.07 in patients with obesity. The dose-response meta-analysis revealed a nonlinear relationship between BMI and the risk of AAA presence. A 'U' shape curve reflecting the correlation between BMI and the risk of postoperative mortality in AAA patients was also uncovered, suggesting the 'safest' BMI interval (28.55, 31.05) with the minimal RR. CONCLUSIONS: Obesity is positively but nonlinearly correlated with the increased risk of AAA presence. BMI is related to AAA postoperative mortality in a 'U' shaped curve, with the lowest RR observed among patients suffering from overweight and obesity. These findings offer a preventive strategy for AAA morbidity and provide guidance for improving the prognosis in patients undergone AAA surgical repair.


Aortic Aneurysm, Abdominal , Body Mass Index , Obesity , Aortic Aneurysm, Abdominal/surgery , Aortic Aneurysm, Abdominal/mortality , Humans , Obesity/complications , Risk Factors , Postoperative Complications/epidemiology , Postoperative Complications/mortality , Postoperative Complications/etiology
14.
J Ethnopharmacol ; 319(Pt 3): 117349, 2024 Jan 30.
Article En | MEDLINE | ID: mdl-38380572

ETHNOPHARMACOLOGICAL RELEVANCE: Acanthopanax senticosus (Rupr. & Maxim.) Harms (AS), also known as Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. or Siberian ginseng, has a rich history of use as an adaptogen, a substance believed to increase the body's resistance to stress, fatigue, and infectious diseases. As a traditional Chinese medicine, AS is popular for its cardioprotective effects which can protect the cardiovascular system from hazardous conditions. Doxorubicin (DOX), on the other hand, is a first-line chemotherapeutic agent against a variety of cancers, including breast cancer, lung cancer, gastric cancer, and leukemia, etc. Despite its effectiveness, the clinical use of DOX is limited by its side effects, the most serious of which is cardiotoxicity. Considering AS could be applied as an adjuvant to anticancer agents, the combination of AS and DOX might exert synergistic effects on certain malignancies with mitigated cardiotoxicity. Given this, it is necessary and meaningful to confirm whether AS would neutralize the DOX-induced cardiotoxicity and its underlying molecular mechanisms. AIM OF THE STUDY: This paper aims to validate the cardioprotective effects of AS against DOX-induced myocardial injury (MI) while deciphering the molecular mechanisms underlying such effects. MATERIALS AND METHODS: Firstly, the cardioprotective effects of AS against DOX-induced MI were confirmed both in vitro and in vivo. Secondly, serum pharmacochemistry and network pharmacology were orchestrated to explore the in vivo active compounds of AS and predict their ways of functioning in the treatment of DOX-induced MI. Finally, the predicted mechanisms were validated by Western blot analysis during in vivo experiments. RESULTS: The results demonstrated that AS possessed excellent antioxidative ability, and could alleviate the apoptosis of H9C2 cells and the damage to mitochondria induced by DOX. In vivo experiments indicated that AS could restore the conduction abnormalities and ameliorate histopathological changes according to the electrocardiogram and cardiac morphology. Meanwhile, it markedly downregulated the inflammatory factors (TNF-α, IL-6, and IL-1ß), decreased plasma ALT, AST, LDH, CK, CK-MB, and MDA levels, as well as increased SOD and GSH levels compared to the model group, which collectively substantiate the effectiveness of AS. Afterward, 14 compounds were identified from different batches of AS-dosed serum and selected for mechanism prediction through HPLC-HRMS analysis and network pharmacology. Consequently, the MAPKs and caspase cascade were confirmed as primary targets among which the interplay between the JNK/Caspase 3 feedback loop and the phosphorylation of ERK1/2 were highlighted. CONCLUSIONS: In conclusion, the integrated approach employed in this paper illuminated the molecular mechanism of AS against DOX-induced MI, whilst providing a valuable strategy to elucidate the therapeutic effects of complicated TCM systems more reliably and efficiently.


Antineoplastic Agents , Eleutherococcus , Neoplasms , Humans , Eleutherococcus/chemistry , Cardiotoxicity/drug therapy , Network Pharmacology , Doxorubicin/pharmacology , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Oxidative Stress , Apoptosis
15.
Clin Epigenetics ; 16(1): 7, 2024 01 03.
Article En | MEDLINE | ID: mdl-38172884

BACKGROUND: The management of myocardial ischemia-reperfusion injury (MIRI) presents continuous therapeutic challenges. NAD-dependent deacetylase Sirtuin 6 (Sirt6) plays distinct roles in various disease contexts and is hence investigated for potential therapeutic applications for MIRI. This study aimed to examine the impact of Sirt6-overexpressing exosomes derived from adipose stem cells (S-ASC-Exo) on MIRI, focusing on their influence on AIM2-pyroptosis and mitophagy processes. The sirtuin family of proteins, particularly Sirtuin 6 (Sirt6), play a pivotal role in these processes. This study aimed to explore the potential therapeutic effects of Sirt6-enriched exosomes derived from adipose stem cells (S-ASC-Exo) on regulating MIRI. RESULTS: Bioinformatic analysis revealed a significant downregulation of Sirt6 in MIRI subjected to control group, causing a consequential increase in mitophagy and pyroptosis regulator expressions. Therefore, our study revealed that Sirt6-enriched exosomes influenced the progression of MIRI through the regulation of target proteins AIM2 and GSDMD, associated with pyroptosis, and p62 and Beclin-1, related to mitophagy. The introduction of S-ASC-Exo inhibited AIM2-pyroptosis while enhancing mitophagy. Consequently, this led to a significant reduction of GSDMD cleavage and pyroptosis in endothelial cells, catalyzing a deceleration in the progression of atherosclerosis. Extensive in vivo and in vitro assays were performed to validate the expressions of these specific genes and proteins, which affirmed the dynamic modulation by Sirt6-enriched exosomes. Furthermore, treatment with S-ASC-Exo drastically ameliorated cardiac functions and limited infarct size, underlining their cardioprotective attributes. CONCLUSIONS: Our study underscores the potential therapeutic role of Sirt6-enriched exosomes in managing MIRI. We demonstrated their profound cardioprotective effect, evident in the enhanced cardiac function and attenuated tissue damage, through the strategic modulation of AIM2-pyroptosis and mitophagy. Given the intricate interplay between Sirt6 and the aforementioned processes, a comprehensive understanding of these pathways is essential to fully exploit the therapeutic potential of Sirt6. Altogether, our findings indicate the promise of Sirt6-enriched exosomes as a novel therapeutic strategy in treating ischemia-reperfusion injuries and cardiovascular diseases at large. Future research needs to underscore optimizing the balance of mitophagy during myocardial ischemia to avoid potential loss of normal myocytes.


Exosomes , Myocardial Reperfusion Injury , Sirtuins , Rats , Animals , Humans , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Exosomes/metabolism , Endothelial Cells/metabolism , Rats, Sprague-Dawley , DNA Methylation , Sirtuins/genetics , Epigenesis, Genetic , Stem Cells/metabolism , DNA-Binding Proteins/genetics
16.
Clin Cancer Res ; 30(7): 1382-1396, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38261467

PURPOSE: Although somatic mutations were explored in depth, limited biomarkers were found to predict the resistance of EGFR tyrosine kinase inhibitors (EGFR-TKI). Previous studies reported N6-methyladenosine (m6A) levels regulated response of EGFR-TKIs; whether the germline variants located in m6A sites affected resistance of EGFR-TKIs is still unknown. EXPERIMENTAL DESIGN: Patients with non-small cell lung cancer (NSCLC) with EGFR-activating mutation were enrolled to investigate predictors for response of EGFR-TKIs using a genome-wide-variant-m6A analysis. Bioinformatics analysis and series of molecular biology assays were used to uncover the underlying mechanism. RESULTS: We identified the germline mutation USP36 rs3744797 (C > A, K814N) was associated with survival of patients with NSCLC treated with gefitinib [median progression-free survival (PFS): CC vs. CA, 16.30 vs. 10.50 months, P < 0.0001, HR = 2.45] and erlotinib (median PFS: CC vs. CA, 14.13 vs. 9.47 months, P = 0.041, HR = 2.63). Functionally, the C > A change significantly upregulated USP36 expression by reducing its m6A level. Meanwhile, rs3744797_A (USP36 MUT) was found to facilitate proliferation, migration, and resistance to EGFR-TKIs via upregulating MLLT3 expression in vitro and in vivo. More importantly, MLLT3 and USP36 levels are tightly correlated in patients with NSCLC, which were associated with prognosis of patients. Mechanistically, USP36 MUT stabilized MLLT3 by deubiquitinating MLLT3 in nucleoli and consequently activating its downstream signaling (HIF1α and Snai). Furthermore, inhibition of MLLT3 alleviated USP36 variant-induced EGFR-TKIs resistance in EGFR-mutant NSCLC. CONCLUSIONS: These findings characterized rs3744797 as an oncogenic variant in mediating EGFR-TKI resistance and tumor aggressiveness through deubiquitinating MLLT3, highlighting the variant as a predictive biomarker for EGFR-TKI response in NSCLC.


Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , Lung Neoplasms , Ubiquitin Thiolesterase , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , ErbB Receptors , Germ Cells/metabolism , Germ-Line Mutation , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Nuclear Proteins/genetics , Protein Kinase Inhibitors/adverse effects , Ubiquitin Thiolesterase/genetics
17.
Drug Metab Dispos ; 52(3): 210-217, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38195521

Valproic acid (VPA) is a first-line antiepileptic drug with broad efficacy. Due to significant individual differences in its metabolism, therapeutic drug monitoring is commonly used. However, the recommended therapeutic range (50-100 µg/mL) is inadequate for predicting clinical outcomes. Additionally, the relationship between VPA metabolites and clinical outcomes remains unclear. In this retrospective study, 485 Chinese Southern Han epilepsy patients receiving VPA monotherapy were analyzed after reaching steady-state levels. Plasma concentrations of VPA and its five main metabolites were determined by liquid chromatography-mass spectrometry (LC-MS). We assessed the relevance of the recommended therapeutic VPA range for clinical outcomes and explored the association between VPA/metabolites levels and treatment efficacy/adverse effects. Vitro experiments were conducted to assess 4-ene-VPA hepatotoxicity. The therapeutic range of VPA exhibited no significant correlation with clinical outcomes, and plasma concentrations of VPA failed to serve as predictive indicators for treatment response/adverse effects. Treatment responders had higher 2-PGA concentrations (median, 26.39 ng/mL versus 13.68 ng/mL), with a threshold of 36.5 ng/mL for optimal epilepsy treatment. Patients with abnormal liver function had a higher 4-ene-VPA median concentration (6.41 µg/mL versus 4.83 µg/mL), and the ratio of 4-ene-VPA to VPA better predicted VPA-induced hepatotoxicity (area under the curve, 0.718) than 4-ene-VPA concentration. Vitro experiments revealed that 4-ene-VPA was more hepatotoxic than VPA in HepaRG and L02 cell lines. Total plasma VPA concentration does not serve as a predictor of clinical outcomes. 2-PGA concentrations may be associated with efficacy, whereas the ratio of 4-ene-VPA to VPA may be considered a better biomarker (threshold 10.03%) for VPA-induced hepatotoxicity. SIGNIFICANCE STATEMENT: This was the first and largest observational cohort in China to explore the relationship between patients' parent and metabolites concentrations of VPA and clinical outcomes during the maintenance of VPA monotherapy in epileptic patients. This study provided feasible references of VPA for epilepsy clinical treatment with a larger sample of patients compared with previous studies for a more definitive conclusion based on real-world situations. We found two potential biomarkers in predicting efficacy and liver injury, respectively. This breakthrough has the potential to assist in the rational use of VPA.


Chemical and Drug Induced Liver Injury , Drug-Related Side Effects and Adverse Reactions , Epilepsy , Humans , Anticonvulsants/adverse effects , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/drug therapy , Drug Monitoring , Epilepsy/drug therapy , Retrospective Studies , Valproic Acid/adverse effects
18.
Article En | MEDLINE | ID: mdl-38252575

Gait coordination (GC), meaning that one leg moves in the same pattern but with a specific phase lag to the other, is a spontaneous behavior in the walking of a healthy person. It is also crucial for unilateral amputees with the robotic leg prosthesis to perform ambulation cooperatively in the real world. However, achieving the GC for amputees poses significant challenges to the prostheses' dynamic modeling and control design. Still, there has not been a clear survey on the initiation and evolution of the detailed solutions, hindering the precise decision of future explorations. To this end, this paper comprehensively reviews GC-oriented dynamic modeling and adaptive control methods for robotic leg prostheses. Considering the two representative environments concerned with adaptive control, we first classify the dynamic models into the deterministic model for structured terrain and the constrained stochastic model for stochastically uneven terrain. Inspired by the concept of synchronization, we then emphasize three typical problems for the GC realization, i.e., complete coordination on structured terrain, stochastic coordination on stochastically uneven terrain, and finite-time delayed stochastic coordination. Finally, we conclude with a discussion on the remaining challenges and opportunities in controlling robotic leg prostheses.


Amputees , Artificial Limbs , Robotic Surgical Procedures , Robotics , Humans , Gait , Walking , Robotics/methods , Biomechanical Phenomena , Prosthesis Design , Leg
19.
Nat Commun ; 15(1): 227, 2024 Jan 03.
Article En | MEDLINE | ID: mdl-38172093

Current treatment for functional dyspepsia (FD) has limited and unsustainable efficacy. Probiotics have the sustainable potential to alleviate FD. This randomized controlled clinical trial (Chinese Clinical Trial Registry, ChiCTR2000041430) assigned 200 FD patients to receive placebo, positive-drug (rabeprazole), or Bifidobacterium animalis subsp. lactis BL-99 (BL-99; low, high doses) for 8-week. The primary outcome was the clinical response rate (CRR) of FD score after 8-week treatment. The secondary outcomes were CRR of FD score at other periods, and PDS, EPS, serum indicators, fecal microbiota and metabolites. The CRR in FD score for the BL-99_high group [45 (90.0%)] was significantly higher than that for placebo [29 (58.0%), p = 0.001], BL-99_low [37 (74.0%), p = 0.044] and positive_control [35 (70.0%), p = 0.017] groups after 8-week treatment. This effect was sustained until 2-week after treatment but disappeared 8-week after treatment. Further metagenomic and metabolomics revealed that BL-99 promoted the accumulation of SCFA-producing microbiota and the increase of SCFA levels in stool and serum, which may account for the increase of serum gastrin level. This study supports the potential use of BL-99 for the treatment of FD.


Bifidobacterium animalis , Dyspepsia , Probiotics , Humans , Dyspepsia/therapy , Probiotics/therapeutic use , Feces/microbiology , Double-Blind Method
20.
Inflammopharmacology ; 32(1): 809-823, 2024 Feb.
Article En | MEDLINE | ID: mdl-38177566

The treatment of immunomodulation in multiple sclerosis (MS) can alleviate the severity and relapses. However, it cannot improve the neurological disability of patients due to a lack of myelin protection and regeneration. Therefore, remyelinating therapies may be one of the feasible strategies that can prevent axonal degeneration and restore neurological disability. Natural product icariin (ICA) is a flavonol compound extracted from epimedium flavonoids, which has neuroprotective effects in several models of neurological diseases. Here, we attempt to explore whether ICA has the potential to treat demyelination and its possible mechanisms of action using lipopolysaccharide-treated BV2 microglia, primary microglia, bone marrow-derived macrophages, and cuprizone-induced demyelination model. The indicators of oxidative stress and inflammatory response were evaluated using commercial kits. The results showed that ICA significantly reduced the levels of oxidative intermediates nitric oxide, hydrogen peroxide, malondialdehyde, and inflammatory cytokines TNF-α, IL-1ß, and increased the levels of antioxidants superoxide dismutase, catalase, glutathione peroxidase, and anti-inflammatory cytokines IL-10 and TGF-ß in vitro cell experiments. In vivo demyelination model, ICA significantly alleviated the behavioral abnormalities and enhanced the integrated optical density/mm2 of Black Gold II and myelin basic protein myelin staining, accompanied by the inhibition of oxidative stress/inflammatory response. Immunohistochemical staining showed that ICA significantly induced the expression of nuclear factor erythroid derived 2/heme oxygenase-1 (Nrf2/HO-1) and inhibited the expression of toll-like receptor 4/ nuclear factor kappa B (TLR4/NF-κB), which are two key signaling pathways in antioxidant and anti-inflammatory processes. Our results strongly suggest that ICA may be used as a potential agent to treat demyelination via regulating Nrf2/HO-1-mediated antioxidative stress and TLR4/NF-κB-mediated inflammatory responses.


Antioxidants , Demyelinating Diseases , Flavonoids , Humans , Antioxidants/pharmacology , Cuprizone/pharmacology , Toll-Like Receptor 4 , NF-kappa B , NF-E2-Related Factor 2 , Anti-Inflammatory Agents/pharmacology , Cytokines , Demyelinating Diseases/chemically induced , Demyelinating Diseases/drug therapy
...