Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Cell Death Dis ; 15(5): 349, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769167

RESUMEN

Osteosarcoma is a malignant bone tumor that primarily inflicts the youth. It often metastasizes to the lungs after chemotherapy failure, which eventually shortens patients' lives. Thus, there is a dire clinical need to develop a novel therapy to tackle osteosarcoma metastasis. Methionine dependence is a special metabolic characteristic of most malignant tumor cells that may offer a target pathway for such therapy. Herein, we demonstrated that methionine deficiency restricted the growth and metastasis of cultured human osteosarcoma cells. A genetically engineered Salmonella, SGN1, capable of overexpressing an L-methioninase and hydrolyzing methionine led to significant reduction of methionine and S-adenosyl-methionine (SAM) specifically in tumor tissues, drastically restricted the growth and metastasis in subcutaneous xenograft, orthotopic, and tail vein-injected metastatic models, and prolonged the survival of the model animals. SGN1 also sharply suppressed the growth of patient-derived organoid and xenograft. Methionine restriction in the osteosarcoma cells initiated severe mitochondrial dysfunction, as evident in the dysregulated gene expression of respiratory chains, increased mitochondrial ROS generation, reduced ATP production, decreased basal and maximum respiration, and damaged mitochondrial membrane potential. Transcriptomic and molecular analysis revealed the reduction of C1orf112 expression as a primary mechanism underlies methionine deprivation-initiated suppression on the growth and metastasis as well as mitochondrial functions. Collectively, our findings unraveled a molecular linkage between methionine restriction, mitochondrial function, and osteosarcoma growth and metastasis. A pharmacological agent, such as SGN1, that can achieve tumor specific deprivation of methionine may represent a promising modality against the metastasis of osteosarcoma and potentially other types of sarcomas as well.


Asunto(s)
Neoplasias Óseas , Metionina , Mitocondrias , Osteosarcoma , Osteosarcoma/patología , Osteosarcoma/metabolismo , Osteosarcoma/genética , Osteosarcoma/tratamiento farmacológico , Metionina/deficiencia , Metionina/metabolismo , Humanos , Animales , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Línea Celular Tumoral , Ratones , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Neoplasias Óseas/genética , Neoplasias Óseas/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Metástasis de la Neoplasia , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/farmacología , Ratones Desnudos , Especies Reactivas de Oxígeno/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
2.
Chem Commun (Camb) ; 60(12): 1607-1610, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38230513

RESUMEN

Extensive research has focused on genetic code reprogramming using flexizymes (Fxs), ribozymes enabling diverse tRNA acylation. Here we describe a nucleoside-modification strategy for the preparation of flexizyme variants derived from 2'-OMe, 2'-F, and 2'-MOE modifications with unique and versatile activities, enabling the charging of tRNAs with a broad range of substrates. This innovative strategy holds promise for synthetic biology applications, offering a robust pathway to expand the genetic code for diverse substrate incorporation.


Asunto(s)
ARN Catalítico , Aminoacilación de ARN de Transferencia , Nucleósidos/metabolismo , ARN de Transferencia/metabolismo , Código Genético , ARN Catalítico/metabolismo
3.
Sci Total Environ ; 912: 169052, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38061640

RESUMEN

Aerosols as an external factor have an important role in the amplification of Arctic warming, yet the geography of this harsh region has led to a paucity of observations, which has limited our understanding of the Arctic climate. We synthesized the latest decade (2010-2021) of data on the microphysical-optical-radiative properties of aerosols and their multi-component evolution during the Arctic summer, taking into consideration the important role of wildfire burning. Our results are based on continuous observations from eight AERONET sites across the Arctic region, together with a meteorological reanalysis dataset and satellite observations of fires, and utilize a back-trajectory model to track the source of the aerosols. The summer climatological characteristics within the Arctic Circle showed that the aerosols are mainly fine-mode aerosols (fraction >0.95) with a radius of 0.15-0.20 µm, a slight extinction ability (aerosol optical depth âˆ¼ 0.11) with strong scattering (single scattering albedo ∼0.95) and dominant forward scattering (asymmetry factor âˆ¼ 0.68). These optical properties result in significant cooling at the Earth's surface (∼-13 W m-2) and a weak cooling effect at the top of the atmosphere (∼-5 W m-2). Further, we found that Arctic region is severely impacted by wildfire burning events in July and August, which primarily occur in central and eastern Siberia and followed in subpolar North America. The plumes from wildfire transport aerosols to the Arctic atmosphere with the westerly circulation, leading to an increase in fine-mode aerosols containing large amounts of organic carbon, with fraction as high as 97-98 %. Absorptive carbonaceous aerosols also increase synergistically, which could convert the instantaneous direct aerosol radiative effect into a heating effect on the Earth-atmosphere system. This study provides insights into the complex sources of aerosol loading in the Arctic atmosphere in summer and emphasizes the important impacts of the increasingly frequent occurrence of wildfire burning events in recent years.

4.
BMC Public Health ; 23(1): 2290, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985982

RESUMEN

BACKGROUND: Basic public health services for diabetes play an essential role in controlling glycemia in patients with diabetes. This study was conducted to understand the urban-rural disparities in the utilization of basic public health services for people with diabetes and the factors influencing them. METHODS: The data were obtained from the 2018 China Health and Retirement Longitudinal Study (CHARLS) with 2976 diabetes patients. Chi-square tests were used to examine the disparities in the utilization of diabetes physical examination and health education between urban and rural areas. Logistic regression was performed to explore the factors associated with the utilization of diabetes public health services. RESULTS: Among all participants, 8.4% used diabetes physical examination in the past year, and 28.4% used diabetes health education services. A significant association with age (OR = 0.64, 95% CI:0.49-0.85; P < 0.05) was found between patients' use of health education services. Compared with diabetes patients living in an urban area, diabetes patients living in a rural area used less diabetes health education. (χ2= 92.39, P < 0.05). Patients' self-reported health status (OR = 2.04, CI:1.24-3.35; P < 0.05) and the use of glucose control (OR = 9.33, CI:6.61-13.16; P < 0.05) were significantly positively associated with the utilization of diabetes physical examination. Patients with higher education levels were more likely to use various kinds of health education services than their peers with lower education levels (OR = 1.64, CI:1.21-2.22; P < 0.05). CONCLUSION: Overall, urban-rural disparities in the utilization of public health services existed. Vulnerable with diabetes, such as those in rural areas, are less available to use diabetes public health services. Providing convenient health service infrastructure facilitates the utilization of basic public health services for diabetes in older patients with diabetes, especially in rural areas.


Asunto(s)
Diabetes Mellitus , Servicios de Salud , Anciano , Humanos , China/epidemiología , Diabetes Mellitus/epidemiología , Diabetes Mellitus/terapia , Modelos Logísticos , Estudios Longitudinales , Población Rural , Población Urbana
5.
PLoS Pathog ; 19(11): e1011804, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38033141

RESUMEN

The continuous emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increased transmissibility and profound immune-escape capacity makes it an urgent need to develop broad-spectrum therapeutics. Nanobodies have recently attracted extensive attentions due to their excellent biochemical and binding properties. Here, we report two high-affinity nanobodies (Nb-015 and Nb-021) that target non-overlapping epitopes in SARS-CoV-2 S-RBD. Both nanobodies could efficiently neutralize diverse viruses of SARS-CoV-2. The neutralizing mechanisms for the two nanobodies are further delineated by high-resolution nanobody/S-RBD complex structures. In addition, an Fc-based tetravalent nanobody format is constructed by combining Nb-015 and Nb-021. The resultant nanobody conjugate, designated as Nb-X2-Fc, exhibits significantly enhanced breadth and potency against all-tested SARS-CoV-2 variants, including Omicron sub-lineages. These data demonstrate that Nb-X2-Fc could serve as an effective drug candidate for the treatment of SARS-CoV-2 infection, deserving further in-vivo evaluations in the future.


Asunto(s)
COVID-19 , Anticuerpos de Dominio Único , Humanos , SARS-CoV-2 , Anticuerpos de Dominio Único/farmacología , Epítopos , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales
6.
Opt Express ; 31(21): 34729-34747, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37859223

RESUMEN

Although underwater wireless optical communication (UWOC) receives much interest lately, security issues associated with it get little attention. In this work, it is the first attempt to investigate the physical layer security (PLS) performance of the vertical UWOC system with perfect and imperfect channel state information (CSI). Specifically speaking, the communication between two legitimate peers in the presence of an external eavesdropper is studied from the information-theoretic security perspective. Assuming that turbulence-induced fading over the vertical UWOC links is respectively subject to cascaded lognormal (LN) and Gamma-Gamma (GG) distributions for weak and moderate/strong turbulence conditions, and the angular pointing error is randomized by the Beckmann distribution, the composite cascaded statistical fading models are derived with the comprehensive effects of path loss, underwater turbulence, angular pointing errors, and channel estimation error. On the basis of these models, analysis frameworks of the probability of strictly positive secrecy capacity (SPSC), secrecy outage probability (SOP), and average secrecy capacity (ASC) are further obtained for this UWOC system, which are confirmed by Monte Carlo (MC) simulations. Furthermore, the effects including the number of layers, the level of channel estimation error, the link distance, the location of the eavesdropper, the quality of the main and eavesdropping channels on this system are analyzed for different water conditions. The presented results give valuable insights into the practical aspects of deployment of UWOC networks.

7.
PLoS Pathog ; 19(10): e1011694, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37831643

RESUMEN

Alongshan virus (ALSV), a newly discovered member of unclassified Flaviviridae family, is able to infect humans. ALSV has a multi-segmented genome organization and is evolutionarily distant from canonical mono-segmented flaviviruses. The virus-encoded methyltransferase (MTase) plays an important role in viral replication. Here we show that ALSV MTase readily binds S-adenosyl-L-methionine (SAM) and S-adenosyl-L-homocysteine (SAH) but exhibits significantly lower affinities than canonical flaviviral MTases. Structures of ALSV MTase in the free and SAM/SAH-bound forms reveal that the viral enzyme possesses a unique loop-element lining side-wall of the SAM/SAH-binding pocket. While the equivalent loop in flaviviral MTases half-covers SAM/SAH, contributing multiple hydrogen-bond interactions; the pocket-lining loop of ALSV MTase is of short-length and high-flexibility, devoid of any physical contacts with SAM/SAH. Subsequent mutagenesis data further corroborate such structural difference affecting SAM/SAH-binding. Finally, we also report the structure of ALSV MTase bound with sinefungin, an SAM-analogue MTase inhibitor. These data have delineated the basis for the low-affinity interaction between ALSV MTase and SAM/SAH and should inform on antiviral drug design.


Asunto(s)
Flavivirus , Metiltransferasas , Humanos , Metiltransferasas/genética , Flavivirus/genética , Flavivirus/metabolismo , S-Adenosilmetionina/metabolismo , Mutagénesis
8.
Eur Radiol ; 33(11): 7857-7865, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37338557

RESUMEN

OBJECTIVES: To determine the contribution of a modified definition of markedly hypoechoic in the differential diagnosis of thyroid nodules. METHODS: A total of 1031 thyroid nodules were included in this retrospective multicenter study. All of the nodules were examined with US before surgery. The US features of the nodules were evaluated, in particular, the classical markedly hypoechoic and modified markedly hypoechoic (decreased or similar echogenicity relative to the adjacent strap muscles). The sensitivity, specificity, and AUC of classical/modified markedly hypoechoic and the corresponding ACR-TIRADS, EU-TIRADS, and C-TIRADS categories were calculated and compared. The inter- and intraobserver variability in the evaluation of the main US features of the nodules was assessed. RESULTS: There were 264 malignant nodules and 767 benign nodules. Compared with classical markedly hypoechoic as a diagnostic criterion for malignancy, using modified markedly hypoechoic as the criterion resulted in a significant increase in sensitivity (28.03% vs. 63.26%) and AUC (0.598 vs. 0.741), despite a significant decrease in specificity (91.53% vs. 84.88%) (p < 0.001 for all). Compared to the AUC of the C-TIRADS with the classical markedly hypoechoic, the AUC of the C-TIRADS with the modified markedly hypoechoic increased from 0.878 to 0.888 (p = 0.01); however, the AUCs of the ACR-TIRADS and EU-TIRADS did not change significantly (p > 0.05 for both). There was substantial interobserver agreement (κ = 0.624) and perfect intraobserver agreement (κ = 0.828) for the modified markedly hypoechoic. CONCLUSION: The modified definition of markedly hypoechoic resulted in a significantly improved diagnostic efficacy in determining malignant thyroid nodules and may improve the diagnostic performance of the C-TIRADS. CLINICAL RELEVANCE STATEMENT: Our study found that, compared with the original definition, modified markedly hypoechoic significantly improved the diagnostic performance in differentiating malignant from benign thyroid nodules and the predictive efficacy of the risk stratification systems. KEY POINTS: • Compared with the classical markedly hypoechoic as a diagnostic criterion for malignancy, the modified markedly hypoechoic resulted in a significant increase in sensitivity and AUC. • The C-TIRADS with the modified markedly hypoechoic achieved higher AUC and specificity than that with the classical markedly hypoechoic (p = 0.01 and < 0.001, respectively).


Asunto(s)
Neoplasias de la Tiroides , Nódulo Tiroideo , Humanos , Nódulo Tiroideo/patología , Neoplasias de la Tiroides/patología , Ultrasonografía/métodos , Medición de Riesgo/métodos , Estudios Retrospectivos
9.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37373296

RESUMEN

Phosphorylation of the serine 139 of the histone variant H2AX (γH2AX) is a DNA damage marker that regulates DNA damage response and various diseases. However, whether γH2AX is involved in neuropathic pain is still unclear. We found the expression of γH2AX and H2AX decreased in mice dorsal root ganglion (DRG) after spared nerve injury (SNI). Ataxia telangiectasia mutated (ATM), which promotes γH2AX, was also down-regulated in DRG after peripheral nerve injury. ATM inhibitor KU55933 decreased the level of γH2AX in ND7/23 cells. The intrathecal injection of KU55933 down-regulated DRG γH2AX expression and significantly induced mechanical allodynia and thermal hyperalgesia in a dose-dependent manner. The inhibition of ATM by siRNA could also decrease the pain threshold. The inhibition of dephosphorylation of γH2AX by protein phosphatase 2A (PP2A) siRNA partially suppressed the down-regulation of γH2AX after SNI and relieved pain behavior. Further exploration of the mechanism revealed that inhibiting ATM by KU55933 up-regulated extracellular-signal regulated kinase (ERK) phosphorylation and down-regulated potassium ion channel genes, such as potassium voltage-gated channel subfamily Q member 2 (Kcnq2) and potassium voltage-gated channel subfamily D member 2 (Kcnd2) in vivo, and KU559333 enhanced sensory neuron excitability in vitro. These preliminary findings imply that the down-regulation of γH2AX may contribute to neuropathic pain.


Asunto(s)
Neuralgia , Traumatismos de los Nervios Periféricos , Animales , Ratones , Ganglios Espinales/metabolismo , Hiperalgesia/genética , Hiperalgesia/metabolismo , Neuralgia/etiología , Neuralgia/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Potasio/metabolismo , ARN Interferente Pequeño/metabolismo , Células Receptoras Sensoriales/metabolismo , Canales de Potasio Shal/metabolismo
10.
ACS Appl Mater Interfaces ; 15(13): 16482-16491, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36972557

RESUMEN

Chemodynamic therapy (CDT) relies on the transformation of intracellular hydrogen peroxide (H2O2) to hydroxyl radicals (·OH) with higher toxicity under the catalysis of Fenton/Fenton-like reagents, which amplifies the oxidative stress and induces significant cellular apoptosis. However, the CDT efficacy is generally limited by the overexpressed GSH and insufficient endogenous H2O2 in tumors. Co-delivery of Cu2+ and glucose oxidase (GOD) can lead to a Cu2+/Cu+ circulation to realize GSH depletion and amplify the Fenton-like reaction. pH-responsive metal-organic frameworks (MOFs) are the optical choice to deliver Fenton/Fenton-like ions to tumors. However, considering that the aqueous condition is requisite for GOD encapsulation, it is challenging to abundantly dope Cu2+ in ZIF-8 MOF nanoparticles in aqueous conditions due to the ease of precipitation and enlarged crystal size. In this work, a robust one-pot biomimetic mineralization method using excessive ligand precursors in aqueous conditions is developed to synthesize GOD@Cu-ZIF-8. Copper ions abundantly doped to the GOD@Cu-ZIF-8 can eliminate GSH to produce Cu+, which is further proceeded to the Fenton-like reaction in the presence of GOD-catalyzed H2O2. Through breaking the tumor microenvironment homeostasis and producing an enhanced CDT effect, the promising antitumor capability of GOD@Cu-ZIF-8 was evidenced by the experiments both in vitro and in vivo.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Glucosa Oxidasa , Peróxido de Hidrógeno , Homeostasis , Estrés Oxidativo , Línea Celular Tumoral , Microambiente Tumoral , Glutatión
11.
Nanomaterials (Basel) ; 13(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36839042

RESUMEN

Although colorectal cancer (CRC) is easy to treat surgically and can be combined with postoperative chemotherapy, its five-year survival rate is still not optimistic. Therefore, developing sensitive, efficient, and compliant detection technology is essential to diagnose CRC at an early stage, providing more opportunities for effective treatment and intervention. Currently, the widely used clinical CRC detection methods include endoscopy, stool examination, imaging modalities, and tumor biomarker detection; among them, blood biomarkers, a noninvasive strategy for CRC screening, have shown significant potential for early diagnosis, prediction, prognosis, and staging of cancer. As shown by recent studies, electrochemical biosensors have attracted extensive attention for the detection of blood biomarkers because of their advantages of being cost-effective and having sound sensitivity, good versatility, high selectivity, and a fast response. Among these, nano-conductive polymer materials, especially the conductive polymer polypyrrole (PPy), have been broadly applied to improve sensing performance due to their excellent electrical properties and the flexibility of their surface properties, as well as their easy preparation and functionalization and good biocompatibility. This review mainly discusses the characteristics of PPy-based biosensors, their synthetic methods, and their application for the detection of CRC biomarkers. Finally, the opportunities and challenges related to the use of PPy-based sensors for diagnosing CRC are also discussed.

12.
ACS Appl Mater Interfaces ; 15(9): 11575-11585, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36808954

RESUMEN

Chemodynamic therapy (CDT) based on the Fe2+-mediated Fenton reaction can amplify intracellular oxidative stress by producing toxic •OH. However, the high-dose need for Fe2+ delivery in tumors and its significant cytotoxicity to normal tissues set a challenge. Therefore, a controllable delivery to activate the Fenton reaction and enhance Fe2+ tumor accumulation has become an approach to solve this conflict. Herein, we report a rare-earth-nanocrystal (RENC)-based Fe2+ delivery system using light-control techniques and DNA nanotechnology to realize programmable Fe2+ delivery. Ferrocenes, the source of Fe2+, are modified on the surface of RENCs through pH-responsive DNAs, which are further shielded by a PEG layer to elongate blood circulation and "turn off" the cytotoxicity of ferrocene. The up-/down-conversion dual-mode emissions of RENCs endow the delivery system with both capabilities of diagnosis and delivery control. The down-conversion NIR-II fluorescence can locate tumors. Consequently, up-conversion UV light spatiotemporally activates the catalytic activity of Fe2+ by shedding off the protective PEG layer. The exposed ferrocene-DNAs not only can "turn on" Fenton catalytic activity but also respond to tumor acidity, driving cross-linking and enhanced Fe2+ enrichment in tumors by 4.5-fold. Accordingly, this novel design concept will be inspiring for developing CDT nanomedicines in the future.


Asunto(s)
Metales de Tierras Raras , Nanopartículas , Neoplasias , Humanos , Luminiscencia , Fluorescencia , Metalocenos , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Peróxido de Hidrógeno , Microambiente Tumoral
13.
Sci Total Environ ; 857(Pt 3): 159435, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36244490

RESUMEN

Anthropogenic emissions reduced sharply in the short-term during the coronavirus disease pandemic (COVID-19). As COVID-19 is still ongoing, changes in atmospheric aerosol loading over China and the factors of their variations remain unclear. In this study, we used multi-source satellite observations and reanalysis datasets to synergistically analyze the spring (February-May) evolution of aerosol optical depth (AOD) for multiple aerosol types over Eastern China (EC) before, during and after the COVID-19 lockdown period. Regional meteorological effects and the radiative response were also quantitatively assessed. Compared to the same period before COVID-19 (i.e., in 2019), a total decrease of -14.6 % in tropospheric TROPOMI nitrogen dioxide (NO2) and a decrease of -6.8 % in MODIS AOD were observed over EC during the lockdown period (i.e., in 2020). After the lockdown period (i.e., in 2021), anthropogenic emissions returned to previous levels and there was a slight increase (+2.3 %) in AOD over EC. Moreover, changes in aerosol loading have spatial differences. AOD decreased significantly in the North China Plain (-14.0 %, NCP) and Yangtze River Delta (-9.4 %) regions, where anthropogenic aerosol dominated the aerosol loading. Impacted by strong wildfires in Southeast Asia during the lockdown period, carbonaceous AOD increased by +9.1 % in South China, which partially offset the emission reductions. Extreme dust storms swept through the northern region in the period after COVID-19, with an increase of +23.5 % in NCP and + 42.9 % in Northeast China (NEC) for dust AOD. However, unfavorable meteorological conditions overwhelmed the benefits of emission reductions, resulting in a +20.1 % increase in AOD in NEC during the lockdown period. Furthermore, the downward shortwave radiative flux showed a positive anomaly due to the reduced aerosol loading in the atmosphere during the lockdown period. This study highlights that we can benefit from short-term controls for the improvement of air pollution, but we also need to seriously considered the cross-regional transport of natural aerosol and meteorological drivers.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Humanos , COVID-19/epidemiología , Pandemias , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Control de Enfermedades Transmisibles , Aerosoles y Gotitas Respiratorias , Contaminación del Aire/análisis , Polvo/análisis , Brotes de Enfermedades , China/epidemiología
14.
Nat Commun ; 13(1): 7948, 2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-36572677

RESUMEN

Magnetic resonance imaging (MRI) is a non-invasive imaging technology to diagnose health conditions, showing the weakness of low sensitivity. Herein, we synthesize a contrast agent, SPIO@SiO2@MnO2, which shows decreased T1 and T2 contrast intensity in normal physiological conditions. In the acid environment of tumor or inflamed tissue, the manganese dioxide (MnO2) layer decomposes into magnetically active Mn2+ (T1-weighted), and the T1 and T2 signals are sequentially recovered. In addition, both constrast quenching-activation degrees of T1 and T2 images can be accurately regulated by the silicon dioxide (SiO2) intermediate layer between superparamagnetic iron oxide (SPIO) and MnO2. Through the "dual-contrast enhanced subtraction" imaging processing technique, the contrast sensitivity of this MRI contrast agent is enhanced to a 12.3-time difference between diseased and normal tissue. Consequently, SPIO@SiO2@MnO2 is successfully applied to trace the tiny liver metastases of approximately 0.5 mm and monitor tissue inflammation.


Asunto(s)
Medios de Contraste , Neoplasias Hepáticas , Humanos , Compuestos de Manganeso , Dióxido de Silicio , Óxidos , Imagen por Resonancia Magnética/métodos , Neoplasias Hepáticas/secundario , Concentración de Iones de Hidrógeno
15.
Front Bioeng Biotechnol ; 10: 966866, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105599

RESUMEN

Spinal cord injury (SCI), which has no current cure, places a severe burden on patients. Stem cell-based therapies are considered promising in attempts to repair injured spinal cords; such options include neural stem cells (NSCs). NSCs are multipotent stem cells that differentiate into neuronal and neuroglial lineages. This feature makes NSCs suitable candidates for regenerating injured spinal cords. Many studies have revealed the therapeutic potential of NSCs. In this review, we discuss from an integrated view how NSCs can help SCI repair. We will discuss the sources and therapeutic potential of NSCs, as well as representative pre-clinical studies and clinical trials of NSC-based therapies for SCI repair.

16.
Food Res Int ; 159: 111601, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35940794

RESUMEN

This study determined the content of macronutrients and micronutrients to investigate the nutritional value and health benefits of six varieties of quinoa seeds and sprouts. Germination markedly increased the contents of proteins, reducing sugars, free amino acids, vitamins, and phytochemicals such as phenolic and carotenoid compounds, with variation among different quinoa varieties. Relatively high levels of 5-methyltetrahydrofolate (5-MTHF) were found in 6-day-old quinoa sprouts, especially in the LL-1 variety (1747.25 µg/100 g DW), followed by QL-2 sprouts (1501.67 µg/100 g DW). Furthermore, we examined the relative expression of genes involved in the folate biosynthetic pathway during QL-2 germination. The expression of the ADCS gene was upregulated 28.31-fold in 6-day-old sprouts, greatly facilitating folate synthesis. Pterin synthesis genes regulate the biosynthesis and further accumulation of folate by controlling pterin metabolic flux. Overall, the 6-day-old sprouts were recommended as a functional food with nutritional value and health benefits in dietary supplements.


Asunto(s)
Chenopodium quinoa , Chenopodium quinoa/química , Fenoles/análisis , Semillas/química , Tetrahidrofolatos/análisis , Tetrahidrofolatos/metabolismo
17.
ACS Appl Mater Interfaces ; 14(28): 31677-31688, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35786850

RESUMEN

Magnetic resonance-guided focused ultrasound (MRgFUS) is a promising non-invasive surgical technique with spatial specificity and minimal off-target effects. Despite the expanding clinical applications, the major obstacles associated with MRgFUS still lie in low magnetic resonance imaging (MRI) sensitivity and safety issues. High ultrasound power is required to resist the energy attenuation during the delivery to the tumor site and may cause damage to the surrounding healthy tissues. Herein, a surface modification strategy is developed to simultaneously strengthen MRI and ultrasound ablation of MRgFUS by prolonging Fe3O4 nanoparticles' blood circulation and tumor-environment-triggered accumulation and retention at the tumor site. Specifically, reactive oxygen species-labile methoxy polyethylene glycol and pH-responsive DNA cross-linkers are modified on the surface of Fe3O4 nanoparticles, which can transform nanoparticles into aggregations through the cascade responsive reactions at the tumor site. Notably, DNA is selected as the pH-responsive cross-linker because of its superior biocompatibility as well as the fast and sensitive response to the weak acidity of 6.5-6.8, corresponding to the extracellular pH of tumor tissues. Due to the significantly enhanced delivery and retention amount of Fe3O4 nanoparticles at the tumor site, the MRI sensitivity was enhanced by 1.7-fold. In addition, the ultrasound power was lowered by 35% to reach a sufficient thermal ablation effect. Overall, this investigation demonstrates a feasible resolution to promote the MRgFUS treatment by enhancing the therapeutic efficacy and reducing the side effects, which will be helpful to guide the clinical practice in the future.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Nanopartículas de Magnetita , ADN , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética
18.
Front Immunol ; 13: 820336, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663966

RESUMEN

The continuous spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) around the world has raised unprecedented challenges to the human society. Antibodies and nanobodies possessing neutralization activity represent promising drug candidates. In this study, we report the identification and characterization of a potent SARS-CoV-2 neutralizing nanobody that targets the viral spike receptor-binding domain (S-RBD). The nanobody, termed as Nb-007, engages SARS-CoV-2 S-RBD with the two-digit picomolar binding affinity and shows outstanding virus entry-inhibition activity. The complex structure of Nb-007 bound to SARS-CoV-2 S-RBD reveals an epitope that is partially overlapping with the binding site for the human receptor of angiotensin-converting enzyme 2 (ACE2). The nanobody therefore exerts neutralization by competing with ACE2 for S-RBD binding, which is further ascertained by our in-vitro biochemical analyses. Finally, we also show that Nb-007 reserves promising, though compromised, neutralization activity against the currently-circulating Delta variant and that fusion of the nanobody with Fc dramatically increases its entry-inhibition capacity. Taken together, these data have paved the way of developing Nb-007 as a drug-reserve for potential treatment of SARS-CoV-2 related diseases.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Receptores Virales/metabolismo , Glicoproteína de la Espiga del Coronavirus
19.
J Mater Chem B ; 10(37): 7281-7308, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35688128

RESUMEN

Soft tissue damage is a common clinical problem that affects the lives of a large number of patients all over the world. It is of great importance to develop functional scaffolds to manipulate and promote the repair and regeneration of soft tissues. Owing to their unique composition and structural properties, electrospun nanofibers have attracted much attention for soft tissue regeneration. Electrospun nanofibers can be easily constructed and functionally modified to regulate their composition, morphology, structure, three-dimensional architecture, and biological functions, as well as specific light/electric/magnetic properties. By integrating multiple types of guidance cues, such as topographical and biochemical cues and external stimuli, electrospun nanofiber scaffolds can be used to manipulate cell behaviors and thus facilitate tissue regeneration. In this review article, we have first described the construction of electrospun nanofibers with specific morphology and topography and their capability of modulating cell migration, cell morphology, and stem cell differentiation. We have then discussed the role of electrospun nanofiber scaffolds in promoting the regeneration of different types of soft tissues, including nerves, skin, heart, blood vessels, and cornea, from the point of view of the anatomical structures and physiological regeneration processes of tissues. By presenting and discussing the recent progress of electrospun nanofibers in manipulating soft tissue regeneration, we hope to provide a possible solution and reference for the repair of tissue damage in clinical practice.


Asunto(s)
Nanofibras , Humanos , Nanofibras/química , Andamios del Tejido/química , Cicatrización de Heridas
20.
Emerg Microbes Infect ; 11(1): 1920-1935, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35757908

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and related sarbecoviruses enter host cells by receptor-recognition and membrane-fusion. An indispensable step in fusion is the formation of 6-helix bundle by viral spike heptad repeats 1 and 2 (HR1 and HR2). Here, we report the construction of 5-helix bundle (5HB) proteins for virus infection inhibition. The optimal construct inhibits SARS-CoV-2 pseudovirus entry with sub-micromolar IC50. Unlike HR2-based peptides that cannot bind spike in the pre-fusion conformation, 5HB features with the capability of binding to pre-fusion spike. Furthermore, 5HB binds viral HR2 at both serological- and endosomal-pH, highlighting its entry-inhibition capacity when SARS-CoV-2 enters via either cell membrane fusion or endosomal route. Finally, we show that 5HB could neutralize S-mediated entry of the predominant SARS-CoV-2 variants and a wide spectrum of sarbecoviruses. These data provide proof-of-concept evidence that 5HB might be developed for the prevention and treatment of SARS-CoV-2 and other emerging sarbecovirus infections.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Concentración de Iones de Hidrógeno , Glicoproteínas de Membrana/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...