Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 676: 368-377, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032419

RESUMEN

The design and fabrication of bifunctional catalysts with high electrocatalytic activity and stability are critical for developing highly reversible Li-O2 batteries (LOBs). Herein, the N, P co-doped MXene (NP-MXene) is prepared by one-step annealing method and evaluated as bifunctional catalyst for LOBs. The results suggest that the P doping plays a crucial role in increasing interlayer distance of MXene, thereby effectively providing more active sites, fast mass transfer, and ample space for the deposition/decomposition of Li2O2. Moreover, the N doping can significantly elevate the d-band center of Ti, thereby remarkably improving the adsorption of reaction intermediates and accelerating the deposition/decomposition of Li2O2 films. Consequently, the MXene-based LOBs deliver an ultrahigh specific capacity of 13,995 mAh/g at 500 mA g-1, a discharge/charge voltage gap of 0.89 V, and a cycle life up to 523 cycles with a limited capacity of 1000 mAh/g at 500 mA g-1. Impressively, the as-fabricated flexible LOBs with NP-MXene cathode display excellent cycling stability and ability to continuously power LEDs even after bending. Our findings pave the road of heteroatom doped MXenes as next-generation electrodes for high-performance energy storage and conversion systems.

2.
ACS Nano ; 16(7): 10783-10797, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35758910

RESUMEN

The practical application of lithium-sulfur batteries is impeded by the polysulfide shuttling and interfacial instability of the metallic lithium anode. In this work, a twinborn ultrathin two-dimensional graphene-based mesoporous SnO2/SnSe2 hybrid (denoted as G-mSnO2/SnSe2) is constructed as a polysulfide immobilizer and lithium regulator for Li-S chemistry. The as-designed G-mSnO2/SnSe2 hybrid possesses high conductivity, strong chemical affinity (SnO2), and a dynamic intercalation-conversion site (LixSnSe2), inhibits shuttle behavior, provides rapid Li-intercalative transport kinetics, accelerates LiPS conversion, and decreases the decomposition energy barrier for Li2S, which is evidenced by the ex situ XAS spectra, in situ Raman, in situ XRD, and DFT calculations. Moreover, the mesoporous G-mSnO2/SnSe2 with lithiophilic characteristics enables homogeneous Li-ion deposition and inhibits Li dendrite growth. Therefore, Li-S batteries with a G-mSnO2/SnSe2 separator achieve a favorable electrochemical performance, including high sulfur utilization (1544 mAh g-1 at 0.2 C), high-rate capability (794 mAh g-1 at 8 C), and long cycle life (extremely low attenuation rate of 0.0144% each cycle at 5 C over 2000 cycles). Encouragingly, a 1.6 g S/Ah-level pouch cell realizes a high energy density of up to 359 Wh kg-1 under a lean E/S usage of 3.0 µL mg-1. This work sheds light on the design roadmap for tackling S-cathode and Li-anode challenges simultaneously toward long-durability Li-S chemistry.

4.
J Colloid Interface Sci ; 611: 609-616, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34973657

RESUMEN

Sodium-ions hybrid capacitors (SIHCs) have been recognized as one of the most potential energy storage devices, which can deliver high power and energy densities simultaneously. However, the sluggish kinetics of electrode materials severely restricts the performance of SIHCs. Herein, N, P-codoped carbon and WS2 nanosheets coating on sodium titanate nanorods (NTO@WS2/N, PC) were first designed by in-situ growing process and sulfuration treatment for boosting sodium-ion storage. Specifically, NTO@WS2/N, PC electrodes displayed a satisfactory specific capacity of 274.7 mAh g-1 at 3.0 A g-1 after 1200 cycles. Furthermore, as-assembled SIHCs delivered high-energy density of 112.1 Wh kg-1 and high-power density of 4334.4 W kg-1. Besides, long-term cycling test revealed that a remarkable capacity retention rate of 89.7% was obtained at 8.0 A g-1 after 2000 cycles. The excellent cycling stability and rate property could be ascribed to following aspects. On the one hand, N, P-codoped carbon could enhance the electrical conductivity and strengthen the structural integrality of the composites. On the other hand, ultrathin WS2 nanosheets and one-dimensional (1D) NTO nanorods structure were conducive to the rapid diffusion of Na+. This work provides a convenient technique to stabilize the structure of electrode materials, which can promote the practical application of SIHCs.

5.
Adv Mater ; 33(31): e2100272, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34165842

RESUMEN

The fast and reversible potassiation/depotassiation of anode materials remains an elusive yet intriguing goal. Herein, a class of the P-doping-induced orthorhombic CoTe2 nanowires with Te vacancy defects supported on MXene (o-P-CoTe2 /MXene) is designed and prepared, taking advantage of the synergistic effects of the conductive o-P-CoTe2 arrays with rich Te vacancy defects and the elastic MXene sheets with self-autoadjustable function. Consequently, the o-P-CoTe2 /MXene superstructure exhibits boosted potassium-storage performance, in terms of high reversible capacity (373.7 mAh g-1 at 0.2 A g-1 after 200 cycles), remarkable rate capability (168.2 mAh g-1 at 20 A g-1 ), and outstanding long-term cyclability (0.011% capacity decay per cycle over 2000 cycles at 2 A g-1 ), representing the best performance in transition-metal-dichalcogenides-based anodes to date. Impressively, the flexible full battery with o-P-CoTe2 /MXene anode achieves a satisfying energy density of 275 Wh kg-1 and high bending stability. The kinetics analysis and first-principles calculations reveal superior pseudocapacitive property, high electronic conductivity, and favorable K+ ion adsorption and diffusion capability, corroborating fast K+ ion storage. Especially, ex situ characterizations confirm o-P-CoTe2 /MXene undergoes reversible evolutions of initially proceeding with the K+ ion insertion, followed by the conversion reaction mechanism.

6.
ACS Appl Mater Interfaces ; 13(15): 17668-17676, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33830722

RESUMEN

Potassium-ion batteries (KIBs) are emerging as the prospective alternatives to lithium-ion batteries in energy storage systems owing to the sufficient resources and relatively low cost of K-related materials. However, serious volume expansion and low specific capacity are found in most materials systems resulting from the large intrinsic radius of K+. Herein, SnS2 nanosheets anchored on nitrogen and sulfur co-doped MXene (SnS2 NSs/MXene) are creatively designed as advanced anode materials for KIBs. SnS2 NSs/MXene with a unique hierarchical structure can not only provide fast transmission channels for K+ but also avoid the accumulation of K+ and volume expansion. These novel features make SnS2 NSs/MXene electrodes exhibit a superior reversible specific capacity of 342.4 mA h g-1 under 50 mA g-1. Also, they maintain 206.1 mA h g-1 at an even higher current density of 0.5 A g-1 over 800 cycles almost without capacity decay. Moreover, the multistep alloying reaction mechanism of SnS2 NSs/MXene composites and K+ is revealed by the ex situ X-ray diffraction measurement. In addition, the density functional theory calculations confirm the existence of Ti-S bonds between SnS2 nanosheets and MXene, which significantly enhance the structural stability and cycling electrochemical performance of SnS2 NSs/MXene composites.

7.
Nanoscale ; 13(4): 2609-2617, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33491021

RESUMEN

The development of bifunctional catalysts with a delicate structure, high efficiency, and good durability for the oxygen evolution reaction (ORR) and oxygen evolution reaction (OER) is crucial to renewable Zn-air batteries. In this work, Co0.7Fe0.3 alloy nanoparticles (NPs) confined in N-doped carbon with a yolk-shell structure in multi-beaded fibers were prepared as a bifunctional electrocatalyst. The confinement structure was composed of an N-doped graphitized carbon shell and a core formed by numerous Co0.7Fe0.3 NPs, and was evenly threaded into a one-dimensional fiber. Moreover, this distinctive hierarchical structure featured abundant mesopores, a high BET surface area of 743.8 m2 g-1, good electronic conductivity, and uniformly distributed Co0.7Fe0.3/Co(Fe)-Nx coupling active sites. Therefore, the experimentally optimized Co0.7Fe0.3@NC2:1-800 showed excellent OER performance (overpotential reached 314 mV at 10 mA cm-2) that far exceeded RuO2 (353 mV), and good ORR catalytic performance (half-wave potential of 0.827 V) comparable to Pt/C (0.818 V). Impressively, the Co0.7Fe0.3@NC2:1-800 Zn-air battery delivered a higher open circuit voltage of 1.449 V, large power density of 85.7 mW cm-2, and outstanding charge-discharge cycling stability compared with the commercial RuO2 + 20 wt% Pt/C catalyst. This work provides new ideas for the structural design of electrocatalysts and energy conversion systems.

8.
Adv Mater ; 32(26): e2000575, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32449574

RESUMEN

Garnet-type solid-state electrolytes (SSEs) are promising for the realization of next-generation high-energy-density Li metal batteries. However, a critical issue associated with the garnet electrolytes is the poor physical contact between the Li anode and the garnet SSE and the resultant high interfacial resistance. Here, it is reported that the Li|garnet interface challenge can be addressed by using Li metal doped with 0.5 wt% Na (denoted as Li*) and melt-casting the Li* onto the garnet SSE surface. A mechanistic study, using Li6.4 La3 Zr1.4 Ta0.6 O12 (LLZTO) as a model SSE, reveals that Li2 CO3 resides within the grain boundaries of newly polished LLZTO pellet, which is difficult to remove and hinders the wetting process. The Li* melt can phase-transfer the Li2 CO3 from the LLZTO grain boundary to the Li*'s top surface, and therefore facilitates the wetting process. The obtained Li*|LLZTO demonstrates a low interfacial resistance, high rate capability, and long cycle life, and can find applications in future all-solid-state batteries (e.g., Li*|LLZTO|LiFePO4 ).

9.
J Hazard Mater ; 393: 122408, 2020 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-32143158

RESUMEN

The strategy to improve the photocatalytic performance is still a challenge for the novel Sillen-Aurivillius perovskite type Bi4NbO8Cl. Herein, heterostructured Bi/Bi4NbO8Cl was fabricated via in-situ solvothermal method, without the additional introduction of Bi-sources. Simultaneously, the amount of oxygen vacancies (OVs) were increased, as the [Bi2O2] blocks released in the solvothermal process to serve as precursors for Bi particles. Due to the large work function of Bi, a Schottky barrier formed at the Bi/Bi4NbO8Cl interface, promoting photo-induced charge separation generated in the Bi4NbO8Cl semiconductor, supplying more holes for the organic compounds decomposition, which could be widely applied in water decontamination. Furthermore, the OVs facilitate the consumption of photo-induced electrons by assisting oxygen activation to produce superoxide radicals (·O2-), leaving more holes in the valence band of Bi4NbO8Cl, and thus result in the enhancement of Rhodamine B (RhB) degradation by 1.82 times over Bi/Bi4NbO8Cl photocatalysts. Through the synergistic effect of Bi and OVs, the Bi/Bi4NbO8Cl also exhibits enhanced photocatalytic performance towards various organic water-contaminants, such as methyl orange, acid orange 7, p-nitrophenol and tetracycline hydrochloride.

10.
Small ; 15(44): e1903720, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31515943

RESUMEN

Potassium-ion batteries (KIBs) have come into the spotlight in large-scale energy storage systems because of cost-effective and abundant potassium resources. However, the poor rate performance and problematic cycle life of existing electrode materials are the main bottlenecks to future potential applications. Here, the first example of preparing 3D hierarchical nanoboxes multidimensionally assembled from interlayer-expanded nano-2D MoS2 @dot-like Co9 S8 embedded into a nitrogen and sulfur codoped porous carbon matrix (Co9 S8 /NSC@MoS2 @NSC) for greatly boosting the electrochemical properties of KIBs in terms of reversible capacity, rate capability, and cycling lifespan, is reported. Benefiting from the synergistic effects, Co9 S8 /NSC@MoS2 @NSC manifest a very high reversible capacity of 403 mAh g-1 at 100 mA g-1 after 100 cycles, an unprecedented rate capability of 141 mAh g-1 at 3000 mA g-1 over 800 cycles, and a negligible capacity decay of 0.02% cycle-1 , boosting promising applications in high-performance KIBs. Density functional theory calculations demonstrate that Co9 S8 /NSC@MoS2 @NSC nanoboxes have large adsorption energy and low diffusion barriers during K-ion storage reactions, implying fast K-ion diffusion capability. This work may enlighten the design and construction of advanced electrode materials combined with strong chemical bonding and integrated functional advantages for future large-scale stationary energy storage.

11.
Nature ; 574(7776): 81-85, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31554968

RESUMEN

The efficient interconversion of chemicals and electricity through electrocatalytic processes is central to many renewable-energy initiatives. The sluggish kinetics of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER)1-4 has long posed one of the biggest challenges in this field, and electrocatalysts based on expensive platinum-group metals are often required to improve the activity and durability of these reactions. The use of alloying5-7, surface strain8-11 and optimized coordination environments12 has resulted in platinum-based nanocrystals that enable very high ORR activities in acidic media; however, improving the activity of this reaction in alkaline environments remains challenging because of the difficulty in achieving optimized oxygen binding strength on platinum-group metals in the presence of hydroxide. Here we show that PdMo bimetallene-a palladium-molybdenum alloy in the form of a highly curved and sub-nanometre-thick metal nanosheet-is an efficient and stable electrocatalyst for the ORR and the OER in alkaline electrolytes, and shows promising performance as a cathode in Zn-air and Li-air batteries. The thin-sheet structure of PdMo bimetallene enables a large electrochemically active surface area (138.7 square metres per gram of palladium) as well as high atomic utilization, resulting in a mass activity towards the ORR of 16.37 amperes per milligram of palladium at 0.9 volts versus the reversible hydrogen electrode in alkaline electrolytes. This mass activity is 78 times and 327 times higher than those of commercial Pt/C and Pd/C catalysts, respectively, and shows little decay after 30,000 potential cycles. Density functional theory calculations reveal that the alloying effect, the strain effect due to the curved geometry, and the quantum size effect due to the thinness of the sheets tune the electronic structure of the system for optimized oxygen binding. Given the properties and the structure-activity relationships of PdMo metallene, we suggest that other metallene materials could show great promise in energy electrocatalysis.

12.
Chem Commun (Camb) ; 55(39): 5651-5654, 2019 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-31025990

RESUMEN

This report presents a simple method to produce an ultrasmall-Fe7C3/N-doped porous carbon hybrid (u-Fe7C3@NC) as an excellent oxygen reduction reaction (ORR) electrocatalyst. A zinc-air battery assembled with u-Fe7C3@NC performs at a higher open potential (1.486 V) and at a lower discharge overpotential compared with the commercial Pt/C catalyst.

13.
ACS Nano ; 13(2): 2167-2175, 2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30689350

RESUMEN

Despite its very high capacity (4200 mAh g-1), the widespread application of the silicon anode is still hampered by severe volume changes (up to 300%) during cycling, which results in electrical contact loss and thus dramatic capacity fading with poor cycle life. To address this challenge, 3D advanced Mxene/Si-based superstructures including MXene matrix, silicon, SiO x layer, and nitrogen-doped carbon (MXene/Si@SiO x@C) in a layer-by-layer manner were rationally designed and fabricated for boosting lithium-ion batteries (LIBs). The MXene/Si@SiO x@C anode takes the advantages of high Li+ ion capacity offered by Si, mechanical stability by the synergistic effect of SiO x, MXene, and N-doped carbon coating, and excellent structural stability by forming a strong Ti-N bond among the layers. Such an interesting superstructure boosts the lithium storage performance (390 mAh g-1 with 99.9% Coulombic efficiency and 76.4% capacity retention after 1000 cycles at 10 C) and effectively suppresses electrode swelling only to 12% with no noticeable fracture or pulverization after long-term cycling. Furthermore, a soft package full LIB with MXene/Si@SiO x@C anode and Li[Ni0.6Co0.2Mn0.2]O2 (NCM622) cathode was demonstrated, which delivers a stable capacity of 171 mAh g-1 at 0.2 C, a promising energy density of 485 Wh kg-1 based on positive active material, as well as good cycling stability for 200 cycles even after bending. The present MXene/Si@SiO x@C becomes among the best Si-based anode materials for LIBs.

14.
Nanotechnology ; 30(7): 075601, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30524075

RESUMEN

Heterostructured photocatalysts play a significant role in the removal of contaminants by decreasing the recombination of the photo-induced charges. Herein, we presented novel TiO2/C/BiVO4 ternary hybrids employing a 2D layered Ti3C2 MXene precursor, overcoming the lattice mismatching of TiO2/BiVO4 binary heterostructures simultaneously. Raman and XPS analyses proved the strong coupling effects of TiO2, carbon and BiVO4 components, and the heterostructures were identified from high-resolution transmission electron microscopy results. Moreover, the ternary TiO2/C/BiVO4 composites exhibit excellent photocatalytic performance of Rhodamine B degradation, which is about four times higher than pure BiVO4 and twice that of binary TiO2/BiVO4 heterostructures, reaching a reaction constant of 13.7 × 10-3 min-1 under visible-light irradiation (λ > 420 nm). In addition, for the possible mechanism for dye elimination it was proposed that RhB molecule be directly oxidized by photo-induced holes (h+) on the BiVO4 components and superoxide radical ([Formula: see text]) generated from conduction band electrons of the heterostructures. This work will provide possibilities for developing visible-light responsive nanomaterials for efficient solar utilization.

15.
Adv Mater ; 31(5): e1807226, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30516862

RESUMEN

Inspired by natural photosynthesis, the design of new Z-scheme photocatalytic systems is very promising for boosting the photocatalytic performance of H2 production and CO2 reduction; however, until now, the direct synthesis of efficient Z-scheme photocatalysts remains a grand challenge. Herein, it is demonstrated that an interesting Z-scheme photocatalyst can be constructed by coupling In2 O3 and ZnIn2 Se4 semiconductors based on theoretical calculations. Experimentally, a class of ultrathin In2 O3 -ZnIn2 Se4 (denoted as In2 O3 -ZISe) spontaneous Z-scheme nanosheet photocatalysts for greatly enhancing photocatalytic H2 production is made. Furthermore, Mo atoms are incorporated in the Z-scheme In2 O3 -ZISe nanosheet photocatalyst by forming the MoSe bond, confirmed by X-ray photoelectron spectroscopy, in which the formed MoSe2 works as cocatalyst of the Z-scheme photocatalyst. As a consequence, such a unique structure of In2 O3 -ZISe-Mo makes it exhibit 21.7 and 232.6 times higher photocatalytic H2 evolution activity than those of In2 O3 -ZnIn2 Se4 and In2 O3 nanosheets, respectively. Moreover, In2 O3 -ZISe-Mo is also very stable for photocatalytic H2 production by showing almost no activity decay for 16 h test. Ultraviolet-visible diffuse reflectance spectra, photoluminescence spectroscopy, transient photocurrent spectra, and electrochemical impedance spectroscopy reveal that the enhanced photocatalytic performance of In2 O3 -ZISe-Mo is mainly attributed to its widened photoresponse range and effective carrier separation because of its special structure.

16.
Adv Mater ; 30(45): e1803551, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30252951

RESUMEN

Designing well-defined nanointerfaces is of prime importance to enhance the activity of nanoelectrocatalysts for different catalytic reactions. However, studies on non-noble-metal-interface electrocatalysts with extremely high activity and superior stability at high current density still remains a great challenge. Herein, a class of Co3 O4 /Fe0.33 Co0.66 P interface nanowires is rationally designed for boosting oxygen evolution reaction (OER) catalysis at high current density by partial chemical etching of Co(CO3 )0.5 (OH)·0.11H2 O (Co-CHH) nanowires with Fe(CN)6 3- , followed by low-temperature phosphorization treatment. The resulting Co3 O4 /Fe0.33 Co0.66 P interface nanowires exhibit very high OER catalytic performance with an overpotential of only 215 mV at a current density of 50 mA cm-2 and a Tafel slope of 59.8 mV dec-1 in 1.0 m KOH. In particular, Co3 O4 /Fe0.33 Co0.66 P exhibits an obvious advantage in enhancing oxygen evolution at high current density by showing an overpotential of merely 291 mV at 800 mA cm-2 , much lower than that of RuO2 (446 mV). Co3 O4 /Fe0.33 Co0.66 P is remarkably stable for the OER with negligible current loss under overpotentials of 200 and 240 mV for 150 h. Theoretical calculations reveal that Co3 O4 /Fe0.33 Co0.66 P is more favorable for the OER since the electrochemical catalytic oxygen evolution barrier is optimally lowered by the active Co- and O-sites from the Co3 O4 /Fe0.33 Co0.66 P interface.

17.
Adv Mater ; 30(27): e1800036, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29766574

RESUMEN

Potassium-ion batteries (KIBs) are receiving increasing interest in grid-scale energy storage owing to the earth abundant and low cost of potassium resources. However, their development still stays at the infancy stage due to the lack of suitable electrode materials with reversible depotassiation/potassiation behavior, resulting in poor rate performance, low capacity, and cycling stability. Herein, the first example of synthesizing single-crystalline metallic graphene-like VSe2 nanosheets for greatly boosting the performance of KIBs in term of capacity, rate capability, and cycling stability is reported. Benefiting from the unique 2D nanostructure, high electron/K+ -ion conductivity, and outstanding pseudocapacitance effects, ultrathin VSe2 nanosheets show a very high reversible capacity of 366 mAh g-1 at 100 mA g-1 , a high rate capability of 169 mAh g-1 at 2000 mA g-1 , and a very low decay of 0.025% per cycle over 500 cycles, which are the best in all the reported anode materials in KIBs. The first-principles calculations reveal that VSe2 nanosheets have large adsorption energy and low diffusion barriers for the intercalation of K+ -ion. Ex situ X-ray diffraction analysis indicates that VSe2 nanosheets undertake a reversible phase evolution by initially proceeding with the K+ -ion insertion within VSe2 layers, followed by the conversion reaction mechanism.

18.
Adv Mater ; 30(18): e1706085, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29572970

RESUMEN

Intimately coupled carbon/transition-metal-based hierarchical nanostructures are one of most interesting electrode materials for boosting energy conversion and storage applications owing to the strong synergistic effect between the two components and appealing structural stability. Herein, a universal method is reported for making hierarchical hollow carbon nanospheres (HCSs) with intimately coupled ultrathin carbon nanosheets and Mo-based nanocrystals. The in situ and confined reaction of the synthetic strategy can not only allow the aggregation of the nanocrystals to be impeded, but also endows extremely intimate coupled interaction between the conductive carbon nanosheets and the nanocrystals MoM (M = P, S, C and O). As a proof of concept, the as-prepared MoP/C HCSs exhibit extraordinary hydrogen evolution reaction electrocatalytic activity with small overpotential and robust durability in both acidic and alkaline solutions. In addition, the unique sheet-on-sheet MoS2 /C HCSs as an anode demonstrate high capacity, great rate capabilities, and long-term cycles for sodium-ion batteries (SIBs). The capacity can be maintained at 410 mA h g-1 even after 1000 cycles even at a high current density of 4 A g-1 , one of the best reported values for MoS2 -based electrode materials for SIBs. The present work highlights the importance of designing and fabricating functional strongly coupled hybrid materials for enhancing energy conversion and storage applications.

19.
ACS Omega ; 3(9): 10564-10571, 2018 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31459180

RESUMEN

A liquid-like poly(ionic liquid) (PIL) with a very low glass transition temperature of -51 °C and a thermal decomposition temperature of 202.7 °C was synthesized. A PIL-based electrolyte by mixing this poly(ionic liquid) with additives of 10 wt % propylene carbonate and 0.1 M LiClO4 is proved to be an excellent electrolyte for lithium-ion battery. The obtained PIL-based electrolyte exhibits a high ionic conductivity of 8.3 × 10-5 S cm-1 at 25 °C and 2.0 × 10-4 S cm-1 at 60 °C and a wide electrochemical potential window up to 5.61 V at 25 °C and 4.14 V at 60 °C. The Li/LiFePO4 batteries equipped with this PIL-based electrolyte achieve high capacity, outstanding cycling stability and rate capability at 25 °C, and even improved performance at high temperature like 60 °C. Such excellent performances of batteries are attributed to the formation of stable solid-electrolyte interface film at the lithium-electrolyte interface and the stability of electrolyte during cycling.

20.
Chem Commun (Camb) ; 53(96): 12934-12937, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29155432

RESUMEN

This study presents an in situ route to produce 3D Fe-N doped metal organic framework@carbon nanotubes/graphene (Fe-MOF@CNTs-G) hybrids as efficient oxygen reduction reaction (ORR) catalysts in both basic and acidic solutions. A rechargeable zinc-air battery assembled with Fe-MOF@CNTs-G exhibits a lower charge/discharge overpotential than the commercial IrO2 + 20% Pt/C catalyst.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA