Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
2.
Pharmacol Res ; 201: 107105, 2024 Mar.
Article En | MEDLINE | ID: mdl-38367917

Chronic interstitial fibrosis presents a significant challenge to the long-term survival of transplanted kidneys. Our research has shown that reduced expression of acyl-coenzyme A oxidase 1 (ACOX1), which is the rate-limiting enzyme in the peroxisomal fatty acid ß-oxidation pathway, contributes to the development of fibrosis in renal allografts. ACOX1 deficiency leads to lipid accumulation and excessive oxidation of polyunsaturated fatty acids (PUFAs), which mediate epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) reorganization respectively, thus causing fibrosis in renal allografts. Furthermore, activation of Toll-like receptor 4 (TLR4)-nuclear factor kappa-B (NF-κB) signaling induced ACOX1 downregulation in a DNA methyltransferase 1 (DNMT1)-dependent manner. Overconsumption of PUFA resulted in endoplasmic reticulum (ER) stress, which played a vital role in facilitating ECM reorganization. Supplementation with PUFAs contributed to delayed fibrosis in a rat model of renal transplantation. The study provides a novel therapeutic approach that can delay chronic interstitial fibrosis in renal allografts by targeting the disorder of lipid metabolism.


Acyl-CoA Oxidase , Kidney Transplantation , Kidney , Metabolic Diseases , Animals , Rats , Acyl-CoA Oxidase/metabolism , Allografts , Fibrosis , Kidney/pathology , Lipids
3.
Lipids Health Dis ; 22(1): 215, 2023 Dec 04.
Article En | MEDLINE | ID: mdl-38049842

BACKGROUND: Chronic interstitial fibrosis is the primary barrier against the long-term survival of transplanted kidneys. Extending the lifespan of allografts is vital for ensuring the long-term health of patients undergoing kidney transplants. However, few targets and their clinical applications have been identified. Moreover, whether dyslipidemia facilitates fibrosis in renal allograft remains unclear. METHODS: Blood samples were collected from patients who underwent kidney transplantation. Correlation analyses were conducted between the Banff score and body mass index, and serum levels of triacylglycerol, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. A rat model of renal transplantation was treated with the lipid-lowering drug, fenofibrate, and kidney fibrosis levels were determined by histochemical staining. Targeted metabolomic detection was conducted in blood samples from patients who underwent kidney transplantation and were divided into fibrotic and non-fibrotic groups. Rats undergoing renal transplantation were fed either an n-3 or n-6 polyunsaturated fatty acid (PUFA)-enriched diet. Immunohistochemical and Masson's trichrome staining were used to determine the degree of fibrosis. RESULTS: Hyperlipidemia was associated with fibrosis development. Treatment with fenofibrate contributed to improve fibrosis in a rat model of renal transplantation. Moreover, n-3 PUFAs from fibrotic group showed significant downregulation compared to patients without fibrotic renal allografts, and n-3 PUFAs-enriched diet contributed to delayed fibrosis in a rat model of renal transplantation. CONCLUSIONS: This study suggests that hyperlipidemia facilitates fibrosis of renal allografts. Importantly, a new therapeutic approach was provided that may delay chronic interstitial fibrosis in transplanted kidneys by augmenting the n-3 PUFA content in the diet.


Fatty Acids, Omega-3 , Fenofibrate , Hyperlipidemias , Kidney Transplantation , Humans , Rats , Animals , Kidney Transplantation/adverse effects , Fenofibrate/pharmacology , Kidney/pathology , Fibrosis , Allografts , Hyperlipidemias/pathology , Cholesterol
4.
Oncotarget ; 9(2): 1885-1897, 2018 Jan 05.
Article En | MEDLINE | ID: mdl-29416738

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Mutations of TP53 may reach 70% - 85% in HNSCC patients without human papillomavirus (HPV) infection. Recurrence rate remains particularly high for HNSCC patients with mutations in the TP53 gene although patients are responsive to surgery, irradiation, and chemotherapy early in the treatment. p53-Reactivation and Induction of Massive Apoptosis-1 (PRIMA-1) and its methylated analogue PRIMA-1Met (also known as APR-246) are quinuclidine compounds that rescue the DNA-binding activity of mutant p53 (mut-p53) and restore the potential of wild-type p53. In the current report, we demonstrated that inhibition of poly (ADP-ribose) polymerase-1 (PARP-1) with 6(5H)-phenanthridinone (PHEN) and N-(6-Oxo-5,6-dihydrophenanthridin-2-yl)-(N, N-dimethylamino) acetamide hydrochloride (PJ34) sensitizes UMSCC1, UMSCC14, and UMSCC17A, three HNSCC cell lines to the treatment of APR-246. PHEN enhances APR-246-induced apoptosis, but not programmed necrosis or autophagic cell death in HNSCC cells. The PARP-1 inhibition-induced sensitization of HNSCC cells to APR-246 is independent of TP53 mutation. Instead, PARP-1 inhibition promotes APR-246-facilitated inactivation of thioredoxin reductase 1 (TrxR1), leading to ROS accumulation and DNA damage. Overexpression of TrxR1 or application of antioxidant N-acetyl-L-cysteine (NAC) depletes the ROS increase, reduces DNA damage, and decreases cell death triggered by APR-246/PHEN in HNSCC cells. Thus, we have characterized a new function of PARP-1 inhibitor in HNSCC cells by inactivation of TrxR1 and elevation of ROS and provide a novel therapeutic strategy for HNSCC by the combination of PARP-1 inhibitors and APR-246.

5.
Oncogene ; 37(25): 3384-3398, 2018 06.
Article En | MEDLINE | ID: mdl-29348462

TP53 mutations frequently occur in head and neck squamous cell carcinoma (HNSCC) patients without human papillomavirus infection. The recurrence rate for these patients is distinctly high. It has been actively explored to identify agents that target TP53 mutations and restore wild-type (WT) TP53 activities in HNSCC. PRIMA-1 (p53-reactivation and induction of massive apoptosis-1) and its methylated analogue PRIMA-1Met (also called APR-246) were found to be able to reestablish the DNA-binding activity of p53 mutants and reinstate the functions of WT p53. Herein we report that piperlongumine (PL), an alkaloid isolated from Piper longum L., synergizes with APR-246 to selectively induce apoptosis and autophagic cell death in HNSCC cells, whereas primary and immortalized mouse embryonic fibroblasts and spontaneously immortalized non-tumorigenic human skin keratinocytes (HaCat) are spared from the damage by the co-treatment. Interestingly, PL-sensitized HNSCC cells to APR-246 are TP53 mutation-independent. Instead, we demonstrated that glutathione S-transferase pi 1 (GSTP1), a GST family member that catalyzes the conjugation of GSH with electrophilic compounds to fulfill its detoxification function, is highly expressed in HNSCC tissues. Administration of PL and APR-246 significantly suppresses GSTP1 activity, resulting in the accumulation of ROS, depletion of GSH, elevation of GSSG, and DNA damage. Ectopic expression of GSTP1 or pre-treatment with antioxidant N-acetyl-L-cysteine (NAC) abrogates the ROS elevation and decreases DNA damage, apoptosis, and autophagic cell death prompted by PL/APR-246. In addition, administration of PL and APR-246 impedes UMSCC10A xenograft tumor growth in SCID mice. Taken together, our data suggest that HNSCC cells are selectively sensitive to the combination of PL and APR-246 due to a remarkably synergistic effect of the co-treatment in the induction of ROS by suppression of GSTP1.


Carcinoma, Squamous Cell/pathology , Dioxolanes/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Glutathione S-Transferase pi/metabolism , Head and Neck Neoplasms/pathology , Quinuclidines/pharmacology , Tumor Suppressor Protein p53/metabolism , Animals , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Case-Control Studies , Cell Proliferation , Drug Therapy, Combination , Female , Follow-Up Studies , Glutathione S-Transferase pi/genetics , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Humans , Male , Mice , Mice, SCID , Prognosis , Tumor Cells, Cultured , Tumor Suppressor Protein p53/genetics , Xenograft Model Antitumor Assays
...