Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Lipids Health Dis ; 23(1): 147, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760818

RESUMEN

BACKGROUND: Omega-3 polyunsaturated fatty acids (omega-3 PUFAs) exhibit potential as therapeutics for a variety of diseases. This observational and Mendelian randomization (MR) study aims to explore the relationship between omega-3 PUFAs and osteoarthritis (OA). METHODS: Excluding individuals under 20 years old and those with missing data on relevant variables in the National Health and Nutrition Examination Survey (NHANES) spanning from 2003 to 2016, a total of 22 834 participants were included in this cross-sectional study. Weighted multivariable-adjusted logistic regression was used to estimate the association between omega-3 PUFAs and OA in adults. Moreover, restricted cubic splines were utilized to examine the dose-response relationship between omega-3 PUFAs and OA. To further investigate the potential causal relationship between omega-3 PUFAs and OA risk, a two-sample MR study was conducted. Furthermore, the robustness of the findings was assessed using various methods. RESULTS: Omega-3 PUFAs intake were inversely associated with OA in adults aged 40 ∼ 59 after multivariable adjustment [Formula: see text], with a nonlinear relationship observed between omega-3 PUFAs intake and OA [Formula: see text]. The IVW results showed there was no evidence to suggest a causal relationship between omega-3 PUFAs and OA risk [Formula: see text]. CONCLUSIONS: Omega-3 PUFAs were inversely associated with OA in adults aged 40 ∼ 59. However, MR studies did not confirm a causal relationship between the two.


Asunto(s)
Ácidos Grasos Omega-3 , Análisis de la Aleatorización Mendeliana , Encuestas Nutricionales , Osteoartritis , Humanos , Osteoartritis/genética , Osteoartritis/epidemiología , Ácidos Grasos Omega-3/administración & dosificación , Masculino , Persona de Mediana Edad , Femenino , Adulto , Estudios Transversales , Factores de Riesgo
2.
Nanomicro Lett ; 16(1): 105, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300363

RESUMEN

CsPbI3 perovskite quantum dots (QDs) are ideal materials for the next generation of red light-emitting diodes. However, the low phase stability of CsPbI3 QDs and long-chain insulating capping ligands hinder the improvement of device performance. Traditional in-situ ligand replacement and ligand exchange after synthesis were often difficult to control. Here, we proposed a new ligand exchange strategy using a proton-prompted in-situ exchange of short 5-aminopentanoic acid ligands with long-chain oleic acid and oleylamine ligands to obtain stable small-size CsPbI3 QDs. This exchange strategy maintained the size and morphology of CsPbI3 QDs and improved the optical properties and the conductivity of CsPbI3 QDs films. As a result, high-efficiency red QD-based light-emitting diodes with an emission wavelength of 645 nm demonstrated a record maximum external quantum efficiency of 24.45% and an operational half-life of 10.79 h.

3.
ACS Appl Mater Interfaces ; 16(9): 11715-11721, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38382471

RESUMEN

Inverted perovskite light-emitting diodes (PeLEDs) based on quantum dots (QDs) are some of the most promising candidates for next-generation lighting and display applications. Due to the strong fluorescence quenching caused by zinc oxide, high performance in such inverted devices remains challenging. Here, we report an efficient inverted green CsPbBr3 QDs LED using an emitting buffer layer. Ultrathin CsPbBr3 QD emitters act as the buffer layer to reduce the interface luminescence quenching reaction at the ZnO/upper emitting layer interface, increasing the probability of exciton recombination within the emissive layer and regulating the charge transport, leading to effective carrier recombination. The resulting device exhibits an external quantum efficiency of 13.1%, enhanced by about 4.7 times compared with that without a buffer layer device. This work provides a path to fabricating high-performance inverted PeLEDs.

4.
Nat Commun ; 15(1): 525, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225267

RESUMEN

Transport of rodlike particles in confinement environments of macromolecular networks plays crucial roles in many important biological processes and technological applications. The relevant understanding has been limited to thin rods with diameter much smaller than network mesh size, although the opposite case, of which the dynamical behaviors and underlying physical mechanisms remain unclear, is ubiquitous. Here, we solve this issue by combining experiments, simulations and theory. We find a nonmonotonic dependence of translational diffusion on rod length, characterized by length commensuration-governed unconventionally fast dynamics which is in striking contrast to the monotonic dependence for thin rods. Our results clarify that such a fast diffusion of thick rods with length of integral multiple of mesh size follows sliding dynamics and demonstrate it to be anomalous yet Brownian. Moreover, good agreement between theoretical analysis and simulations corroborates that the sliding dynamics is an intermediate regime between hopping and Brownian dynamics, and provides a mechanistic interpretation based on the rod-length dependent entropic free energy barrier. The findings yield a principle, that is, length commensuration, for optimal design of rodlike particles with highly efficient transport in confined environments of macromolecular networks, and might enrich the physics of the diffusion dynamics in heterogeneous media.

5.
Small ; 20(25): e2307360, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38217294

RESUMEN

Ion diffusion is a fundamentally important process in understanding and manipulating the optoelectronic properties of semiconductors. Most current studies on ionic diffusion have been focusing on perovskite polycrystalline thin films and nanocrystals. However, the random orientation and grain boundaries can heavily interfere with the kinetics of ion diffusion, where the experimental results only reveal the average ion exchange kinetics and the actual ion diffusion mechanisms perpendicular to the direction of individual crystal facets remain unclear. Here, the anion (Cl, I) diffusion anisotropy on (111) and (100) facets of CsPbBr3 single crystals is demonstrated. The as-grown single crystals with (111) and (100) facets exhibit anisotropic growth with different halide incorporation, which lead to different resulting optoelectronic properties. Combined experimental characterizations and theoretical calculations reveal that the (111) CsPbBr3 shows a faster anion diffusion behavior compared with that of the (100) CsPbBr3, with a lower diffusion energy barrier, a larger built-in electric field, and lower inverse defect formation energy. The work highlights the anion diffusion anisotropic mechanisms perpendicular to the direction of individual crystal facets for optimizing and designing perovskite optoelectronic devices.

6.
JMIR Serious Games ; 11: e48317, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37990585

RESUMEN

Background: The question of how video games can shape aggressive behaviors has been a focus for many researchers. Previous research has focused on how violent video game content leads to postgame aggressive behaviors. However, video games not only convey violence or prosocial content to players but also require cognitive effort from individuals. Since human cognitive resources are limited, consuming more cognitive resources in a game leads to less cognitive resources to suppress aggressive impulses. Therefore, the depletion of cognitive resources from playing video games may also lead to changes in postgame aggressive behaviors. Objective: This study aimed to examine the relationship between cognitive resources consumed in video games and postgame aggressive behaviors. Methods: A total of 60 participants (age: mean 20.22; range 18-24 y) were randomly assigned to either the high-load group or the low-load group. Participants from both groups played a video game centered around college life. In the low-load group, participants followed the gameplay instructions to complete it. In the high-load group, participants were given an extra digital memory task to complete while playing the game. Participants in both groups played the video game for about 25 minutes. A maze selection task was then conducted to measure the participants' helping and hurting behaviors. Results: The independent samples 2-tailed t tests showed that the high-load group had significantly higher hurting scores (mean 3.13, SD 2.47) than the low-load group (mean 1.90, SD 2.12; t58=-2.07, P=.04; Cohen d=-0.535), whereas helping behaviors were not significantly affected (t58=1.52, P=.13; Cohen d=0.393). Conclusions: As more cognitive resources are consumed in a video game, more hurting behaviors are exhibited after the game. This finding proposes an alternative route by which video games impact aggressive behaviors, adding to previous theories and raising concerns about the popularity of cognitive training games.

7.
Adv Sci (Weinh) ; 10(36): e2304696, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37890450

RESUMEN

Perovskite nanocrystals for light-emitting diodes are often synthesized by uncontrollable metathesis reactions, suffering from low product yield, nonuniform growth, and poor stability. Herein, by controlling the nucleation kinetics with high dissociation constant (Ka or Kb) acids or bases, homogenous one-route nucleation of perovskite nanocrystals is achieved as the cluster intermediates are eliminated. The stable, shape uniform, and narrow size distribution green nanocrystals are synthesized. The perovskite nanocrystal film exhibites excellent stability in 80% humidity air with only a 10% photoluminescence intensity drop after 16 h. Efficient and stable electroluminescence is demonstrated with an FWHM of 16 nm at 517 nm. The green devices shows a peak EQE of 24.13% with a lifetime T50 of 54 min at 10 000 cd m-2 .

8.
Heliyon ; 9(10): e20494, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37810846

RESUMEN

The disclosure of work safety information of listed companies in high-risk industries is an important aspect of their social responsibility, and it is also an inevitable requirement to meet the right of stakeholders to know, which has a far-reaching impact on the development of enterprises. In order to clarify the impact mechanism of work safety information disclosure on enterprise performance of listed companies in high-risk industries. 222 listed companies in high-risk industries were taken as the research object, and the multiple regression analysis method was used to analyze the relationship between the level of work safety information disclosure of enterprises and their financial performance, safety performance and social reputation. The results show that the work safety information disclosure of listed companies in high-risk industries has a positive impact on corporate financial performance, safety performance and social reputation; unabsorbed slack resources have a positive U-shaped regulatory effect on work safety information disclosure and enterprise social reputation; The shareholding ratio of institutional investors has an inverted U-shaped regulatory effect on the positive relationship between work safety information disclosure and enterprise social reputation. This study has enriched the theoretical and practical exploration of research on work safety information disclosure. It can help improve the level of work safety information disclosure and safety management in enterprises, while guiding the sustainable development of occupational health and safety within these organizations.

9.
Chem Soc Rev ; 52(19): 6806-6837, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37743794

RESUMEN

Self-assembly of various building blocks has been considered as a powerful approach to generate novel materials with tailorable structures and optimal properties. Understanding physicochemical interactions and mechanisms related to structural formation and transitions is of essential importance for this approach. Although it is well-known that diverse forces and energies can significantly contribute to the structures and properties of self-assembling systems, the potential entropic contribution remains less well understood. The past few years have witnessed rapid progress in addressing the entropic effects on the structures, responses, and functions in the self-assembling systems, and many breakthroughs have been achieved. This review provides a framework regarding the entropy-controlled strategy of self-assembly, through which the structures and properties can be tailored by effectively tuning the entropic contribution and its interplay with the enthalpic counterpart. First, we focus on the fundamentals of entropy in thermodynamics and the entropy types that can be explored for self-assembly. Second, we discuss the rules of entropy in regulating the structural organization in self-assembly and delineate the entropic force and superentropic effect. Third, we introduce the basic principles, significance and approaches of the entropy-controlled strategy in self-assembly. Finally, we present the applications where this strategy has been employed in fields like colloids, macromolecular systems and nonequilibrium assembly. This review concludes with a discussion on future directions and future research opportunities for developing and applying the entropy-controlled strategy in complex self-assembling systems.

10.
Biomed Pharmacother ; 167: 115509, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37722193

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignancies in the whole world, with little improvement in the 5-year survival rate due to the occurrence of chemoresistance. With the increasing interests in tumor immune microenvironment, immunogenic cell death (ICD)-induced chemotherapy has shown promising results in enhancing sensitivity to immune checkpoint inhibitors (ICI) and improving the efficiency of tumor immunotherapy. This review summarizes the role of key ICD biomarkers and their underlying molecular mechanisms in HNSCC chemoresistance. The results showed that ICD initiation could significantly improve the survival and prognosis of patients. ICD and its biomarker could also serve as molecular markers for tumor diagnosis and prognosis. Moreover, key components of DAMPs including CALR, HGMB1, and ATP are involved in the regulation of HNSCC chemo-sensitivity, confirming that the key biomarkers of ICD can also be developed into new targets for regulating HNSCC chemoresistance. This review clearly illustrates the theoretical basis for the hypothesis that ICD biomarkers are therapeutic targets involved in HNSCC progression, chemoresistance, and even immune microenvironment regulation. The compilation and investigation may provide new insights into the molecular therapy of HNSCC.

11.
J Phys Chem Lett ; 14(33): 7581-7590, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37590125

RESUMEN

It is necessary to improve the action cross section (η × σn) of high-order multiphoton absorption (MPA) for fundamental research and practical applications. Herein, the core-shell FAPbBr3/CsPbBr3 nanocrystals (NCs) were constructed, and fluorescence induced by up to five-photon absorption was observed. The value of η × σ5 reaches 8.64 × 10-139 cm10 s4 photon-4 nm-3 at 2300 nm, which is nearly an order of magnitude bigger than that of the core-only NCs. It is found that the increased dielectric constant promotes modulation of MPA effects, addressing the electronic distortion in high-order nonlinear behaviors through the local field effect. Meanwhile, the quasi-type-II band alignment suppresses the biexciton Auger recombination, ensuring the stronger MPA induced fluorescence. In addition, the core-shell structure can not only reduce the defect density but also promote the nonradiative energy transfer though the antenna-like effect. This work provides a new avenue for the exploitation of high-performance multiphoton excited nanomaterials for future photonic integration.

12.
Nanoscale ; 15(34): 14140-14145, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37584662

RESUMEN

Two-dimensional colloidal CdSe nanoplatelets (NPLs) have been considered as ideal emitting materials for high performance light-emitting devices due to their excellent optical properties. However, the understanding of defect related radiative and nonradiative recombination centers in CdSe NPLs is still far from sufficient, especially their physical distribution locations. In this work, CdSe core and CdSe/CdS core/crown NPLs have been successfully synthesized and their optical properties have been characterized by laser spectroscopies. It is found that the photoluminescence quantum yield of CdSe NPLs is improved by a factor of 4 after the growth of the CdS crown. At low temperatures, the change in the ratio of low and high energy emission intensities from NPLs suggests that the radiative recombination centers are mainly located on the lateral surface of the samples. This finding is further confirmed by the surface passivation experiment. Meanwhile, the nonradiative recombination centers of NPLs located on the lateral surface are also confirmed by ligand exchange. These results demonstrate the importance of understanding the optical properties of the lateral surface of NPLs, which are important for the design of material structures for optoelectronic applications.

13.
ACS Appl Mater Interfaces ; 15(23): 28833-28839, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37272407

RESUMEN

Perovskite quantum dot light-emitting diodes (QLEDs) are potential candidates for next-generation displays due to their high color purity and wide color gamut. Due to the strong electron-accepting ability of poly[bis(4-phenyl) (2,4,6-trimethylphenyl) amine] (PTAA), quantum dot (QD) films are prone to be charged, which leads to the imbalance of charge injection and the increase of nonradiative recombination, ultimately affecting the performance of the QLEDs. Here, we compared and studied two polymers, poly(methyl methacrylate) (PMMA) and poly(vinyl pyrrolidone) (PVP), as the hole interface buffer layers of QD films, which effectively reduced the defect density, suppressed nonradiative recombination, and greatly improved the efficiency and stability of QLEDs. The devices with PMMA achieved a maximum external quantum efficiency of 20.71%.

14.
Small ; 19(25): e2300938, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36932944

RESUMEN

Chiral organic-inorganic hybrid metal halide materials have shown great potential for circularly polarized luminescence (CPL) related applications for their tunable structures and efficient emissions. Here, this work combines the highly emissive Cu4 I4 cubane cluster with chiral organic ligand R/S-3-quinuclidinol, to construct a new type of 1D Cu-I chains, namely Cu4 I4 (R/S-3-quinuclidinol)3 , crystallizing in noncentrosymmetric monoclinic P21 space group. These enantiomorphic hybrids exhibit long-term stability and show bright yellow emission with a photoluminescence quantum yield (PLQY) close to 100%. Due to the successful chirality transfer from the chiral ligands to the inorganic backbone, the enantiomers show intriguing chiroptical properties, such as circular dichroism (CD) and CPL. The CPL dissymmetry factor (glum ) is measured to be ≈4 × 10-3 . Time-resolved photoluminescence (PL) measurements show long averaged decay lifetime up to 10 µs. The structural details within the Cu4 I4 reveal the chiral nature of these basic building units, which are significantly different than in the achiral case. This discovery provides new structural insights for the design of high performance CPL materials and their applications in light emitting devices.

15.
Mar Biotechnol (NY) ; 25(1): 192-203, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36635576

RESUMEN

The polysaccharide WL gum is produced by the marine microorganism Sphingomonas sp. WG and presents great commercial utility potential in many industries especially in oil industries. However, the high fermentation cost limits its wide application. Therefore, an efficient production system at a lower cost was established using beet molasses to partially replace the commonly used carbon sources. Four different molasses were screened and their composition was investigated. One-factor design and RSM statistical analysis were employed to optimize the WL gum fermentation medium. The effects of molasses on the rheological properties and gene expression of WL gum were also investigated. The results showed that the pretreated beet molasses generated both high broth viscosity and WL gum production (12.94 Pa·s and 11.16 g/L). Heavy metal ions and ash were found to be the key factors in unpretreated and pretreated molasses affecting WL production. The cost-efficient production medium contained (g/L): sucrose 61.79, molasses 9.95, yeast extract 1.23, K2HPO4 1, MgSO4 0.1, ZnSO4 0.1 and the WL gum production reached 40.25 ± 1.15 g/L. The WL gum product WL-molasses showed the higher apparent viscosity, and viscous modulus and elastic modulus than WL-sucrose and WL-mix, which might be related to its highest molecular mass. The higher expressional level of genes such as pgm, ugp, ugd, rmlA, welS, and welG in WL gum synthesis in the mixed carbon source medium caused the high production and broth viscosity. This work provided a cost-efficient method for WL gum production.


Asunto(s)
Sphingomonas , Sphingomonas/genética , Sphingomonas/metabolismo , Sacarosa/metabolismo , Melaza , Carbono/metabolismo , Fermentación , Medios de Cultivo
16.
Angew Chem Int Ed Engl ; 62(10): e202216720, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36622348

RESUMEN

Hybrid organic-inorganic antimony halides have attracted increasing attention due to the non-toxicity, stability, and high photoluminescence quantum yield (PLQY). To shed light on the structural factors that contribute to the high PLQY, five pairs of antimony halides with general formula A2 SbCl5 and A2 Sb2 Cl8 are synthesized via two distinct methods and characterized. The A2 SbCl5 type adopts square pyramidal [SbCl5 ] geometry with near-unity PLQY, while the A2 Sb2 Cl8 adopts seesaw dimmer [Sb2 Cl8 ] geometry with PLQY≈0 %. Through combined data analysis with the literature, we have found that A2 SbCl5 series with square pyramidal geometry generally has much longer Sb⋅⋅⋅Sb distances, leading to more expressed lone pairs of SbIII . Additional factors including Sb-Cl distance and stability of antimony chlorides may also affect PLQY. Our targeted synthesis and correlated insights provide efficient tools to precisely form highly emissive materials for optoelectronic applications.

17.
Nano Lett ; 23(3): 1109-1118, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36716197

RESUMEN

Understanding physicochemical interactions and mechanisms related to the cell membranes of lives under extreme conditions is of essential importance but remains scarcely explored. Here, using a combination of computer simulations and experiments, we demonstrate that the structural integrity and controllable permeability of cell membranes at high temperatures are predominantly directed by configurational entropy emerging from distorted intermolecular organization of bipolar tethered lipids peculiar to the extremophiles. Detailed simulations across multiple scales─from an all-atom exploration of molecular mechanism to a mesoscale examination of its universal nature─suggest that this configurational entropy effect can be generalized to diverse systems, such as block copolymers. This offers biomimetic inspiration for designing heat-tolerant materials based on entropy, as validated by our experiments of synthetic polymers. The findings provide new insight into the basic nature of the mechanism underlying the adaptation of organisms to extreme conditions and might open paths for designed materials inspired by entropic effects in biological systems.


Asunto(s)
Extremófilos , Entropía , Simulación por Computador , Membrana Celular
18.
Cancer Med ; 12(7): 8937-8955, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36524545

RESUMEN

BACKGROUND: Microvascular invasion (MVI) is an independent detrimental risk factor for tumor recurrence and poor survival in hepatocellular carcinoma (HCC). Competitive endogenous RNA (ceRNA) networks play a pivotal role in the modulation of carcinogenesis and progression among diverse tumor types. However, whether the ceRNA mechanisms are engaged in promoting the MVI process in patients with HCC remains unknown. METHODS: A ceRNA regulatory network was constructed based on RNA-seq data of patients with HCC from The Cancer Genome Atlas (TCGA) database. In total, 10 hub genes of the ceRNA network were identified using four algorithms: "MCC," "Degree," "Betweenness," and "Stress." Transcriptional expressions were verified by in situ hybridization using clinical samples. Interactions between ceRNA modules were validated by luciferase reporting assay. Logistic regression analysis, correlation analysis, enrichment analysis, promoter region analysis, methylation analysis, and immune infiltration analysis were performed to further investigate the molecular mechanisms and clinical transformation value. RESULTS: The ceRNA regulatory network featuring a tumor invasion phenotype consisting of 3 long noncoding RNAs, 3 microRNAs, and 93 mRNAs was constructed using transcriptional data from the TCGA database. Systemic analysis and experimentally validation identified a ceRNA network (PVT1/miR-1258/DUSP13 axis) characterized by lipid regulatory potential, immune properties, and abnormal methylation states in patients with HCC and MVI. Meanwhile, 28 transcriptional factors were identified as potential promotors of PVT1 with 3 transcriptional factors MXD3, ZNF580, and KDM1A promising as therapeutic targets in patients with HCC and MVI. Furthermore, miR-1258 was an independent predictor for MVI in patients with HCC. CONCLUSION: The PVT1/DUSP13 axis is significantly associated with MVI progression in HCC patients. This study provides new insight into mechanisms related to lipids, immune phenotypes, and abnormal epigenetics in oncology research.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Recurrencia Local de Neoplasia/genética , MicroARNs/genética , ARN Mensajero/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Regulación Neoplásica de la Expresión Génica , Histona Demetilasas/genética
19.
Materials (Basel) ; 15(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36234355

RESUMEN

Controlled ion release and mineralization of bioactive glasses are essential to their applications in bone regeneration. Tuning the chemical composition and surface structure of glasses are the primary means of achieving this goal. However, most bioactive glasses exhibit a non-linear ion release behavior. Therefore, modifying the immersion environment of glasses through external stimuli becomes an approach. In this study, the ion release and mineralization properties of a borosilicate bioactive glass were investigated in the Tris buffer and K2HPO4 solutions with different pH. The glass had a faster ion release rate at a lower pH, but the overly acidic environment was detrimental to hydroxyapatite production. Using a direct current (DC) electric field as an external stimulus, the pH of the immersion solution could be modulated within a narrow range, thereby modulating ion release from the glass. As a result, significant increases in ion release were observed after three days, and the development of porous mineralization products on the glass surface after six days. This study demonstrates the effectiveness of the DC electric field in modulating the ion release of the bioactive glass in vitro and provides a potential way to regulate the degradation of the glass in vivo.

20.
Langmuir ; 38(37): 11137-11148, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36070512

RESUMEN

Understanding the behaviors of nanoparticles at interfaces is crucial not only for the design of novel nanostructured materials with superior properties but also for a better understanding of many biological systems where nanoscale objects such as drug molecules, viruses, and proteins can interact with various interfaces. Theoretical studies and tailored computer simulations offer unique approaches to investigating the evolution and formation of structures as well as to determining structure-property relationships regarding the interfacial nanostructures. In this feature article, we summarize our efforts to exploit computational approaches as well as theoretical modeling in understanding the organization of nanoscale objects at the interfaces of various systems. First, we present the latest research advances and state-of-the-art computational techniques for the simulation of nanoparticles at interfaces. Then we introduce the applications of multiscale modeling and simulation methods as well as theoretical analysis to explore the basic science and the fundamental principles in the interfacial nanoparticle organization, covering the interfaces of polymer, nanoscience, biomacromolecules, and biomembranes. Finally, we discuss future directions to signify the framework in tailoring the interfacial organization of nanoparticles based on the computational design. This feature article could promote further efforts toward fundamental research and the wide applications of theoretical approaches in designing interfacial assemblies for new types of functional nanomaterials and beyond.


Asunto(s)
Nanopartículas , Nanoestructuras , Simulación por Computador , Modelos Teóricos , Nanopartículas/química , Nanoestructuras/química , Polímeros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...