Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
BMC Genomics ; 25(1): 560, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840265

RESUMEN

BACKGROUND: Nitzschia closterium f. minutissima is a commonly available diatom that plays important roles in marine aquaculture. It was originally classified as Nitzschia (Bacillariaceae, Bacillariophyta) but is currently regarded as a heterotypic synonym of Phaeodactylum tricornutum. The aim of this study was to obtain the draft genome of the marine microalga N. closterium f. minutissima to understand its phylogenetic placement and evolutionary specialization. Given that the ornate hierarchical silicified cell walls (frustules) of diatoms have immense applications in nanotechnology for biomedical fields, biosensors and optoelectric devices, transcriptomic data were generated by using reference genome-based read mapping to identify significantly differentially expressed genes and elucidate the molecular processes involved in diatom biosilicification. RESULTS: In this study, we generated 13.81 Gb of pass reads from the PromethION sequencer. The draft genome of N. closterium f. minutissima has a total length of 29.28 Mb, and contains 28 contigs with an N50 value of 1.23 Mb. The GC content was 48.55%, and approximately 18.36% of the genome assembly contained repeat sequences. Gene annotation revealed 9,132 protein-coding genes. The results of comparative genomic analysis showed that N. closterium f. minutissima was clustered as a sister lineage of Phaeodactylum tricornutum and the divergence time between them was estimated to be approximately 17.2 million years ago (Mya). CAFF analysis demonstrated that 220 gene families that significantly changed were unique to N. closterium f. minutissima and that 154 were specific to P. tricornutum, moreover, only 26 gene families overlapped between these two species. A total of 818 DEGs in response to silicon were identified in N. closterium f. minutissima through RNA sequencing, these genes are involved in various molecular processes such as transcription regulator activity. Several genes encoding proteins, including silicon transporters, heat shock factors, methyltransferases, ankyrin repeat domains, cGMP-mediated signaling pathways-related proteins, cytoskeleton-associated proteins, polyamines, glycoproteins and saturated fatty acids may contribute to the formation of frustules in N. closterium f. minutissima. CONCLUSIONS: Here, we described a draft genome of N. closterium f. minutissima and compared it with those of eight other diatoms, which provided new insight into its evolutionary features. Transcriptome analysis to identify DEGs in response to silicon will help to elucidate the underlying molecular mechanism of diatom biosilicification in N. closterium f. minutissima.


Asunto(s)
Diatomeas , Perfilación de la Expresión Génica , Filogenia , Diatomeas/genética , Diatomeas/metabolismo , Diatomeas/clasificación , Genoma , Transcriptoma , Anotación de Secuencia Molecular
2.
Medicine (Baltimore) ; 103(19): e38144, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728457

RESUMEN

Papillary thyroid carcinoma (PTC) prognosis may be deteriorated due to the metastases, and anoikis palys an essential role in the tumor metastasis. However, the potential effect of anoikis-related genes on the prognosis of PTC was unclear. The mRNA and clinical information were obtained from the cancer genome atlas database. Hub genes were identified and risk model was constructed using Cox regression analysis. Kaplan-Meier (K-M) curve was applied for the survival analysis. Immune infiltration and immune therapy response were calculated using CIBERSORT and TIDE. The identification of cell types and cell interaction was performed by Seurat, SingleR and CellChat packages. GO, KEGG, and GSVA were applied for the enrichment analysis. Protein-protein interaction network was constructed in STRING and Cytoscape. Drug sensitivity was assessed in GSCA. Based on bulk RNA data, we identified 4 anoikis-related risk signatures, which were oncogenes, and constructed a risk model. The enrichment analysis found high risk group was enriched in some immune-related pathways. High risk group had higher infiltration of Tregs, higher TIDE score and lower levels of monocytes and CD8 T cells. Based on scRNA data, we found that 4 hub genes were mainly expressed in monocytes and macrophages, and they interacted with T cells. Hub genes were significantly related to immune escape-related genes. Drug sensitivity analysis suggested that cyclin dependent kinase inhibitor 2A may be a better chemotherapy target. We constructed a risk model which could effectively and steadily predict the prognosis of PTC. We inferred that the immune escape may be involved in the development of PTC.


Asunto(s)
Anoicis , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Humanos , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/patología , Anoicis/genética , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Pronóstico , Análisis de la Célula Individual/métodos , Análisis de Secuencia de ARN , Mapas de Interacción de Proteínas/genética , Femenino , Masculino , Estimación de Kaplan-Meier , Regulación Neoplásica de la Expresión Génica , Perfilación de la Expresión Génica/métodos
3.
J Hazard Mater ; 470: 134293, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38615646

RESUMEN

Imidacloprid enters the water environment through rainfall and causes harm to aquatic crustaceans. However, the potential chronic toxicity mechanism of imidacloprid in crayfish has not been comprehensively studied. In this study, red claw crayfish (Cherax quadricarinatus) were exposed to 11.76, 35.27, or 88.17 µg/L imidacloprid for 30 days, and changes in the physiology and biochemistry, gut microbiota, and transcriptome of C. quadricarinatus and the interaction between imidacloprid, gut microbiota, and genes were studied. Imidacloprid induced oxidative stress and decreased growth performance in crayfish. Imidacloprid exposure caused hepatopancreas damage and decreased serum immune enzyme activity. Hepatopancreatic and plasma acetylcholine decreased significantly in the 88.17 µg/L group. Imidacloprid reduced the diversity of the intestinal flora, increased the abundance of harmful flora, and disrupted the microbiota function. Transcriptomic analysis showed that the number of up-and-down-regulated differentially expressed genes (DEGs) increased significantly with increasing concentrations of imidacloprid. DEG enrichment analyses indicated that imidacloprid inhibits neurotransmitter transduction and immune responses and disrupts energy metabolic processes. Crayfish could alleviate imidacloprid stress by regulating antioxidant and detoxification-related genes. A high correlation was revealed between GST, HSPA1s, and HSP90 and the composition of gut microorganisms in crayfish under imidacloprid stress. This study highlights the negative effects and provides detailed sequencing data from transcriptome and gut microbiota to enhance our understanding of the molecular toxicity of imidacloprid in crustaceans.


Asunto(s)
Astacoidea , Microbioma Gastrointestinal , Neonicotinoides , Nitrocompuestos , Transcriptoma , Contaminantes Químicos del Agua , Animales , Neonicotinoides/toxicidad , Astacoidea/efectos de los fármacos , Astacoidea/genética , Microbioma Gastrointestinal/efectos de los fármacos , Nitrocompuestos/toxicidad , Transcriptoma/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Insecticidas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Hepatopáncreas/efectos de los fármacos , Hepatopáncreas/metabolismo
4.
Sci Total Environ ; 919: 170762, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38340862

RESUMEN

Microbial remediation of oil-contaminated groundwater is often limited by the low temperature and lack of nutrients in the groundwater environment, resulting in low degradation efficiency and a short duration of effectiveness. In order to overcome this problem, an immobilized composite microbial material and two types of slow release agents (SRA) were creatively prepared. Three oil-degrading bacteria, Serratia marcescens X, Serratia sp. BZ-L I1 and Klebsiella pneumoniae M3, were isolated from oil-contaminated groundwater, enriched and compounded, after which the biodegradation rate of the Venezuelan crude oil and diesel in groundwater at 15 °C reached 63 % and 79 %, respectively. The composite microbial agent was immobilized on a mixed material of silver nitrate-modified zeolite and activated carbon with a mass ratio of 1:5, which achieved excellent oil adsorption and water permeability performance. The slow release processes of spherical and tablet SRAs (SSRA, TSRA) all fit well with the Korsmeyer-Peppas kinetic model, and the nitrogen release mechanism of SSRA N2 followed Fick's law of diffusion. The highest oil removal rates by the immobilized microbial material combined with SSRA N2 and oxygen SRA reached 94.9 % (sand column experiment) and 75.1 % (sand tank experiment) during the 45 days of remediation. Moreover, the addition of SRAs promoted the growth of oil-degrading bacteria based on microbial community analysis. This study demonstrates the effectiveness of using immobilized microbial material combined with SRAs to achieve a high efficiency and long-term microbial remediation of oil contaminated shallow groundwater.


Asunto(s)
Agua Subterránea , Microbiota , Contaminantes Químicos del Agua , Arena , Biodegradación Ambiental , Bacterias/metabolismo , Agua Subterránea/microbiología , Contaminantes Químicos del Agua/análisis
5.
Front Microbiol ; 15: 1319895, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38343715

RESUMEN

In recent years, the problems associated with continuous cropping (CC) that cause soil degradation have become increasingly serious. As a key soil quality property, dissolved organic matter (DOM) affects the circulation of carbon and nutrients and the composition of bacterial communities in soil. However, research on the changes in the molecular composition of DOM after CC is limited. In this study, the soil chemical properties, DOM chemical diversity, bacterial community structure, and their interactions are explored in the soil samples from different CC years (CC1Y, CC3Y, CC5Y, and CC7Y) of tobacco. With increasing CC year of tobacco, most of the soil chemical properties, such as total carbon, total nitrogen and organic matter, decreased significantly, while dissolved organic carbon first decreased and then increased. Likewise, the trends of DOM composition differed with changing duration of CC, such as the tannin compounds decreased from 18.13 to 13.95%, aliphatic/proteins increased from 2.73 to 8.85%. After 7 years of CC, the soil preferentially produced compounds with either high H/C ratios (H/C > 1.5), including carbohydrates, lipids, and aliphatic/proteins, or low O/C ratios (O/C < 0.1), such as unsaturated hydrocarbons. Furthermore, core microorganisms, including Nocardioides, wb1-P19, Aquabacterium, Methylobacter, and Thiobacillus, were identified. Network analysis further indicated that in response to CC, Methylobacter and Thiobacillus were correlated with the microbial degradation and transformation of DOM. These findings will improve our understanding of the interactions between microbial community and DOM in continuous cropping soil.

6.
Fish Shellfish Immunol ; 147: 109437, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38360192

RESUMEN

Antimicrobial peptides (AMPs), which are widely present in animals and plants, have a broad distribution, strong broad-spectrum antibacterial activity, low likelihood of developing drug resistance, high thermal stability and antiviral properties. The present study investigated the effects of adding AMPs from Hermetia illucens larvae on the growth performance, muscle composition, antioxidant capacity, immune response, gene expression, antibacterial ability and intestinal microbiota of Cherax quadricarinatus (red claw crayfish). Five experimental diets were prepared by adding 50 (M1), 100 (M2), 150 (M3) and 200 (M4) mg/kg of crude AMP extract from H. illucens larvae to the basal diet feed, which was also used as the control (M0). After an eight-week feeding experiment, it was discovered that the addition of 100-150 mg/kg of H. illucens larvae AMPs to the feed significantly improved the weight gain rate and specific growth rate of C. quadricarinatus. Furthermore, the addition of H. illucens larvae AMPs to the feed had no significant effect on the moisture content, crude protein, crude fat and ash content of the C. quadricarinatus muscle. The addition of 100-150 mg/kg of H. illucens larvae AMPs in the feed also increased the antioxidant capacity, nonspecific immune enzyme activity and related gene expression levels in C. quadricarinatus, thereby enhancing their antioxidant capacity and immune function. The H. illucens larvae AMPs improved the structure and composition of the intestinal microbiota of C. quadricarinatus, increasing the microbial community diversity of the crayfish gut. Finally, the addition of 100-150 mg/kg of H. illucens larvae AMPs in the feed enhanced the resistance of C. quadricarinatus against Aeromonas hydrophila, improving the survival rate of the crayfish. Based on the aforementioned findings, it is recommended that H. illucens larvae AMPs be incorporated into the C. quadricarinatus feed at a concentration of 100-150 mg/kg.


Asunto(s)
Dípteros , Microbioma Gastrointestinal , Animales , Larva/microbiología , Astacoidea , Aeromonas hydrophila/genética , Péptidos Antimicrobianos , Antioxidantes , Dieta , Expresión Génica , Antibacterianos
7.
Fish Shellfish Immunol ; 145: 109363, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38185392

RESUMEN

Astaxanthin is one of the important immunopotentators in aquaculture. However, little is known about the physiological changes and stress resistance effects of astaxanthin in marine gastropods. In this study, the effects of different astaxanthin concentrations (0, 25, 50, 75, and 100 mg/kg) on the growth, muscle composition, immune function, and resistance to ammonia stress in Babylonia areolata were investigated after three months of rearing. With the increase in astaxanthin content, the weight gain rate (WGR), specific growth rate (SGR), and survival rate (SR) of B. areolata showed an increasing trend. The 75-100 mg/kg group was significantly higher than the control group (0 mg/kg). There was no significant difference in the flesh shell ratio (FSR), viscerosomatic index (VSI), and soft tissue index (STI) of the experimental groups. Astaxanthin (75 mg/kg) significantly increased muscle crude protein content and increased hepatopancreas alkaline phosphatase (AKP), superoxide dismutase (SOD), and catalase (CAT) activity. Astaxanthin (75-100 mg/kg) significantly increased the total antioxidant capacity (T-AOC) and acid phosphatase (ACP) of the hepatopancreas and decreased the malondialdehyde (MDA) content of B. areolata. Astaxanthin significantly induced the expression levels of functional genes, such as SOD, Cu/ZnSOD, ferritin, ACP, and CYC in hepatopancreas and increased the survival rate of B. areolata under ammonia stress. The addition of 75-100 mg/kg astaxanthin to the feed improved the growth performance, muscle composition, immune function, and resistance to ammonia stress of B. areolata.


Asunto(s)
Amoníaco , Gastrópodos , Animales , Dieta , Antioxidantes/metabolismo , Gastrópodos/metabolismo , Inmunidad Innata , Expresión Génica , Músculos/metabolismo , Superóxido Dismutasa/metabolismo , Alimentación Animal/análisis , Suplementos Dietéticos , Xantófilas
8.
Fish Shellfish Immunol ; 145: 109288, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38104697

RESUMEN

This study aimed to evaluate the potential benefits of chitosan oligosaccharide (COS) on red claw crayfish (Cherax quadricarinatus) and explore its underlying mechanisms. The crayfish were randomly divided into six groups, and the diets were supplemented with COS at levels of 0 (C0), 0.2 (C1), 0.4 (C2), 0.6 (C3), 0.8 (C4), and 1 (C5) g kg-1. Treatment with COS significantly improved the growth performance of the crayfish with a higher weight gain rate (WGR) and specific growth rate (SGR) in the C2 group compared to the C0 group. Additionally, the content of crude protein in the crayfish muscles in the C1 group was significantly higher than that of the C0 group. Regarding non-specific immunity, the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and alkaline phosphatase (AKP), and the levels of expression of the genes related to immunity (SOD; anti-lipopolysaccharide factor [ALF]; thioredoxin1 [Trx1]; C-type lysozyme, [C-LZM]; and GSH-Px) in the hepatopancreas and hemolymph increased significantly (P < 0.05) after supplementation with 0.4 g kg-1 of COS, while the content of malondialdehyde (MDA) decreased (P < 0.05). The survival rate of C. quadricarinatus increased (P < 0.05) in the C2, C3, C4, and C5 groups after the challenge with Aeromonas hydrophila. This study found that COS has the potential to modulate the composition of the intestinal microbiota and significantly reduce the abundance of species of the phylum Proteobacteria and the genera Aeromonas and Vibrio in the gut of C. quadricarinatus, while the abundance of bacteria in the phylum Firmicutes and the genus Candidatus_Hepatoplasma improved significantly. This study suggests that the inclusion of COS in the diet of C. quadricarinatus can enhance growth, boost immunity, and increase resistance to infection with A. hydrophila, especially when supplemented at 0.4-0.8 g kg-1.


Asunto(s)
Quitosano , Microbioma Gastrointestinal , Animales , Astacoidea , Quitosano/farmacología , Dieta , Suplementos Dietéticos/análisis , Superóxido Dismutasa/metabolismo , Oligosacáridos/farmacología , Inmunidad Innata , Alimentación Animal/análisis
9.
Medicine (Baltimore) ; 102(46): e35923, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37986376

RESUMEN

This study focused on screening novel markers associated with cellular senescence for predicting the prognosis of breast cancer. The RNA-seq expression profile of BRCA and clinical data were obtained from TCGA. The pam algorithm was used to cluster patients based on senescence-related genes. The weighted gene co-expression network analysis was used to identify co-expressed genes, and LASSO-Cox analysis was performed to build a risk prognosis model. The performance of the model was also evaluated. We additionally explored the role of senescence in cancer development and possible regulatory mechanism. The patients were clustered into 2 subtypes. A total of 5259 genes significantly related to senescence were identified by weighted gene co-expression network analysis. LASSO-Cox finally established a 6-signature risk model (ADAMTS8, DCAF12L2, PCDHA10, PGK1, SLC16A2, and TMEM233) that exhibited favorable and stable performance in our training, validation, and whole BRCA datasets. Furthermore, the superiority of our model was also observed after comparing it to other published models. The 6-signature was proved to be an independent risk factor for prognosis. In addition, mechanism prediction implied the activation of glycometabolism processes such as glycolysis and TCA cycle under the condition of senescence. Glycometabolism pathways were further found to negatively correlate with the infiltration level of CD8 T-cells and natural killer cells but positively correlate with M2 macrophage infiltration and expressions of tissue degeneration biomarkers, which suggested the deficit immune surveillance and risk of tumor migration. The constructed 6-gene model based on cellular senescence could be an effective indicator for predicting the prognosis of BRCA.


Asunto(s)
Neoplasias de la Mama , Simportadores , Humanos , Femenino , Neoplasias de la Mama/genética , Pronóstico , Senescencia Celular/genética , Algoritmos , Linfocitos T CD8-positivos , Proteínas ADAMTS , Transportadores de Ácidos Monocarboxílicos
10.
Antioxidants (Basel) ; 12(10)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891881

RESUMEN

Alpinia oxyphylla is a homology of medicine and food. This study aims to investigate the dominant chemical composition and explore the antioxidant properties of the ethanol extract of the leaves and stems of A. oxyphylla (AOE) on juvenile shrimp, Litopenaeus vannamei. An in vitro test showed that AOE and its dominant chemical composition procyanidin B-2 (1) and epicatechin (2) presented DPPH and ABTS radical scavenging activities. A shrimp feeding supplement experiment revealed that shrimp growth parameters and muscle composition were improved significantly when fed with a 200 mg/Kg AOE additive. Meanwhile, the activities of antioxidant enzymes (CAT, GSH-Px, SOD, and T-AOC) in serum and the liver and the expression of related genes (LvMn-SOD, LvCAT, LvproPo, and LvGSH-Px) were enhanced with various degrees in different AOE additive groups while the content of MDA was significantly decreased. Moreover, the antioxidative effect of AOE additive groups on shrimp was also observed in an acute ammonia nitrogen stress test.

11.
Fish Shellfish Immunol ; 141: 109050, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37666313

RESUMEN

4-Nonylphenol (4-NP) is one of the common endocrine-disrupting chemicals (EDCs) in estuaries and coastal zones, which can exert detrimental effects on the physiological function of aquatic organisms. However, the molecular response triggered by 4-NP remains largely unknown in Pacific white shrimp (Litopenaeus vannamei). In this study, transcriptomic analysis was performed to investigate the underlying mechanisms of 4-NP toxicity in the hepatopancreas of L. vannamei. Nine RNA-Seq libraries were generated from L. vannamei at 0 h, 24 h, and 48 h following exposure to 4-NP. Compared with 0 h vs 24 h, 962 up- and 463 down-regulated differentially expressed genes (DEGs) were identified, indicating that many genes in L. vannamei were induced to resist adverse circumstances by 4-NP exposure. In contrast, 902 up- and 1027 down-regulated DEGs were revealed in the comparison of 0 h vs 48 h, demonstrating that prolonged exposure to the stress from 4-NP resulted in more inhibited genes. To validate the accuracy of the transcriptome data, eight DEGs were selected for quantitative real-time polymerase chain reaction (qRT-PCR), which were consistent with the RNA-Seq results. Through KEGG pathway enrichment analysis, three specific pathways related to hormonal effects and endocrine function of L. vannamei were enriched significantly, including tyrosine metabolism, insect hormone biosynthesis, and melanogenesis. After 4-NP stress, genes involved in tyrosine metabolism (Tyr) and melanogenesis pathway (AC, CBP, Wnt, Frizzled, Tcf, and Ras) were induced to promote melanin pigment to help shrimp resist adverse environments. In the insect hormone biosynthesis, ALDH, CYP15A1, CYP15A1/C1, and JHE genes were activated to synthesize juvenile hormone (JH), while Spook, Phm, Sad, and CYP18A1 were induced to generate molting hormone. There is an enhanced interaction between the molting hormone and JH, with JH playing a dominant role and maintaining its "classic status quo action". Our study demonstrated that 4-NP exposure led to impairments of biological functions in L. vannamei hepatopancreas. The genes and pathways identified provide novel insights into the molecular mechanisms underlying 4-NP toxicity effects in prawns and enrich the information on the toxicity mechanism of crustaceans in response to EDCs exposure.


Asunto(s)
Hepatopáncreas , Penaeidae , Animales , Hepatopáncreas/metabolismo , Ecdisona/análisis , Ecdisona/metabolismo , Ecdisona/farmacología , Perfilación de la Expresión Génica , Transcriptoma , Penaeidae/fisiología , Tirosina/metabolismo
12.
Environ Sci Pollut Res Int ; 30(47): 104135-104147, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37698794

RESUMEN

Due to natural agents and human activities, large quantities of microplastics enter the marine environment. As an emerging pollutant, MPs have attracted worldwide attention and become a great challenge in recent years. Sodium alginate is a kind of natural polysaccharide with non-toxic, stability, and low cost. In this study, sodium alginate sponge was prepared by secondary freeze-drying technology. Alginate sponge contains a large number of hydrophilic groups; thus, alginate sponge has super water-absorbed (the water absorption rate range from 1193-5232%). Meanwhile, the alginate sponge has high porosity of 81.93% and excellent mechanical properties. The removal efficiency of 100 mg·L-1 microplastics by alginate sponge reached up to 92.3%. The 1 mg·L-1 and 10 mg·L-1 microplastics can be completely absorbed in 27 h and 60 h, respectively. The adsorption mechanism of microplastics adsorbed onto alginate sponge included intra-particle diffusion, hydrogen bonds interactions, and π-π interactions. In addition, the adsorption of MPs loaded Cu2+/Na+ by sponge in complex aqueous environments is still significant. This study expands the development prospect of sodium alginate sponge materials in the field of water treatment and provides a new green approach for the removal of microplastics.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Plásticos/química , Alginatos/química , Porosidad , Contaminantes Químicos del Agua/análisis , Adsorción
13.
Animals (Basel) ; 13(17)2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37684985

RESUMEN

Escherichia coli (EC), Staphylococcus aureus (SA), Bacillus subtilis (BS), Rhodopseudomonas palustris (RP), Saccharomyces cerevisiae (SC) and Lactobacillus plantarum (LP) were selected as feed additives for black soldier fly (Hermetia illucens) by tracking the growth performance, proximate composition, digestive ability and antibacterial peptides (AMPs) content in the first trial. Microorganism efficiency screening results showed that RP could improve growth performance, digestive ability and AMP content of H. illucens. Therefore, RP was selected to prepare the diets and was incorporated into diets for H. illucens at levels of 0 (R0), 1.22 × 106 (R1), 1.22 × 107 (R2), 1.22 × 108 (R3), 1.22 × 109 (R4) and 1.22 × 1010 (R5) CFU/g. After 5 d of feeding, larvae fed the R2-R5 diets had higher weight gain and specific growth rates. Different concentrations of RP had no significant effect on larval body composition. R4-R5 could improve the digestibility and expression of AMPs in larvae. Moreover, RP could significantly increase the abundance of Lactobacillus and Rhodopseudomonas and decrease the abundance of Proteus and Corynebacterium. Therefore, RP is superior to the other strains as a feed additive for H. illucens larvae, and we recommend the addition of 1.22 × 109-1.22 × 1010 CFU/g RP to promote the growth and AMP content of H. illucens.

14.
Chemosphere ; 338: 139540, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37480960

RESUMEN

In the Fenton-like processes, the resources that exist in the system itself (e.g., dissolved oxygen, electron-rich pollutants) are often overlooked. Herein, a novel CuCo-LDO/CN composite catalyst with a strong "metal-π" effect was fabricated by in situ calcination which could activate dissolved oxygen to generate active oxygen species and degrade the electron-rich pollutants directly. The CuCo-LDO/CN (1:10) with the largest specific surface aera, most C-O-M bonds and least oxygen vacancies exhibited the best catalytic performance for tetracycline (TC)degradation (TC removal efficiency 93.2% and mineralization efficiency 40%, respectively, after 40 min at neutral pH) compared to CuCo-LDO and other CuCo-LDO/CN composite catalysts. In the absence of H2O2, dissolved oxygen could be activated by the catalyst to generate O2·-and ·OH, which contributed to approximately 20.7% of TC degradation, providing a faster and cost-effective way for TC removal from wastewater. While in the presence of H2O2, it was activated by CuCo-LDO/CN to generate·OH as the dominant reactive oxygen species and meanwhile TC transferred electrons to H2O2 through C-O-M bonds, accelerating the Cu+/Cu2+ and Co2+/Co3+ redox cycles. The possible degradation pathways of TC were proposed, and the environmental hazard of TC is greatly mitigated according to toxicity prediction.


Asunto(s)
Contaminantes Ambientales , Compuestos Heterocíclicos , Peróxido de Hidrógeno/química , Oxígeno , Antibacterianos , Tetraciclina/química , Catálisis
15.
Chemosphere ; 333: 138868, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37160170

RESUMEN

Chemical fingerprinting is essential for identifying the presence and responding to oil spills that frequently contaminate the groundwater environment of refineries. In this study, crude oil and oil products from the atmospheric and vacuum distillation units of a refinery were analyzed by gas chromatography-mass spectrometry (GC-MS) to evaluate their chemical variability before and after refinery. A series of experiments involving evaporation and soil column penetration were conducted to simulate refined oil spilling into groundwater and determine appropriate characteristic ratios (CRs) for principal component analysis (PCA) for oil source identification. The simulated study demonstrated that all products had bell-shaped n-alkane distributions, with dominant peaks that remained unchanged or shifted towards longer chain lengths compared to the source oil. Similarly, naphthalene and dibenzothiophene series remained the main PAH components like the source oil. Ten relatively stable CRs were selected for PCA to identify different oil products through the simulated experiments. The chosen CRs were then utilized to identify the sources for two groundwater oil spills recently occurred, one that occurred in an oil depot area, and another near a continuous catalytic reforming unit in a refinery. This study showed that the components with long-chain n-alkanes (n ≥ C18), pristane, phytane, and phenanthrene and dibenzothiophene series PAHs played an important role in the identification of refined oil products spilling into the groundwater environment. The selected CRs provide an effective tool for rapid and accurate identification of oil spills, especially for newly occurring spills in the groundwater environment, which can aid in developing appropriate response strategies.


Asunto(s)
Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Aceites/química , Petróleo/análisis , Tiofenos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Alcanos , Contaminación por Petróleo/análisis
16.
Chemosphere ; 330: 138619, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37031841

RESUMEN

Biodegradable candelilla wax (CW) was creatively used for hydrophobic modification of coal fly ash cenospheres (FACs), a waste product from thermal power plants, and a new spherical hollow particulate adsorbent with fast oil adsorption rate and easy agglomeration was prepared. CW was confirmed to physically coat FACs and the optimum mass of wax added to 3 g of FACs was 0.05 g. From a series of batch scale experiments, CW-FACs were found to adsorb oil, reaching adsorption efficiency of 80.6% within 10 s, and aggregate into floating clumps which were easily removed from the water's surface. The oil adsorption efficiency was highly dependent on hydrophobicity of the used adsorbent, the adsorption of Venezuela oil onto CW-FACs was found to be a homogenous monolayer, and the capacity and intensity of the adsorption decreased as temperature increased from 10 to 40 °C. The Langmuir isotherm model was the best fit, with the maximum adsorption capacity achieved at 649.38 mg/g. CW-FACs were also found to be highly stable in concentrated acid, alkaline and salt solutions, as well as for spills of different oil products. Furthermore, the retention rate of the oil adsorption capacity of the CW-FACs after 6 cycles of adsorption-extraction was as high as 93.2%. Therefore, CW-FACs can be widely used, easily recycled, and reused for marine oil spill remediation, which is also a good alternative disposal solution for FACs.


Asunto(s)
Contaminación por Petróleo , Contaminantes Químicos del Agua , Ceniza del Carbón/química , Carbón Mineral , Contaminantes Químicos del Agua/análisis , Compuestos Orgánicos , Adsorción
17.
Environ Res ; 223: 115465, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36773642

RESUMEN

Bioaugmentation (BA) of oil-contaminated soil by immobilized microorganisms is considered to be a promising technology. However, available high-efficiency microbial agents remain very limited. Therefore, we prepared a SA/GO/C5 immobilized gel pellets by embedding the highly efficient crude oil degrading bacteria Bacillus C5 in the SA/GO composite material. The optimum preparation conditions of SA/GO/C5 immobilized gel pellets were: SA 3.0%, GO 25.0 µg/mL, embedding amount of C5 6%, water bath temperature of 50°C, CaCl2 solution concentration 3% and cross-linking time 20 h. BA experiments were carried out on crude oil contaminated soil to explore the removal effect of SA/GO/C5 immobilized pellets. The results showed that the SA/GO/C5 pellets exhibited excellent mechanical strength and specific surface area, which facilitated the attachment and growth of the Bacillus C5. Compared with free bacteria C5, the addition of SA/GO/C5 significantly promoted the removal of crude oil in soil, reaching 64.92% after 30 d, which was 2.1 times the removal rate of C5. The addition of SA/GO/C5 promoted the abundance of soil exogenous Bacillus C5 and indigenous crude oil degrading bacteria Alcanivorax and Marinobacter. In addition, the enrichment of hydrocarbon degradation-related functional abundance was predicted by PICRUSt2 in the SA/GO/C5 treatment group. This study demonstrated that SA/GO/C5 is an effective method for remediating crude oil-contaminated soil, providing a basis and option for immobilized microorganisms bioaugmentation to remediate organic contaminated soil.


Asunto(s)
Bacillus , Microbiota , Petróleo , Contaminantes del Suelo , Bacillus/metabolismo , Biodegradación Ambiental , Petróleo/metabolismo , Hidrocarburos , Contaminantes del Suelo/análisis , Bacterias/metabolismo , Suelo/química , Microbiología del Suelo
18.
Mol Phylogenet Evol ; 182: 107734, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36804428

RESUMEN

Identifying cryptic species is important for the assessments of biodiversity. Further, untangling mechanisms underlying the origins of cryptic species can facilitate our understanding of evolutionary processes. Advancements in genomic approaches for non-model systems have offered unprecedented opportunities to investigate these areas. The White Cloud Mountain minnow (Tanichthys albonubes) is a popular freshwater pet fish worldwide but its wild populations in China are critically endangered. Recent research based on a few molecular markers suggested that this species in fact comprised seven cryptic species, of which six were previously unknown. Here, we tested six of these cryptic species and quantified genomic interspecific divergences between species in the T. albonubes complex by analyzing genome-wide restriction site-associated DNA sequencing (RADseq) data generated from 189 individuals sampled from seven populations (including an outgroup congeneric species, T. micagemmae). We found that six cryptic species previously suggested were well supported by RADseq data. The genetic diversity of each species in the T. albonubes complex was low compared with T. micagemmae and the contemporary effective population sizes (Ne) of each cryptic species were small. Phylogenetic analysis showed seven clades with high support values confirmed with Neighbor-Net trees. The pairwise divergences between species in T. albonubes complex were deep and the highly differentiated loci were evenly distributed across the genome. We proposed that the divergence level of T. albonubes complex is at a late stage of cryptic speciation and lacking gene flow. Our findings provide new insights into cryptic speciation and have important implications for conservation and species management of T. albonubes complex.


Asunto(s)
Cyprinidae , Animales , Genoma , Filogenia , Familia de Multigenes , Cyprinidae/genética , Análisis de Secuencia de ADN , Proteínas de Peces/genética
19.
Thorac Cancer ; 14(8): 746-757, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36754085

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) are related to the pathogenesis and progression of triple-negative breast cancer (TNBC). The aim of this study was to investigate the role and mechanism of hsa_circ_0001925 in TNBC progression. METHODS: Hsa_circ_0001925, microRNA (miR)-1299 and Yin Yang 1 (YY1) levels were examined in TNBC via reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot. Cell counting kit-8 (CCK-8), colony formation, 5-ethynyl-2'-deoxyuridine (EdU) staining, flow cytometry, wound healing assay and tube formation assay were conducted to estimate the effects of hsa_circ_0001925 on malignant phenotypes of TNBC tumors. Several protein levels were measured with western blot. The regulatory relationship between miR-1299 and hsa_circ_0001925 or YY1 was validated using a dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Xenograft assay was used to estimate the effect of hsa_circ_0001925 in TNBC in vivo. RESULTS: Hsa_circ_0001925 and YY1 levels were upregulated, while miR-1299 abundance was downregulated in TNBC tissues and cells. Hsa_circ_0001925 silencing constrained cell proliferation, migration and angiogenesis whereas it promoted apoptosis in vitro, and hsa_circ_0001925 silencing significantly curbed xenograft tumor growth in vivo. Hsa_circ_0001925 acted as a miRNA sponge for miR-1299. Hsa_circ_0001925 decreased YY1 expression by sponging miR-1299. MiR-1299 downregulation alleviated the effects of hsa_circ_0001925 knockdown on BC progression. MiR-1299 interacted with the 3' untranslated region (3' UTR) of YY1, and YY1 overexpression partly reversed the effects of miR-1299 overexpression on BC progression. CONCLUSION: Our findings showed that hsa_circ_0001925 mediated TNBC progression via regulating miR-1299/YY1 axis, providing a potential target for BC treatment.


Asunto(s)
MicroARNs , Neoplasias de la Mama Triple Negativas , Humanos , Regiones no Traducidas 3' , Apoptosis , Recuento de Células , Proliferación Celular , Factor de Transcripción YY1
20.
Environ Sci Pollut Res Int ; 30(14): 41333-41347, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36630031

RESUMEN

The excessive use of herbicides and fungicides containing 2,4-dichlorophenol (2,4-DCP) has led to serious environmental water pollution; 2,4-DCP is chemically stable and difficult to be degraded effectively by biological and physical methods. And the degradation of 2,4-DCP using advanced oxidation techniques has been a hot topic. Biochar, polyethylene glycol, ferrous sulfate, and sodium borohydride were used to synthesize the heterogeneous catalyst PEGylated nanoscale zero-valent iron supported by biochar (PEG-nZVI@BC). The catalyst was characterized using scanning electron microscope (SEM) and other means to determine its physicochemical properties. Catalytic performance and mechanism of this catalyst with hydrogen peroxide for the oxidation of 2,4-DCP were investigated. The results showed that PEG-nZVI@BC had good dispersibility, stability, and inoxidizability; the degradation efficiency of 50 mg/L 2,4-DCP by PEG-nZVI@BC/H2O2 system 92.94%, 1.68 times higher than that of nZVI/H2O2 system; there are both free radical and non-free radical pathways in PEG-nZVI@BC/H2O2 system; the degradation process of 2,4-DCP includes hydroxylation, dechlorination, and ring-opening. Overall, PEG-nZVI@BC is a promising heterogeneous catalyst for the degradation of 2,4-DCP.


Asunto(s)
Hierro , Contaminantes Químicos del Agua , Hierro/química , Peróxido de Hidrógeno/química , Contaminantes Químicos del Agua/análisis , Carbón Orgánico/química , Catálisis , Polietilenglicoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...