Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 139
1.
J Colloid Interface Sci ; 670: 204-214, 2024 Sep 15.
Article En | MEDLINE | ID: mdl-38761573

Owing to highly theoretical capacity of 3579 mAh/g for lithium-ion storage at ambient temperature, silicon (Si) becomes a promising anode material of high-performance lithium-ion batteries (LIBs). However, the large volume change (∼300 %) during lithiation/delithiation and low conductivity of Si are challenging the commercial developments of LIBs with Si anode. Herein, a sandwich structure anode that Si nanoparticles sandwiched between carbon nanotube (CNT) and silicon carbide (SiC) has been successfully constructed by acetylene chemical vapor deposition and magnesiothermic reduction reaction technology. The SiC acts as a stiff layer to inhibit the volumetric stress from Si and the inner graphited CNT plays as the matrix to cushion the volumetric stress and as the conductor to transfer electrons. Moreover, the combination of SiC and CNT can relax the surface stress of carbonaceous interface to synergistically prevent the integrated structure from the degradation to avoid the solid electrolyte interface (SEI) reorganization. In addition, the SiC (111) surface has a strong ability to adsorb fluoroethylene carbonate molecule to further stabilize the SEI. Consequently, the CNT/SiNPs/SiC anode can stably supply the capacity of 1127.2 mAh/g at 0.5 A/g with a 95.6 % capacity retention rate after 200 cycles and an excellent rate capability of 745.5 mAh/g at 4.0 A/g and 85.5 % capacity retention rate after 1000 cycles. The present study could give a guide to develop the functional Si anode through designing a multi-interface with heterostructures.

2.
Cancer Cell Int ; 24(1): 179, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783335

BACKGROUND: Radiotherapy (RT) has been identified as a vital treatment for esophageal squamous cell carcinoma (ESCC), while the development of radioresistance remains a major obstacle in ESCC management. The aim of this study was to investigate the effect of NIMA-related kinase 2 (NEK2) on radioresistance in ESCC cells and to reveal potential molecular mechanisms. METHODS: Human esophageal epithelial cells (HEEC) and human ESCC cell lines were obtained from the Research Center of the Fourth Hospital of Hebei Medical University (Shijiazhuang, China). Cell Counting Kit-8 (CCK-8) and flow cytometry assays were applied to assess the proliferation ability, cell cycle, apoptosis rates, and ROS production of ESCC cells. The colony-forming assay was used to estimate the effect of NEK2 on radiosensitivity. Autophagy was investigated by western blotting analysis, GFP-mRFP-LC3 fluorescence assay, and transmission electron microscopy (TEM). RESULTS: In the present study, our results showed that NEK2 was associated with radioresistance, cell cycle arrest, apoptosis, ROS production, and survival of ESCC. NEK2 knockdown could significantly inhibit growth while enhancing radiosensitivity and ROS production in ESCC cells. Interestingly, NEK2 knockdown inhibited ESCC cell autophagy and reduced autophagic flux, ultimately reversing NEK2-induced radioresistance. Mechanistically, NEK2 bound to and regulated the stability of tripartite motif-containing protein 21 (TRIM21). The accumulation of NEK2-induced light chain 3 beta 2 (LC3B II) can be reversed by the knockdown of TRIM21. CONCLUSION: These results demonstrated that NEK2 activated autophagy through TRIM21, which may provide a promising therapeutic strategy for elucidating NEK2-mediated radioresistance in ESCC.

3.
Curr Drug Metab ; 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38454771

BACKGROUND: Prusogliptin is a potent and selective DPP-4 inhibitor. In different animal models, Prusogliptin showed potential efficacy in the treatment of type 2 diabetes. However, the knowledge of its pharmacokinetics and safety in patients with liver dysfunction is limited. OBJECTIVES: The present study evaluated the pharmacokinetics and safety of Prusogliptin in subjects with mild or moderate hepatic impairment compared with healthy subjects. METHODS: According to the liver function of the subjects, we divided them into a mild liver dysfunction group, a moderate liver dysfunction group and a normal liver function group. All subjects in three groups received a single oral dose of Prusogliptin 100-mg tablets. Pharmacokinetics and safety index collection was carried out before and after taking the drug. Plasma pharmacokinetics of Prusogliptin were evaluated, and geometric least- -squares mean (GLSM) and associated 90% confidence intervals for insufficient groups versus the control group were calculated for plasma exposures. RESULTS: After a single oral administration of 100 mg of Prusogliptin tablets, the exposure level of Prusogliptin in subjects with mild liver dysfunction was slightly higher than that in healthy subjects. The exposure level of Prusogliptin was significantly increased in subjects with moderate liver dysfunction. There were no adverse events in this study. CONCLUSION: The exposure level of Prusogliptin in subjects with liver dysfunction was higher than that in healthy subjects. No participant was observed of adverse events. Prusogliptin tablets were safe and well tolerated in Chinese subjects with mild to moderate liver dysfunction and normal liver function.

4.
BMC Urol ; 24(1): 38, 2024 Feb 12.
Article En | MEDLINE | ID: mdl-38347470

BACKGROUND: Prostatic fibrosis, characterized by the accumulation of myofibroblasts and collagen deposition, is closely associated with LUTS and may lead to mechanical obstruction of the urethra. Additionally, Metabolic Syndrome (MetS), characterized by central obesity, high blood sugar, lipid metabolism disorders, and hypertension, is increasingly recognized as a proinflammatory condition linked to prostate inflammation. METHODS: Clinical data from 108 subjects who underwent transurethral resection of the prostate or bipolar plasmakinetic enucleation of the prostate were prospectively collected between June 2021 and August 2022. Patients were divided in two groups according to whether or not they had a diagnosis of MetS. Specimens were stained with Masson trichrome and the periurethral prostatic fibrosis extent was evaluated using quantitative morphometry. RESULTS: Forty-three patients (39.8%) were diagnosed with MetS. Patients with MetS showed a significantly greater extent of prostatic fibrosis than the others (68.1 ± 17.1% vs. 42.5 ± 18.2%, P < 0.001), and there was a positive correlation between the number of positive MetS parameters and the extent of prostatic fibrosis (R2 = 0.4436, P < 0.001). Multivariate regression analysis revealed that central obesity (B = 2.941, 95% confidence interval, 1.700-3.283), elevated fasting glucose (B = 1.036, 95% confidence interval, 0.293-1.780), reduced HDL cholesterol (B = 0.910, 95% confidence interval, 0.183-1.636) and elevated triglycerides (B = 1.666, 95% confidence interval, 0.824-2.508) were positively correlated to prostatic fibrosis. Elevated blood pressure, however, was unrelated to prostatic fibrosis (B = 0.009, 95% confidence interval, -0.664-0.683). CONCLUSIONS: The present findings suggest that prostatic fibrosis is positively correlated with MetS and its components including central obesity, elevated fasting glucose, reduced high density lipoprotein cholesterol and elevated triglycerides.


Metabolic Syndrome , Prostatic Hyperplasia , Transurethral Resection of Prostate , Male , Humans , Prostate/pathology , Metabolic Syndrome/complications , Prospective Studies , Prostatic Hyperplasia/surgery , Obesity, Abdominal/complications , Obesity, Abdominal/pathology , Obesity, Abdominal/surgery , Fibrosis , Triglycerides , Glucose
5.
Nat Struct Mol Biol ; 31(1): 54-67, 2024 Jan.
Article En | MEDLINE | ID: mdl-38177672

THEMIS plays an indispensable role in T cells, but its mechanism of action has remained highly controversial. Using the systematic proximity labeling methodology PEPSI, we identify THEMIS as an uncharacterized substrate for the phosphatase SHP1. Saturated mutagenesis assays and mass spectrometry analysis reveal that phosphorylation of THEMIS at the evolutionally conserved Tyr34 residue is oppositely regulated by SHP1 and the kinase LCK. Similar to THEMIS-/- mice, THEMISY34F/Y34F knock-in mice show a significant decrease in CD4 thymocytes and mature CD4 T cells, but display normal thymic development and peripheral homeostasis of CD8 T cells. Mechanistically, the Tyr34 motif in THEMIS, when phosphorylated upon T cell antigen receptor activation, appears to act as an allosteric regulator, binding and stabilizing SHP1 in its active conformation, thus ensuring appropriate negative regulation of T cell antigen receptor signaling. However, cytokine signaling in CD8 T cells fails to elicit THEMIS Tyr34 phosphorylation, indicating both Tyr34 phosphorylation-dependent and phosphorylation-independent roles of THEMIS in controlling T cell maturation and expansion.


Intercellular Signaling Peptides and Proteins , Thymocytes , Mice , Animals , Mice, Knockout , Thymocytes/metabolism , Receptors, Antigen, T-Cell , Signal Transduction
6.
Bioanalysis ; 15(24): 1489-1501, 2023 Dec.
Article En | MEDLINE | ID: mdl-37991204

Background: SYHA1807 is a novel lysine specific demethylase 1 inhibitor being developed for the treatment of small-cell lung cancer. Aim: This study aimed to establish a ultra-performance liquid chromatography-mass spectrometry (UPLC-MS)/MS method for measuring SYHA1807 in human plasma, supporting its application in a first-in-human study. Methods: SYHA1807 was separated on an ACQUITY UPLC BEH® C18 Column (2.1 × 50 mm, 1.7 µm) after protein precipitation of plasma samples. Mass spectrometry analysis was performed with a Xevo TQS triple quadrupole mass spectrometer utilizing a positive electronic spray ionization source. The established method was fully validated according to bioanalytical guidelines. Results & conclusion: A rapid, specific and robust UPLC-MS/MS method was first established for quantifying SYHA1807 and successfully applied in a first-in-human study.


Tandem Mass Spectrometry , Humans , Chromatography, Liquid/methods , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Plasma , Reproducibility of Results
7.
ACS Nano ; 17(21): 22071-22081, 2023 Nov 14.
Article En | MEDLINE | ID: mdl-37901939

Photoelectrochemical (PEC) water splitting is an attractive strategy to convert solar energy to hydrogen. However, the lifetime of PEC devices is restricted by the photocorrosion of semiconductors and the instability of co-catalysts. Herein, we report a feasible in situ inherent cross-linking method for stabilizing semiconductors that uses a CoFe-dispersed polyacrylamide (PAM) hydrogel as a transparent protector. The CoFe-PAM hydrogel protected BiVO4 (BVO) photoanode reached a photocurrent density of 5.7 mA cm-2 at 1.23 VRHE under AM 1.5G illumination with good stability. The PAM hydrogel network improved the loading of Fe sites while enabling the retention of more CoFe co-catalysts and increasing the electron density of the reaction active sites, further improving the PEC performance and stability. More importantly, by tuning the polymerization network, we pioneer the use of quasi-solid-state electrolytes in photoelectrochemistry, where the high concentration of ionic solvent in the PAM hydrogel ensures effective charge transport and good water storage owing to the hydrophilic and porous structure of the hydrogel. This work expands the scope of PEC research by providing a class of three-dimensional hydrogel electrocatalysts and quasi-solid-state electrolytes with huge extension potential, and the versatility of these quasi-solid-state electrolytes can be employed for other semiconductors.

8.
Drug Des Devel Ther ; 17: 3035-3046, 2023.
Article En | MEDLINE | ID: mdl-37795495

Objective: This study compared the pharmacokinetic and safety profiles of generic and original vortioxetine hydrobromide tablets under fasting and fed conditions, and evaluated the bioequivalence of two vortioxetine formulations to obtain sufficient evidence for abbreviated new drug application. Methods: A randomized, open-label, two-formulation, single-dose, two-period crossover bioequivalence study was conducted under fasting and fed conditions (n = 32 per study). Eligible healthy Chinese subjects received a single 10-mg dose of the test or reference vortioxetine hydrobromide tablet, followed by a 28-day washout interval between periods. Serial blood samples were collected up to 72 h after administration in each period, and the plasma concentrations of vortioxetine were detected using a validated method. The primary pharmacokinetic (PK) parameters were calculated using the non-compartmental method. The geometric mean ratios for the PK parameters of the test drug to the reference drug and the corresponding 90% confidence intervals were acquired for bioequivalence analysis. A safety evaluation was performed throughout the study. Results: Under fasting and fed conditions, the PK parameters of the test drug were similar to those of the reference drug. The 90% confidence intervals (CIs) of the geometric mean ratios of the test to reference formulations were 96.44-105.81% for peak concentration (Cmax), 97.94-105.05% for the area under the curve truncated at 72 hours (AUC0-72 h) under fasting conditions, 93.92-104.15% for Cmax, and 96.67-102.55% for AUC0-72 h under fed conditions, all of which were within the accepted bioequivalence range of 80.00-125.00%. Both the test and reference formulations were well-tolerated, and no serious adverse events related to the study drug were reported during the study. Conclusion: The PK bioequivalence of the test and reference vortioxetine hydrobromide tablets in healthy Chinese subjects was established under fasting and fed conditions, which met the predetermined regulatory criteria. Both formulations were safe and well tolerated.


East Asian People , Vortioxetine , Humans , Area Under Curve , China , Cross-Over Studies , Fasting , Healthy Volunteers , Tablets , Therapeutic Equivalency , Vortioxetine/pharmacokinetics
9.
Bioengineering (Basel) ; 10(10)2023 Oct 19.
Article En | MEDLINE | ID: mdl-37892950

BACKGROUND: Breast cancer is one of the most common malignant tumors in women. A noninvasive ultrasound examination can identify mammary-gland-related diseases and is well tolerated by dense breast, making it a preferred method for breast cancer screening and of significant clinical value. However, the diagnosis of breast nodules or masses via ultrasound is performed by a doctor in real time, which is time-consuming and subjective. Junior doctors are prone to missed diagnoses, especially in remote areas or grass-roots hospitals, due to limited medical resources and other factors, which bring great risks to a patient's health. Therefore, there is an urgent need to develop fast and accurate ultrasound image analysis algorithms to assist diagnoses. METHODS: We propose a breast ultrasound image-based assisted-diagnosis method based on convolutional neural networks, which can effectively improve the diagnostic speed and the early screening rate of breast cancer. Our method consists of two stages: tumor recognition and tumor classification. (1) Attention-based semantic segmentation is used to identify the location and size of the tumor; (2) the identified nodules are cropped to construct a training dataset. Then, a convolutional neural network for the diagnosis of benign and malignant breast nodules is trained on this dataset. We collected 2057 images from 1131 patients as the training and validation dataset, and 100 images of the patients with accurate pathological criteria were used as the test dataset. RESULTS: The experimental results based on this dataset show that the MIoU of tumor location recognition is 0.89 and the average accuracy of benign and malignant diagnoses is 97%. The diagnosis performance of the developed diagnostic system is basically consistent with that of senior doctors and is superior to that of junior doctors. In addition, we can provide the doctor with a preliminary diagnosis so that it can be diagnosed quickly. CONCLUSION: Our proposed method can effectively improve diagnostic speed and the early screening rate of breast cancer. The system provides a valuable aid for the ultrasonic diagnosis of breast cancer.

10.
ACS Appl Mater Interfaces ; 15(36): 42501-42510, 2023 Sep 13.
Article En | MEDLINE | ID: mdl-37641500

Electrocatalysis in neutral conditions is appealing for hydrogen production by utilizing abundant wastewater or seawater resources. Single-atom catalysts (SACs) immobilized on supports are considered one of the most promising strategies for electrocatalysis research. While they have principally exhibited breakthrough activity and selectivity for the hydrogen evolution reaction (HER) electrocatalysis in alkaline or acidic conditions, few SACs were reported for HER in neutral media. Herein, we report a facile strategy to tailor the water dissociation active sites on the NiFe LDH by inducing Mo species and an ultralow single atomic Pt loading. The defected NiFeMo LDH (V-NiFeMo LDH) shows HER activity with an overpotential of 89 mV at 10 mA cm-2 in 1 M phosphate buffer solutions. The induced Mo species and the transformed NiO/Ni phases after etching significantly increase the electron conductivity and the catalytic active sites. A further enhancement can be achieved by modulating the ultralow single atom Pt anchored on the V-NiFeMo LDH by potentiostatic polarization. A potential as low as 37 mV is obtained at 10 mA cm-2 with a pronounced long-term durability over 110 h, surpassing its crystalline LDH materials and most of the HER catalysts in neutral medium. Experimental and density functional theory calculation results have demonstrated that the synergistic effects of Mo/SAs Pt and phase transformation into NiFe LDH reduce the kinetic energy barrier of the water dissociation process and promote the H* conversion for accelerating the neutral HER.

11.
World J Gastrointest Surg ; 15(6): 1138-1148, 2023 Jun 27.
Article En | MEDLINE | ID: mdl-37405104

BACKGROUND: While colorectal polyps are not cancerous, some types of polyps, known as adenomas, can develop into colorectal cancer over time. Polyps can often be found and removed by colonoscopy; however, this is an invasive and expensive test. Thus, there is a need for new methods of screening patients at high risk of developing polyps. AIM: To identify a potential association between colorectal polyps and small intestine bacteria overgrowth (SIBO) or other relevant factors in a patient cohort with lactulose breath test (LBT) results. METHODS: A total of 382 patients who had received an LBT were classified into polyp and non-polyp groups that were confirmed by colonoscopy and pathology. SIBO was diagnosed by measuring LBT-derived hydrogen (H) and methane (M) levels according to 2017 North American Consensus recommendations. Logistic regression was used to assess the ability of LBT to predict colorectal polyps. Intestinal barrier function damage (IBFD) was determined by blood assays. RESULTS: H and M levels revealed that the prevalence of SIBO was significantly higher in the polyp group than in the non-polyp group (41% vs 23%, P < 0.01; 71% vs 59%, P < 0.05, respectively). Within 90 min of lactulose ingestion, the peak H values in the adenomatous and inflammatory/hyperplastic polyp patients were significantly higher than those in the non-polyp group (P < 0.01, and P = 0.03, respectively). In 227 patients with SIBO defined by combining H and M values, the rate of IBFD determined by blood lipopolysaccharide levels was significantly higher among patients with polyps than those without (15% vs 5%, P < 0.05). In regression analysis with age and gender adjustment, colorectal polyps were most accurately predicted with models using M peak values or combined H and M values limited by North American Consensus recommendations for SIBO. These models had a sensitivity of ≥ 0.67, a specificity of ≥ 0.64, and an accuracy of ≥ 0.66. CONCLUSION: The current study made key associations among colorectal polyps, SIBO, and IBFD and demonstrated that LBT has moderate potential as an alternative noninvasive screening tool for colorectal polyps.

12.
Nanoscale ; 15(28): 11759-11776, 2023 Jul 20.
Article En | MEDLINE | ID: mdl-37395077

Water electro-splitting driven by renewable energy is significant in energy conversion for the development of hydrogen energy sources. The hydrogen evolution reaction (HER) directly generating hydrogen products occurs in cathode catalysis. Over the years, significant progress has been made to boost the HER efficiency by exploratively designing highly active and economical Pt-based electrocatalysts. However, there are still some urgent problems to be solved for Pt-based HER catalysts in more economical alkaline electrolytes, such as the slow kinetics caused by additional hydrolysis dissociation steps, which greatly hinders the practical application. This review systematically summarizes several strategies for optimizing alkaline HER kinetics and provides direct guidelines for the design of highly active Pt-based electrocatalysts. Specifically, the intrinsic HER activity in alkaline water electrolysis can be boosted by accelerating the water dissociation, optimizing the hydrogen binding energy or modulating the spatial dimensions of the electrocatalyst based on the HER mechanism. Finally, we prospect the challenges for the alkaline HER on novel Pt-based electrocatalysts, including the active site study, the HER mechanism exploration and the extensible catalyst preparation technologies.

13.
Waste Manag ; 168: 221-229, 2023 Aug 01.
Article En | MEDLINE | ID: mdl-37311389

Spent biomass from agricultural and forestry industries are substantial low-cost carbon source for reducing the input of microbial lipid production. Herein, the components of the vineyard winter prunings (VWPs) from 40 grape cultivars were analyzed. The VWPs contained (w/w) cellulose ranged from 24.8% to 32.4%, hemicellulose 9.6% to 13.8%, lignin 23.7% to 32.4%. The VWPs from Cabernet Sauvignon was processed with the alkali-methanol pretreatment, and 95.8% of the sugars was released from the regenerated VWPs after enzymatic hydrolysis. The hydrolysates from the regenerated VWPs was suitable for lipid production without further treatment as a lipid content of 59% could be achieved with Cryptococcus curvatus. The regenerated VWPs was also used for lipid production via simultaneous saccharification and fermentation (SSF), which led to a lipid yield of 0.088 g/g raw VWPs, 0.126 g/g regenerated VWPs and 0.185 g/g from the reducing sugars. This work demonstrated that the VWPs can be explored for co-production of microbial lipids.


Cryptococcus , Lipids , Farms , Fermentation , Sugars , Biomass
14.
Proc Natl Acad Sci U S A ; 120(27): e2300493120, 2023 Jul 04.
Article En | MEDLINE | ID: mdl-37364112

Fast transport of charge carriers in semiconductor photoelectrodes are a major determinant of the solar-to-hydrogen efficiency for photoelectrochemical (PEC) water slitting. While doping metal ions as single atoms/clusters in photoelectrodes has been popularly used to regulate their charge transport, PEC performances are often low due to the limited charge mobility and severe charge recombination. Here, we disperse Ru and P diatomic sites onto hematite (DASs Ru-P:Fe2O3) to construct an efficient photoelectrode inspired by the concept of correlated single-atom engineering. The resultant photoanode shows superior photocurrent densities of 4.55 and 6.5 mA cm-2 at 1.23 and 1.50 VRHE, a low-onset potential of 0.58 VRHE, and a high applied bias photon-to-current conversion efficiency of 1.00% under one sun illumination, which are much better than the pristine Fe2O3. A detailed dynamic analysis reveals that a remarkable synergetic ineraction of the reduced recombination by a low Ru doping concentration with substitution of Fe site as well as the construction of Ru-P bonds in the material increases the carrier separation and fast charge transportation dynamics. A systematic simulation study further proves the superiority of the Ru-P bonds compared to the Ru-O bonds, which allows more long-lived carriers to participate in the water oxidation reaction. This work offers an effective strategy for enhancing charge carrier transportation dynamics by constructing pair sites into semiconductors, which may be extended to other photoelectrodes for solar water splitting.

15.
Med Image Anal ; 87: 102824, 2023 07.
Article En | MEDLINE | ID: mdl-37126973

Gene mutation detection is usually carried out by molecular biological methods, which is expensive and has a long-time cycle. In contrast, pathological images are ubiquitous. If clinically significant gene mutations can be predicted only through pathological images, it will greatly promote the widespread use of gene mutation detection in clinical practice. However, current gene mutation prediction methods based on pathological images are ineffective because of the inability to identify mutated regions in gigapixel Whole Slide Image (WSI). To address this challenge, hereby we propose a carefully designed framework for WSI-based gene mutation prediction, which consists of three parts. (i) The first part of cancerous area segmentation, based on supervised learning, quickly filters out a large number of non-mutated regions; (ii) the second part of cancerous patch clustering, based on the representations derived from contrastive learning, ensures the comprehensiveness of patch selection; and (iii) the third part of mutation classification, based on the proposed hierarchical deep multi-instance learning method (HDMIL), ensures that sufficient patches are considered and inaccurate selections are ignored. In addition, benefiting from a two-stage attention mechanism in HDMIL, the patches that are highly correlated with gene mutations can be identified. This interpretability can help a pathologist to analyze the correlation between gene mutation and histopathological morphology. Experimental results demonstrate that the proposed gene mutation prediction framework significantly outperforms the state-of-the-art methods. In the TCGA bladder cancer dataset, five clinically relevant gene mutations are well predicted.


Deep Learning , Urinary Bladder Neoplasms , Humans , Urinary Bladder , Urinary Bladder Neoplasms/diagnostic imaging , Urinary Bladder Neoplasms/genetics , Mutation/genetics
16.
Discov Oncol ; 14(1): 80, 2023 May 26.
Article En | MEDLINE | ID: mdl-37233832

OBJECTIVES: The NEK2 (never in mitosis gene A-related kinase 2), a serine/threonine kinase involved in chromosome instability and tumorigenesis. Hence, this study aimed to explore the molecular function of NEK2 in esophageal squamous cell carcinoma (ESCC). METHODS: By available transcriptome datasets (GSE53625 cohort, GSE38129 cohort, and GSE21293 cohort), we analyzed the differentially expressed genes in invading and non-invading ESCC. Subsequently, we evaluated the association between NEK2 expression level and clinical outcomes through Kaplan-Meier analysis method. The quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting (WB) analyses were performed to determine the expression levels of NEK2 mRNA and protein, respectively. We knocked down the NEK2 expression in ESCC cells (ECA109 and TE1), and evaluated the NEK2 biology function associated with ESCC cell proliferation, migration, invasion, and colony formation abilities. Finally, the downstream pathway of NEK2 was analyzed through Gene Set Enrichment Analysis (GSEA) and validated the regulatory mechanism of NEK2 on the potential pathway through WB. RESULTS: We found that NEK2 was highly expressed in ESCC cells compared with human esophageal epithelial cells (HEEC) (P < 0.0001), and high NEK2 expression was remarkably associated with poor survival (P = 0.019). Knockdown of NEK2 showed the significant inhibitory effect for tumorigenesis, and suppressed the ESCC cells proliferation, migration, invasion, and formation of colonies abilities. Additionally, GSEA revealed that Wnt/ß-catenin pathway was a downstream pathway of NEK2. WB results further validated the regulatory mechanism of NEK2 for Wnt/ß-catenin signaling. CONCLUSIONS: Our results indicated that NEK2 promotes ESCC cell proliferation, migration and invasion by activating the Wnt/ß-catenin pathway. NEK2 could be a promising target for ESCC.

17.
Clin Pharmacol Drug Dev ; 12(7): 699-705, 2023 07.
Article En | MEDLINE | ID: mdl-37243511

Desvenlafaxine succinate is a selective serotonin-norepinephrine reuptake inhibitor for the treatment of major depressive disorder. The pharmacokinetic profile of desvenlafaxine succinate at the clinically recommended dose of 50 mg in Chinese healthy subjects has been reported rarely. The objective of this study was to evaluate the pharmacokinetics and bioequivalence of desvenlafaxine succinate in Chinese healthy subjects. A single-dose, open-label, randomized, two-way crossover study with a 7-day washout period was conducted. A total of 88 individuals were incorporated to show bioequivalence of a generic and a reference drug, with 48 individuals in the fasting state and 40 receiving a high-fat diet. Finally, 46 and 38 individuals completed the fasting and the fed study, respectively. The 90% confidence intervals of the adjusted geometric mean ratios for maximum plasma concentration, area under the concentration-time curve from time zero to the last measurable concentration, and area under the concentration-time curve from time zero to infinity all fell in the bioequivalent interval of 80%-125% in both the fasting and fed states. A total of 33 adverse events were reported, and all were mild or moderate in severity. In summary, the generic and reference formulations were bioequivalent, with no observable safety differences in the fasting/fed state.


Depressive Disorder, Major , Humans , Area Under Curve , Cross-Over Studies , Desvenlafaxine Succinate , East Asian People , Fasting , Healthy Volunteers , Selective Serotonin Reuptake Inhibitors , Therapeutic Equivalency , Feeding Behavior
18.
Nat Commun ; 14(1): 2640, 2023 May 08.
Article En | MEDLINE | ID: mdl-37156781

Although much effort has been devoted to improving photoelectrochemical water splitting of hematite (α-Fe2O3) due to its high theoretical solar-to-hydrogen conversion efficiency of 15.5%, the low applied bias photon-to-current efficiency remains a huge challenge for practical applications. Herein, we introduce single platinum atom sites coordination with oxygen atom (Pt-O/Pt-O-Fe) sites into single crystalline α-Fe2O3 nanoflakes photoanodes (SAs Pt:Fe2O3-Ov). The single-atom Pt doping of α-Fe2O3 can induce few electron trapping sites, enhance carrier separation capability, and boost charge transfer lifetime in the bulk structure as well as improve charge carrier injection efficiency at the semiconductor/electrolyte interface. Further introduction of surface oxygen vacancies can suppress charge carrier recombination and promote surface reaction kinetics, especially at low potential. Accordingly, the optimum SAs Pt:Fe2O3-Ov photoanode exhibits the photoelectrochemical performance of 3.65 and 5.30 mA cm-2 at 1.23 and 1.5 VRHE, respectively, with an applied bias photon-to-current efficiency of 0.68% for the hematite-based photoanodes. This study opens an avenue for designing highly efficient atomic-level engineering on single crystalline semiconductors for feasible photoelectrochemical applications.

19.
BMC Med Genomics ; 16(1): 27, 2023 02 20.
Article En | MEDLINE | ID: mdl-36803971

BACKGROUND: This study aimed to investigate the potential prognostic value of DNA damage repair genes (DDRGs) in esophageal squamous cell carcinoma (ESCC) and their relationship with immune-related characteristics. METHODS: We analyzed DDRGs of the Gene Expression Omnibus database (GSE53625). Subsequently, the GSE53625 cohort was used to construct a prognostic model based on least absolute shrinkage and selection operator regression, and Cox regression analysis was used to construct a nomogram. The immunological analysis algorithms explored the differences between the potential mechanism, tumor immune activity, and immunosuppressive genes in the high- and low-risk groups. Of the prognosis model-related DDRGs, we selected PPP2R2A for further investigation. Functional experiments were conducted to evaluate the effect on ESCC cells in vitro. RESULTS: A 5-DDRG (ERCC5, POLK, PPP2R2A, TNP1 and ZNF350) prediction signature was established for ESCC, stratifying patients into two risk groups. Multivariate Cox regression analysis showed that the 5-DDRG signature was an independent predictor of overall survival. Immune cells such as CD4 T cells and monocytes displayed lower infiltration levels in the high-risk group. Additionally, the immune, ESTIMATE, and stromal scores in the high-risk group were all considerably higher than those in the low-risk group. Functionally, knockdown of PPP2R2A significantly suppressed cell proliferation, migration and invasion in two ESCC cell lines (ECA109 and TE1). CONCLUSION: The clustered subtypes and prognostic model of DDRGs could effectively predict the prognosis and immune activity of ESCC patients.


Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Prognosis , Esophageal Neoplasms/pathology , Tumor Microenvironment , DNA Damage
20.
Sci Adv ; 9(1): eade4589, 2023 Jan 04.
Article En | MEDLINE | ID: mdl-36598972

Photoelectrochemical (PEC) water splitting that functions in pH-neutral electrolyte attracts increasing attention to energy demand sustainability. Here, we propose a strategy to in situ form a NiB layer by tuning the composition of the neutral electrolyte with the additions of nickel and borate species, which improves the PEC performance of the BiVO4 photoanode. The NiB/BiVO4 exhibits a photocurrent density of 6.0 mA cm-2 at 1.23 VRHE with an onset potential of 0.2 VRHE under 1 sun illumination. The photoanode displays a photostability of over 600 hours in a neutral electrolyte. The additive of Ni2+ in the electrolyte, which efficiently inhibits the dissolution of NiB, can accelerate the photogenerated charge transfer and enhance the water oxidation kinetics. The borate species with B─O bonds act as a promoter of catalyst activity by accelerating proton-coupled electron transfer. The synergy effect of both species suppresses the surface charge recombination and inhibits the photocorrosion of BiVO4.

...