Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 36
1.
Ther Apher Dial ; 28(1): 112-118, 2024 Feb.
Article En | MEDLINE | ID: mdl-37853934

INTRODUCTION: We investigated the clinical efficacy and safety of blood purification technology in patients with polymyositis/dermatomyositis. METHODS: In a study of 22 patients, 10 cases received blood purification treatment (5 cases received plasma exchange, 5 cases received plasma HA280 immunoadsorption), and 12 cases served as the control group. A 3-month follow-up was conducted to compare the clinical manifestations and laboratory examination. RESULTS: Symptoms and signs of patients in treatment group were significantly improved, and the hormone usage was lower than the control group. For patients with normal creatine kinase level and ferritin level below three times the upper limit of normal, there was a positive correlation between their N/L values and MDAAT scores. CONCLUSION: The results of this study suggest that blood purification therapy, including plasma HA280 immunoadsorption and plasma exchange, is an effective and safe treatment for patients with polymyositis/dermatomyositis, offering assistance in reducing hormone usage in the long-term.


Dermatomyositis , Polymyositis , Humans , Dermatomyositis/drug therapy , Polymyositis/drug therapy , Plasma Exchange , Plasmapheresis , Hormones/therapeutic use
2.
Acta Biomater ; 159: 211-225, 2023 03 15.
Article En | MEDLINE | ID: mdl-36669549

Myocardial hypoxia is the low oxygen tension in the heart tissue implicated in many diseases, including ischemia, cardiac dysfunction, or after heart procurement for transplantation. Oxygen-generating microparticles have recently emerged as a potential strategy for supplying oxygen to sustain cell survival, growth, and tissue functionality in hypoxia. Here, we prepared oxygen-generating microparticles with poly D,L-lactic-co-glycolic acid, and calcium peroxide (CPO), which yielded a continuous morphology capable of sustained oxygen release for up to 24 h. We demonstrated that CPO microparticles increased primary rat cardiomyocyte metabolic activity while not affecting cell viability during hypoxia. Moreover, hypoxia-inducible factor (HIF)-1α, which is upregulated during hypoxia, can be downregulated by delivering oxygen using CPO microparticles. Single-cell traction force microscopy data demonstrated that the reduced energy generated by hypoxic cells could be restored using CPO microparticles. We engineered cardiac tissues that showed higher contractility in the presence of CPO microparticles compared to hypoxic cells. Finally, we observed reduced myocardial injuries in ex vivo rabbit hearts treated with CPO microparticles. In contrast, an acute early myocardial injury was observed for the hearts treated with control saline solution in hypoxia. In conclusion, CPO microparticles improved cell and tissue contractility and gene expression while reducing hypoxia-induced myocardial injuries in the heart. STATEMENT OF SIGNIFICANCE: Oxygen-releasing microparticles can reduce myocardial ischemia, allograft rejection, or irregular heartbeats after heart transplantation. Here we present biodegradable oxygen-releasing microparticles that are capable of sustained oxygen release for more than 24 hrs. We then studied the impact of sustained oxygen release from microparticles on gene expresseion and cardiac cell and tissue function. Previous studies have not measured cardiac tissue or cell mechanics during hypoxia, which is important for understanding proper cardiac function and beating. Using traction force microscopy and an engineered tissue-on-a-chip, we demonstrated that our oxygen-releasing microparticles improve cell and tissue contractility during hypoxia while downregulating the HIF-1α expression level. Finally, using the microparticles, we showed reduced myocardial injuries in rabbit heart tissue, confirming the potential of the particles to be used for organ transplantation or tissue engineering.


Myocardial Ischemia , Oxygen , Animals , Rabbits , Rats , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Ischemia , Myocardial Ischemia/metabolism , Myocytes, Cardiac/metabolism , Oxygen/metabolism
3.
Matter ; 5(2): 666-682, 2022 Feb 02.
Article En | MEDLINE | ID: mdl-35340559

Periodontal diseases are caused by microbial infection and the recruitment of destructive immune cells. Current therapies mainly deal with bacteria elimination, but the regeneration of periodontal tissues remains a challenge. Here we developed a modular microneedle (MN) patch that delivered both antibiotic and cytokines into the local gingival tissue to achieve immunomodulation and tissue regeneration. This MN patch included a quickly dissolvable gelatin membrane for an immediate release of tetracycline and biodegradable GelMA MNs that contained tetracycline-loaded poly(lactic-co-glycolic acid) nanoparticles and cytokine-loaded silica microparticles for a sustained release. Antibiotic release completely inhibited bacteria growth, and the release of IL-4 and TGF-ß induced the repolarization of anti-inflammatory macrophages and the formation of regulatory T cells in vitro. In vivo delivery of MN patch into periodontal tissues suppressed proinflammatory factors and promoted pro-regenerative signals and tissue healing, which demonstrated the therapeutic potential of local immunomodulation for tissue regeneration.

4.
Adv Healthc Mater ; 11(12): e2102593, 2022 06.
Article En | MEDLINE | ID: mdl-35191610

Periodontal disease begins as an inflammatory response to a bacterial biofilm deposited around the teeth, which over time leads to the destruction of tooth-supporting structures and consequently tooth loss. Conventional treatment strategies show limited efficacy in promoting regeneration of damaged periodontal tissues. Here, a delivery platform is developed for small extracellular vesicles (sEVs) derived from gingival mesenchymal stem cells (GMSCs) to treat periodontitis. EVs can achieve comparable therapeutic effects to their cells of origin. However, the short half-lives of EVs after their administration along with their rapid diffusion away from the delivery site necessitate frequent administration to achieve therapeutic benefits. To address these issues, "dual delivery" microparticles are engineered enabling microenvironment-sensitive release of EVs by metalloproteinases at the affected site along with antibiotics to suppress bacterial biofilm growth. GMSC sEVs are able to decrease the secretion of pro-inflammatory cytokines by monocytes/macrophages and T cells, suppress T-cell activation, and induce the formation of T regulatory cells (Tregs) in vitro and in a rat model of periodontal disease. One-time administration of immunomodulatory GMSC sEV-decorated microparticles leads to a significant improvement in regeneration of the damaged periodontal tissue. This approach will have potential clinical applications in the regeneration of a variety of tissues.


Extracellular Vesicles , Mesenchymal Stem Cells , Periodontal Diseases , Animals , Periodontal Diseases/therapy , Periodontium , Rats , Stem Cells
5.
PLoS Pathog ; 18(1): e1010271, 2022 01.
Article En | MEDLINE | ID: mdl-35061864

Flavivirus infection of cells induces massive rearrangements of the endoplasmic reticulum (ER) membrane to form viral replication organelles (ROs) which segregates viral RNA replication intermediates from the cytoplasmic RNA sensors. Among other viral nonstructural (NS) proteins, available evidence suggests for a prominent role of NS4B, an ER membrane protein with multiple transmembrane domains, in the formation of ROs and the evasion of the innate immune response. We previously reported a benzodiazepine compound, BDAA, which specifically inhibited yellow fever virus (YFV) replication in cultured cells and in vivo in hamsters, with resistant mutation mapped to P219 of NS4B protein. In the following mechanistic studies, we found that BDAA specifically enhances YFV induced inflammatory cytokine response in association with the induction of dramatic structural alteration of ROs and exposure of double-stranded RNA (dsRNA) in virus-infected cells. Interestingly, the BDAA-enhanced cytokine response in YFV-infected cells is attenuated in RIG-I or MAD5 knockout cells and completely abolished in MAVS knockout cells. However, BDAA inhibited YFV replication at a similar extent in the parent cells and cells deficient of RIG-I, MDA5 or MAVS. These results thus provided multiple lines of biological evidence to support a model that BDAA interaction with NS4B may impair the integrity of YFV ROs, which not only inhibits viral RNA replication, but also promotes the release of viral RNA from ROs, which consequentially activates RIG-I and MDA5. Although the innate immune enhancement activity of BDAA is not required for its antiviral activity in cultured cells, its dual antiviral mechanism is unique among all the reported antiviral agents thus far and warrants further investigation in animal models in future.


Antiviral Agents/pharmacology , Benzodiazepines/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Virus Replication/drug effects , Yellow fever virus/drug effects , Cell Line , DEAD Box Protein 58/immunology , Humans , Immunity, Innate/immunology , Viral Nonstructural Proteins/drug effects , Yellow Fever/immunology , Yellow fever virus/immunology
7.
Adv Sci (Weinh) ; 8(7): 2003516, 2021 04.
Article En | MEDLINE | ID: mdl-33854891

Cell reprogramming is considered a stochastic process, and it is not clear which cells are prone to be reprogrammed and whether a deterministic step exists. Here, asymmetric cell division (ACD) at the early stage of induced neuronal (iN) reprogramming is shown to play a deterministic role in generating elite cells for reprogramming. Within one day, fibroblasts underwent ACD, with one daughter cell being converted into an iN precursor and the other one remaining as a fibroblast. Inhibition of ACD significantly inhibited iN conversion. Moreover, the daughter cells showed asymmetric DNA segregation and histone marks during cytokinesis, and the cells inheriting newly replicated DNA strands during ACD became iN precursors. These results unravel a deterministic step at the early phase of cell reprogramming and demonstrate a novel role of ACD in cell phenotype change. This work also supports a novel hypothesis that daughter cells with newly replicated DNA strands are elite cells for reprogramming, which remains to be tested in various reprogramming processes.


Asymmetric Cell Division/physiology , Cellular Reprogramming/physiology , Fibroblasts/physiology , Animals , Mice , Mice, Inbred C57BL , Models, Animal
8.
Matter ; 4(5): 1528-1554, 2021 May 05.
Article En | MEDLINE | ID: mdl-33723531

Infection by SARS-CoV-2 virus often induces the dysregulation of immune responses, tissue damage, and blood clotting. Engineered biomaterials from the nano- to the macroscale can provide targeted drug delivery, controlled drug release, local immunomodulation, enhanced immunity, and other desirable functions to coordinate appropriate immune responses and to repair tissues. Based on the understanding of COVID-19 disease progression and immune responses to SARS-CoV-2, we discuss possible immunotherapeutic strategies and highlight biomaterial approaches from the perspectives of preventive immunization, therapeutic immunomodulation, and tissue healing and regeneration. Successful development of biomaterial platforms for immunization and immunomodulation will not only benefit COVID-19 patients, but also have broad applications for a variety of infectious diseases.

9.
Curr Opin Biotechnol ; 66: 236-245, 2020 12.
Article En | MEDLINE | ID: mdl-33007634

Immune cells can sense and respond to biophysical cues - from dynamic forces to spatial features - during their development, activation, differentiation and expansion. These biophysical signals regulate a variety of immune cell functions such as leukocyte extravasation, macrophage polarization, T cell selection and T cell activation. Recent studies have advanced our understanding on immune responses to biophysical cues and the underlying mechanisms of mechanotransduction, which provides rational basis for the design and development of immune-modulatory therapeutics. This review discusses the recent progress in mechanosensing and mechanotransduction of immune cells, particularly monocytes/macrophages and T lymphocytes, and features new biomaterial designs and biomedical devices that translate these findings into biomedical applications.


Biocompatible Materials , Mechanotransduction, Cellular , Biophysics , Cell Differentiation , Macrophages
10.
Research (Wash D C) ; 2020: 7043124, 2020.
Article En | MEDLINE | ID: mdl-32377639

Glutathione S-transferases (GSTs), detoxification enzymes that catalyze the addition of glutathione (GSH) to diverse electrophilic molecules, are often overexpressed in various tumor cells. While fluorescent probes for GSTs have often adopted the 2,4-dinitrobenzenesulfonyl (DNs) group as the receptor unit, they usually suffer from considerable background reaction noise with GSH due to excessive electron deficiency. However, weakening this reactivity is generally accompanied by loss of sensitivity for GSTs, and therefore, finely turning down the reactivity while maintaining certain sensitivity is critical for developing a practical probe. Here, we report a rational semiquantitative strategy for designing such a practical two-photon probe by introducing a parameter adopted from the conceptual density functional theory (CDFT), the local electrophilicity ω k , to characterize this reactivity. As expected, kinetic studies established ω k as efficient to predict the reactivity with GSH, and probe NI3 showing the best performance was successfully applied to detecting GST activities in live cells and tissue sections with high sensitivity and signal-to-noise ratio. Photoinduced electron transfer of naphthalimide-based probes, captured by femtosecond transient absorption for the first time and unraveled by theoretical calculations, also contributes to the negligible background noise.

11.
Chem Sci ; 11(41): 11205-11213, 2020 Sep 21.
Article En | MEDLINE | ID: mdl-34094361

The applications of most fluorescent probes available for Glutathione S-Transferases (GSTs), including NI3 which we developed recently based on 1,8-naphthalimide (NI), are limited by their short emission wavelengths due to insufficient penetration. To realize imaging at a deeper depth, near-infrared (NIR) fluorescent probes are required. Here we report for the first time the designing of NIR fluorescent probes for GSTs by employing the NIR fluorophore HCy which possesses a higher brightness, hydrophilicity and electron-deficiency relative to NI. Intriguingly, with the same receptor unit, the HCy-based probe is always more reactive towards glutathione than the NI-based one, regardless of the specific chemical structure of the receptor unit. This was proved to result from the higher electron-deficiency of HCy instead of its higher hydrophilicity based on a comprehensive analysis. Further, with caging of the autofluorescence being crucial and more difficult to achieve via photoinduced electron transfer (PET) for a NIR probe, the quenching mechanism of HCy-based probes was proved to be PET for the first time with femtosecond transient absorption and theoretical calculations. Thus, HCy2 and HCy9, which employ receptor units less reactive than the one adopted in NI3, turned out to be the most appropriate NIR probes with high-sensitivity and little nonenzymatic background noise. They were then successfully applied to detecting GST in cells, tissues and tumor xenografts in vivo. Additionally, unlike HCy2 with a broad isoenzyme selectivity, HCy9 is specific for GSTA1-1, which is attributed to its lower reactivity and the higher effectiveness of GSTA1-1 in stabilizing the active intermediate via H-bonds based on docking simulations.

12.
Drug Metab Dispos ; 47(8): 890-898, 2019 08.
Article En | MEDLINE | ID: mdl-31167838

Preliminary analysis of ongoing birth surveillance study identified evidence of potential increased risk for neural tube defects (NTDs) in newborns associated with exposure to dolutegravir at the time of conception. Folate deficiency is a common cause of NTDs. Dolutegravir and other HIV integrase inhibitor drugs were evaluated in vitro for inhibition of folate transport pathways: proton-coupled folate transporter (PCFT), reduced folate carrier (RFC), and folate receptor α (FRα)-mediated endocytosis. Inhibition of folate transport was extrapolated to the clinic by using established approaches for transporters in intestine, distribution tissues, and basolateral and apical membranes of renal proximal tubules (2017 FDA Guidance). The positive controls, methotrexate and pemetrexed, demonstrated clinically relevant inhibition of PCFT, RFC, and FRα in folate absorption, distribution, and renal sparing. Valproic acid was used as a negative control that elicits folate-independent NTDs; valproic acid did not inhibit PCFT, RFC, or FRα At clinical doses and exposures, the observed in vitro inhibition of FRα by dolutegravir and cabotegravir was not flagged as clinically relevant; PCFT and RFC inhibition was not observed in vitro. Bictegravir inhibited both PCFT and FRα, but the observed inhibition did not reach the criteria for clinical relevance. Elvitegravir and raltegravir inhibited PCFT, but only raltegravir inhibition of intestinal PCFT was flagged as potentially clinically relevant at the highest 1.2-g dose (not the 400-mg dose). These studies showed that dolutegravir is not a clinical inhibitor of folate transport pathways, and it is not predicted to elicit clinical decreases in maternal and fetal folate levels. Clinically relevant HIV integrase inhibitor drug class effect on folate transport pathways was not observed. SIGNIFICANCE STATEMENT: Preliminary analysis of ongoing birth surveillance study identified evidence of potential increased risk for neural tube defects (NTDs) in newborns associated with exposure to the HIV integrase inhibitor dolutegravir at the time of conception; folate deficiency is a common cause of NTDs. Dolutegravir and other HIV integrase inhibitor drugs were evaluated in vitro for inhibition of the major folate transport pathways: proton-coupled folate transporter, reduced folate carrier, and folate receptor α-mediated endocytosis. The present studies showed that dolutegravir is not a clinical inhibitor of folate transport pathways, and it is not predicted to elicit clinical decreases in maternal and fetal folate levels. Furthermore, clinically relevant HIV integrase inhibitor drug class effect on folate transport pathways was not observed.


Folic Acid/metabolism , HIV Integrase Inhibitors/adverse effects , Heterocyclic Compounds, 3-Ring/adverse effects , Signal Transduction/drug effects , Animals , Dogs , Endocytosis/drug effects , Enzyme Assays , Female , Folate Receptor 1/metabolism , Folic Acid/blood , Folic Acid Deficiency/chemically induced , Folic Acid Deficiency/complications , Folic Acid Deficiency/epidemiology , HIV Infections/drug therapy , Humans , Incidence , Infant, Newborn , Madin Darby Canine Kidney Cells , Maternal Exposure/adverse effects , Maternal-Fetal Exchange , Neural Tube Defects/epidemiology , Neural Tube Defects/etiology , Oxazines , Piperazines , Pregnancy , Proton-Coupled Folate Transporter/metabolism , Pyridones , Reduced Folate Carrier Protein/metabolism , Risk Assessment
13.
ACS Infect Dis ; 5(7): 1139-1149, 2019 07 12.
Article En | MEDLINE | ID: mdl-31060350

Stimulator of interferon genes (STING) is an integral ER-membrane protein that can be activated by 2'3'-cGAMP synthesized by cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) upon binding of double-stranded DNA. It activates interferon (IFN) and inflammatory cytokine responses to defend against infection by microorganisms. Pharmacologic activation of STING has been demonstrated to induce an antiviral state and boost antitumor immunity. We previously reported a cell-based high-throughput-screening assay that allowed for identification of small-molecule cGAS-STING-pathway agonists. We report herein a compound, 6-bromo-N-(naphthalen-1-yl)benzo[d][1,3]dioxole-5-carboxamide (BNBC), that induces a proinflammatory cytokine response in a human-STING-dependent manner. Specifically, we showed that BNBC induced type I and III IFN dominant cytokine responses in primary human fibroblasts and peripheral-blood mononuclear cells (PBMCs). BNBC also induced cytokine response in PBMC-derived myeloid dendritic cells and promoted their maturation, suggesting that STING-agonist treatment could potentially regulate the activation of CD4+ and CD8+ T lymphocytes. As anticipated, treatment of primary human fibroblast cells with BNBC induced an antiviral state that inhibited the infection of several kinds of flaviviruses. Taken together, our results indicate that BNBC is a human-STING agonist that not only induces innate antiviral immunity against a broad spectrum of viruses but may also stimulate the activation of adaptive immune responses, which is important for the treatment of chronic viral infections and tumors.


Antiviral Agents/chemical synthesis , Benzodioxoles/chemical synthesis , Flavivirus Infections/immunology , Interferons/metabolism , Membrane Proteins/agonists , Adaptive Immunity/drug effects , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Benzodioxoles/chemistry , Benzodioxoles/pharmacology , Cells, Cultured , Hep G2 Cells , High-Throughput Screening Assays , Humans , Immunity, Innate/drug effects , Membrane Proteins/chemistry , Molecular Structure , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Structure-Activity Relationship
14.
ACS Infect Dis ; 5(5): 759-768, 2019 05 10.
Article En | MEDLINE | ID: mdl-30525438

Hepatitis B virus (HBV) core protein is a small protein with 183 amino acid residues and assembles the pregenomic (pg) RNA and viral DNA polymerase to form nucleocapsids. During the last decades, several groups have reported HBV core protein allosteric modulators (CpAMs) with distinct chemical structures. CpAMs bind to the hydrophobic HAP pocket located at the dimer-dimer interface and induce allosteric conformational changes in the core protein subunits. While Type I CpAMs, heteroaryldihydropyrimidine (HAP) derivatives, misdirect core protein dimers to assemble noncapsid polymers, Type II CpAMs, represented by sulfamoylbenzamides, phenylpropenamides, and several other chemotypes, induce the assembly of empty capsids with global structural alterations and faster mobility in native agarose gel electrophoresis. Through high throughput screening of an Asinex small molecule library containing 19 920 compounds, we identified 8 structurally distinct CpAMs. While 7 of those compounds are typical Type II CpAMs, a novel benzamide derivative, designated as BA-53038B, induced the formation of morphologically "normal" empty capsids with slow electrophoresis mobility. Drug resistant profile analyses indicated that BA-53038B most likely bound to the HAP pocket but obviously modulated HBV capsid assembly in a distinct manner. BA-53038B and other CpAMs reported herein provide novel structure scaffolds for the development of core protein-targeted antiviral agents for the treatment of chronic hepatitis B.


Antiviral Agents/pharmacology , Drug Discovery , Hepatitis B virus/drug effects , Nucleocapsid/antagonists & inhibitors , Virus Assembly/drug effects , Hep G2 Cells , Hepatitis B virus/physiology , Humans , Small Molecule Libraries , Virus Replication/drug effects
15.
Antiviral Res ; 150: 112-122, 2018 02.
Article En | MEDLINE | ID: mdl-29253498

Targeting host functions essential for viral replication has been considered as a broad spectrum and resistance-refractory antiviral approach. However, only a few host functions have, thus far, been validated as broad-spectrum antiviral targets in vivo. ER α-glucosidases I and II have been demonstrated to be essential for the morphogenesis of many enveloped viruses, including members from four families of viruses causing hemorrhagic fever. In vivo antiviral efficacy of various iminosugar-based ER α-glucosidase inhibitors has been reported in animals infected with Dengue, Japanese encephalitis, Ebola, Marburg and influenza viruses. Herein, we established Huh7.5-derived cell lines with ER α-glucosidase I or II knockout using CRISPR/Cas9 and demonstrated that the replication of Dengue, Yellow fever and Zika viruses was reduced by only 1-2 logs in the knockout cell lines. The results clearly indicate that only a partial suppression of viral replication can possibly be achieved with a complete inhibition of ER-α-glucosidases I or II by their inhibitors. We therefore explore to improve the antiviral efficacy of a lead iminosugar IHVR-19029 through combination with another broad-spectrum antiviral agent, favipiravir (T-705). Indeed, combination of IHVR-19029 and T-705 synergistically inhibited the replication of Yellow fever and Ebola viruses in cultured cells. Moreover, in a mouse model of Ebola virus infection, combination of sub-optimal doses of IHVR-19029 and T-705 significantly increased the survival rate of infected animals. We have thus proved the concept of combinational therapeutic strategy for the treatment of viral hemorrhagic fevers with broad spectrum host- and viral- targeting antiviral agents.


Antiviral Agents/pharmacology , Ebolavirus/drug effects , Glycoside Hydrolase Inhibitors/pharmacology , Hemorrhagic Fever, Ebola/virology , Animals , Antiviral Agents/pharmacokinetics , Cell Line , Cells, Cultured , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Synergism , Glycoside Hydrolase Inhibitors/pharmacokinetics , Hemorrhagic Fever, Ebola/drug therapy , Hemorrhagic Fever, Ebola/metabolism , Humans , Mice , Virus Replication/drug effects , alpha-Glucosidases/genetics , alpha-Glucosidases/metabolism
16.
Antiviral Res ; 147: 37-46, 2017 Nov.
Article En | MEDLINE | ID: mdl-28982551

Stimulator of interferon genes (STING) is an endoplasmic reticulum transmembrane protein that serves as a molecular hub for activation of interferon and inflammatory cytokine response by multiple cellular DNA sensors. Not surprisingly, STING has been demonstrated to play an important role in host defense against microorganisms and pharmacologic activation of STING is considered as an attractive strategy to treat viral diseases and boost antitumor immunity. In light of this we established a HepAD38-derived reporter cell line that expresses firefly luciferase in response to the activation of cyclic GMP-AMP synthase (cGAS)-STING pathway for high throughput screening (HTS) of small molecular human STING agonists. This cell-based reporter assay required only 4 h treatment with a reference STING agonist to induce a robust luciferase signal and was demonstrated to have an excellent performance in HTS format. By screening 16,000 compounds, a dispiro diketopiperzine (DSDP) compound was identified to induce cytokine response in a manner dependent on the expression of functional human STING, but not mouse STING. Moreover, we showed that DSDP induced an interferon-dominant cytokine response in human skin fibroblasts and peripheral blood mononuclear cells, which in turn potently suppressed the replication of yellow fever virus, dengue virus and Zika virus. We have thus established a robust cell-based assay system suitable for rapid discovery and mechanistic analyses of cGAS-STING pathway agonists. Identification of DSDP as a human STING agonist enriches the pipelines of STING-targeting drug development for treatment of viral infections and cancers.


Antiviral Agents/pharmacology , Drug Discovery/methods , High-Throughput Screening Assays , Immunity, Innate/drug effects , Interferon Inducers/pharmacology , Membrane Proteins/agonists , Nucleotidyltransferases/antagonists & inhibitors , Piperazines/pharmacology , Spiro Compounds/pharmacology , Animals , Antiviral Agents/chemistry , Cell Survival/drug effects , Cells, Cultured , Flavivirus/drug effects , Gene Expression/drug effects , Humans , Interferon Inducers/chemistry , Lethal Dose 50 , Membrane Proteins/genetics , Mice , Mutation , Nucleotidyltransferases/genetics , Piperazines/chemistry , Signal Transduction/drug effects , Species Specificity , Spiro Compounds/chemistry , Transcription Factors/genetics , Virus Replication/drug effects
17.
ACS Med Chem Lett ; 8(2): 157-162, 2017 Feb 09.
Article En | MEDLINE | ID: mdl-28197304

IHVR-19029 (6) is a lead endoplasmic reticulum α-glucosidases I and II inhibitor, which efficiently protected mice from lethal Ebola and Marburg virus infections via injection route, but suffered from low bioavailability and off-target interactions with gut glucosidases when administered orally. In an effort to improve efficacious exposure levels and avoid side effects, we designed and synthesized ester prodrugs. Not only were the prodrugs stable in simulated gastric and intestinal fluids and were inactive against glucosidases but they also exhibited antiviral activities against dengue virus infection in a cell based assay. Further in vitro evaluation showed that the bioconversion of the prodrugs is species dependent: in mice, the prodrugs were converted to 6 in the plasma and liver; while in human, the conversion occurred mainly in liver. An in vivo pharmacokinetic study in mice demonstrated that the tetrabutyrate prodrug 8 achieved the most improved overall exposure of 6 upon both oral and intravenous administration.

18.
J Virol ; 90(23): 10774-10788, 2016 Dec 01.
Article En | MEDLINE | ID: mdl-27654301

Although a highly effective vaccine is available, the number of yellow fever cases has increased over the past 2 decades, which highlights the pressing need for antiviral therapeutics. In a high-throughput screening campaign, we identified an acetic acid benzodiazepine (BDAA) compound which potently inhibits yellow fever virus (YFV). Interestingly, while treatment of YFV-infected cultures with 2 µM BDAA reduced the virion production by greater than 2 logs, the compound was not active against 21 other viruses from 14 different viral families. Selection and genetic analysis of drug-resistant viruses revealed that replacement of the proline at amino acid 219 (P219) of the nonstructural protein 4B (NS4B) with serine, threonine, or alanine conferred YFV with resistance to BDAA without apparent loss of replication fitness in cultured mammalian cells. However, replacement of P219 with glycine conferred BDAA resistance with significant loss of replication ability. Bioinformatics analysis predicts that the P219 amino acid is localized at the endoplasmic reticulum lumen side of the fifth putative transmembrane domain of NS4B, and the mutation may render the viral protein incapable of interacting with BDAA. Our studies thus revealed an important role and the structural basis for the NS4B protein in supporting YFV replication. Moreover, in YFV-infected hamsters, oral administration of BDAA protected 90% of the animals from death, significantly reduced viral load by greater than 2 logs, and attenuated virus infection-induced liver injury and body weight loss. The encouraging preclinical results thus warrant further development of BDAA or its derivatives as antiviral agents to treat yellow fever. IMPORTANCE Yellow fever is an acute viral hemorrhagic disease which threatens approximately 1 billion people living in tropical areas of Africa and Latin America. Although a highly effective yellow fever vaccine has been available for more than 7 decades, the low vaccination rate fails to prevent outbreaks in at-risk regions. It has been estimated that up to 1.7 million YFV infections occur in Africa each year, resulting in 29,000 to 60,000 deaths. Thus far, there is no specific antiviral treatment for yellow fever. To cope with this medical challenge, we identified a benzodiazepine compound that selectively inhibits YFV by targeting the viral NS4B protein. To our knowledge, this is the first report demonstrating in vivo safety and antiviral efficacy of a YFV NS4B inhibitor in an animal model. We have thus reached a critical milestone toward the development of specific antiviral therapeutics for clinical management of yellow fever.

19.
Chem Commun (Camb) ; 52(60): 9470, 2016 08 04.
Article En | MEDLINE | ID: mdl-27388438

Correction for 'A versatile two-photon fluorescent probe for ratiometric imaging E. coliß-galactosidase in live cells and in vivo' by Xue-Xiang Zhang et al., Chem. Commun., 2016, 52, 8283-8286.

20.
Chem Commun (Camb) ; 52(53): 8283-6, 2016 Jul 07.
Article En | MEDLINE | ID: mdl-27291508

We have described the design, synthesis, spectroscopy and biological applications of NI-ßGal, a versatile fluorescent probe to detect E. coliß-galactosidase in live cells and mice sensitively and directly, which holds great promise for its application in biomedical research such as gene therapy for cancer in the future.


Biosensing Techniques , Cell Survival , Escherichia coli/enzymology , Fluorescent Dyes/chemistry , Galactosidases/analysis , Molecular Imaging , Photons , Fluorescent Dyes/chemical synthesis , Galactosidases/metabolism , HeLa Cells , Humans
...